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Abstract: Extreme Learning Machine (ELM) has recently increased popularity and has been successfully
applied to a wide range of applications. Variants using regularization are now a common practice in the state
of the art in ELM field. The most commonly used regularization is the `2 norm which improves generalization
but result in a dense network. Regularization based on the elastic net has also been proposed but mainly
applied to regression and binary classification problems. In this paper, we propose a generalization of regular-
ized ELM (R-ELM) for multiclass classification problems, termed GR-ELM. We achieve such generalization
using the `2,1 and Frobenius norm. Traditional R-ELM is a particular case of our method when binary clas-
sification tasks are considered. We also propose an alternative algorithm for GR-ELM when training data
is distributed, namely GR-ELM. We use alternating direction method of multipliers (ADMM) for solving
the resulting optimization problems. Message passing interface (MPI) in a single program, multiple data
(SPMD) programming style is chosen for implementing DGR-ELM. Extensive experiments are conducted to
evaluate the proposed method. Our experiments show that GR-ELM and DGR-ELM have similar training
and testing accuracy when compared to R-ELM, although usually faster testing time is obtained with our
method due to the compactness of the resulting network.

Key Words: `2,1 norm, Regularization, Extreme Learning Machine, Muticlass Classfication, Alternating
direction method of multipliers
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1 Introduction

Extreme Learning Machine (ELM) proposed in [1, 2] and its variants [3] has recently increased popularity and

has been successfully used in a wide range of applications such as computer vision, image processing, time

series analysis and biomedical applications [3]. In such research areas, ELM can achieve good generalization

performance while maintaining low computational cost, justifying its popularity. The main idea of ELM is

to generate, randomly, the input weights of a single hidden layer feedforward neural network (SLFN) and

then deterministically find the output weights.

In ELM [2], one of the parameters that need to be well chosen is the number of neurons in the hidden

layer to achieve a good underfitting/overfitting trade-off. To overcome this, Deng et al. [4] proposed a regu-

larized version of ELM using ridge regression theory. Although this approach achieves good generalization,

the resulting network is dense and usually requires more storage space and testing time for large-scale appli-

cations [5]. Also, for large-scale learning tasks, traditional and ridge regularized ELM might suffer from the

limitation of memory and intensive computational cost of large matrices inversion [6].

Using elastic net theory, Mart́ınez-Mart́ınez et al. [7] proposed the regularized extreme learning machine

(R-ELM) for automatic selection of the architecture of ELM networks in regression problems. For binary

classification, an extension of R-ELM should be straightforward. For multiclass problems, approaches using

one-versus-rest classifiers can be adopted [1, 8]. However, a larger number of classes usually require more

computation time in training step. Although using elastic net penalty (R-ELM) usually result in a compacter

network, it suffers from the same drawbacks as ridge regularized ELM for large-scale learning tasks.

Recently, Wang et al. [6] proposed the parallel regularized ELM (PR-ELM) to improve the computational

efficiency of ELM in handling large scale tasks. In PR-ELM, the dataset is split into several small chunks that

are treated on different computational nodes and avoid the computationally intense procedure of large-scale

matrix multiplication and inverse operations. However, PR-ELM considers only ridge penalty ELM and the

resulting network is dense and usually require more testing time.

In this paper, we generalize the R-ELM for multiclass classification problems. We use the combination of

the Frobenius norm and `2,1 norm of the output weights as a penalty for ELM. In the binary classification

problems, our approach is the same as elastic net penalty ELM used in R-ELM. As a consequence, with ap-

propriate choice of regularization parameters, we have ridge penalty ELM as a particular case of our method.

To solve our optimization problem, we use alternating direction method of multipliers (ADMM) [9] for imple-

mentation. ADMM is a simple but powerful algorithm that solves a large global problem through solutions

of small local subproblems [9]. Furthermore, since ADMM is well suited to distributed convex optimization,
we extend our method for large-scale learning tasks using global variable consensus with regularization. Such

extension is accomplished using message passing interface (MPI) in a single program, multiple data (SPMD)

programming style.

The paper is organized as follows. In Section 2 we briefly review the background of ELM and related

variants using regularization. We describe the GR-ELM and DGR-ELM in Section 3. Experimental results

are presented in Section 4, and Section 5 concludes the paper.

2 Related work

In this section, we first brief review the extreme learning machine. Then we present some existing variations,

in specific the regularized ones, of the ELM.

2.1 ELM

Huang et al. [2] proposed ELM for SFLNs (Single-Hidden Layer Feedforward Neural Networks) which only

the output weights needs to be determined. This is done by randomly choosing the hidden nodes parameters

so one can analytically obtain the output weights using Moore-Penrose’s generalized inverse.



2 G–2016–32 Les Cahiers du GERAD

For a given N samples (xk, tk), where xk ∈ Rn is the input and tk ∈ Rm the target, the SFLNs with Ñ

hidden nodes and activation function h(·) is described as

ok =

Ñ∑
i=1

βih(xk;ai, νi), k = 1, . . . , N (1)

where ai ∈ Rn and νi ∈ R are, in the context of ELM, the randomly assigned parameters of the i-th hidden

node, βi ∈ Rm is the weight vector connecting the i-th hidden node to the output node.
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Figure 1: Illustration of an architecture of ELM with n inputs, Ñ hidden nodes and m outputs.

Figure 1 illustrates a typical architecture for ELM for multiclass classification problems with m classes,

n inputs, and Ñ hidden nodes.

Let B = (β1,β2, . . . ,βÑ )T, T = (t1, t2, . . . , tÑ )T and

H(X;A,ν) =

h(x1;a1, ν1) · · · h(x1;aÑ , νÑ )
...

. . .
...

h(xN ;a1, ν1) · · · h(xN ;aÑ , νÑ )

 , (2)

X = (x1, . . . ,xN )T, A = (a1, . . . ,aÑ )T and ν = (ν1, . . . , νÑ )T.

If an SLFN with Ñ hidden nodes can approximate the N given samples (xk, tk) with zero error, i.e.

ok = tk, Equation 1 can be expressed compactly as

HB = T . (3)

The output weights can be obtained following the smallest norm least-squares solution B = H†T , where

H† is the Moore-Penrose’s generalized inverse [10] of the matrix. The Moore-Penrose’s generalized inverse

can be calculated using orthogonal projection method [10] in two cases: when HTH is nonsingular and

H† = (HTH)−1HT, or when HHT is nonsingular and H† = HT(HHT)−1.
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2.2 R-ELM

Towards a more stable solution and better generalization performance, Deng et al. [4] proposed the weighted

regularized extreme learning machine (WR-ELM) by adding a positive value to the diagonal of HTH or

HHT. The following optimization problem was proposed in [4]:

minimize
β

1

2
‖ β ‖2 +

C

2
‖Dε ‖2

subject to Hβ − y = ε,

(4)

where ε is the error vector, C is a regularization parameter, β = (β1, β2, . . . , βÑ )T is the vector connecting

the Ñ hidden nodes and output y = (y1, y2, . . . , yN )T, and D is a diagonal weight matrix added to the model

to improve outlier robustness. The solution of β is given by

β =

(
I

C
+HTDH

)−1
HTD2y, (5)

with Ñ � N . When D is equal to the identity matrix, β is determined by

β =

(
I

C
+HTH

)−1
HTy, (6)

which is called unweighted regularized ELM. The performance evaluation presented in [4] uses the sigmoid

additive type of SLFNs. Guang-Bin Huang et al. [1] extended the work done in [4] to generalized SLFNs

with different types of hidden node functions as well as kernels. Furthermore, Guang-Bin Huang et al. [1]

present an alternative solution to the case Ñ > N .

Zhang and Luo [11] proposed an outlier robust ELM (OR-ELM), which instead of using the `2 norm of

the error vector, the `1 norm loss function is used. The resulting optimization problem is

minimize
β

‖ ε ‖1 +λ2 ‖ β ‖2

subject to Hβ − y = ε.
(7)

Although WR-ELM and OR-ELM show good results for outlier problems, the output weights are dense,

and an appropriate number of neurons needs to be chosen.

Mart́ınez-Mart́ınez et al.[7] considered several penalties for least squares regression to determine the

output weights. In particular, lasso [12], ridge regularization [13] and the elastic net [14] were studied. The

three regularization methods were described in a generalized way as

minimize
(β0,β)∈RÑ+1

1

2N

N∑
k=1

(yk − β0 − hT
kβ)2 + λPα(β), (8)

where hT
k is the k-th row of matrix H, λ is the regularization parameter and

Pα(β) =

Ñ∑
i=1

[
1

2
(1− α)β2

i + α|βi|
]

(9)

is the elastic net penalty. Pα is a trade-off between the ridge regression penalty (α = 0) and the lasso penalty

(α = 1) [7, 15]. The idea of using the elastic net penalty is to identify the degree of relevance of the weights
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between hidden nodes and the output. Thus, a compacter network can be achieved by removing the irrelevant

or low relevance hidden nodes while preserving the generalization ability of the network [7].

The ridge regularization estimator (α = 0) with β0 = 0 is

βridge = (λI +HTH)−1HTy, (10)

which is the same solution of Equation 6, the unweighted regularized ELM. As pointed by Mart́ınez-Mart́ınez

et al.[7], ridge regularization does not have the ability to prune the architecture of network efficiently, though

our experiments and literature shows good generalization results for classification problems.

3 Proposed method

In this section, we present our proposed method. We first generalize the regularized extreme learning machine

for multiclass classification problems. Then, we present the updates for the ADMM that we use to solve the

resulting optimization problem of the proposed method. We also show an alternative for solving our proposed

method for large learning tasks using consensus ADMM.

3.1 GR-ELM

Instead of applying R-ELM for each column of T , we search for jointly sparse solutions. The main idea of our

approach is to find a set of solutions that share a common nonzero support such that a compacter network

is obtained.

We propose to use the following minimization problem

minimize
B

C

2
‖HB − T ‖2F +λ1 ‖ B ‖2,1 +

λ2
2
‖ B ‖2F , (11)

where ‖ · ‖F is the Frobenius norm, ‖ B ‖2,1=
∑Ñ
i=1 ‖ bi,· ‖ and bi,· is the i-th row of B. We use alternating

direction method of multipliers (ADMM) [9] to solve Equation 11.
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Figure 2: Illustration of an architecture of GR-ELM with n inputs and m outputs.
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Since we consider multiclass classification problems, the Frobenius norm is a natural extension of the `2
norm for dealing with multiple outputs. We use the `2,1 norm since we search for a compacter network.

By compact, we mean that we would like to have a smaller number of neurons in the hidden layer without

compromise the training and testing accuracy. If one impose the `1 norm in each column of B, its columns

will be sparse, but not necessarily all the elements in a row of B will be zero. When a row of B is zero, we

can eliminate the neuron in the hidden node associated with this row. The `2,1 norm regularization performs

the role of eliminating neurons by making all the elements of some rows equals zero, and this is illustrated

in Figure 2.

The minimization problem stated in Equation 11 is equivalent to the following constrained problem

minimize
B,Z

C

2
‖HB − T ‖2F +

λ2
2
‖ B ‖2F +λ1 ‖ Z ‖2,1

subject to B −Z = 0,

(12)

which objective function is separable in B and Z. In each iteration of ADMM, alternating minimization of

augmented Lagrangian over B and Z is performed.

The augmented Lagrangian function of Equation 12 is

L(B,Z,Y ) =
C

2
‖HB − T ‖2F +

λ2
2
‖ B ‖2F

+ λ1 ‖ Z ‖2,1 +
ρ

2
‖ B −Z ‖2F +〈Y ,B −Z〉, (13)

where Y is the Lagrangian multiplier, and ρ > 0 is the penalty parameter.

Using the scaled dual variable, we can write the augmented Lagrangian in a slightly different form as

L(B,Z,Y ) =
C

2
‖HB − T ‖2F +

λ2
2
‖ B ‖2F

+ λ1 ‖ Z ‖2,1 +
ρ

2
‖ B −Z +U ‖2F −

ρ

2
‖ U ‖2F , (14)

where U = (1/ρ)Y is the scaled dual variable.

At iteration k, ADMM consists of the following update rules for

1) Bk+1, we have the following subproblem

Bk+1 := arg min
B

C

2
‖HB − T ‖2F +

λ2
2
‖ B ‖2F +

ρ

2
‖ B −Zk +Uk ‖2F . (15)

Making the gradient of the objective function with respect to B equals 0, we have

HT(HB − T ) +
λ2
C
B +

ρ

C
(B −Zk +Uk) = 0, (16)

and the minimizer for Equation 15 is

B = (HTH + ηI)−1
[
HTT +

ρ

C
(Zk −Uk)

]
, (17)

where η = (λ2 + ρ)/C.

2) Zk+1, we have the following subproblem

Zk+1 := arg min
Z

λ1
ρ
‖ Z ‖2,1 +

1

2
‖ Bk+1 −Z +Uk ‖2F . (18)

This optimization problem is equivalent to the following row-wise optimization problems for all rows of

Z, B and U

zk+1
i,· := arg min

zi,·

λ1
ρ
‖ zi,· ‖ +

1

2
‖ bk+1

i,· − zi,· + u
k
i,· ‖2 . (19)
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Equation 19 has closed form solution [9, 16] given by

zk+1
i,· = Sλ1

ρ
(bk+1
i,· + uki,·), (20)

where Sκ : Rm → Rm, with κ ∈ R, is the block soft-thresholding operator [9, 16] defined as

Sκ(a) =

(
1− κ

‖ a ‖

)
+

a, (21)

with Sκ(0) = 0 and (d)+ ≡ max(0, d). Let Sκ(A) be the operator that applies the block soft-thresholding

Equation 21 in each row of A. We can write the solution for Equation 18 as

Zk+1 = Sλ1
ρ

(Bk+1 +Uk). (22)

3) Uk+1, the Lagrangian multiplier is updated by

Uk+1 := Uk +Bk+1 −Zk+1. (23)

Algorithm 1 resumes the GR-ELM.

Algorithm 1: Generalized regularized extreme learning machine

1 Require: Training samples (xp, tp), p = 1, . . . , N , regularization parameters λ1, λ2, C, ρ and
activation function h(·).

2 Initialize: B0, U0, Z0 and k = 0.
3 Randomly assign parameters A and ν.
4 Calculate the hidden layer output matrix H using Equation 2.
5 repeat

6 Bk+1 := arg minB
C
2 ‖HB − T ‖

2
F +λ2

2 ‖ B ‖
2
F +ρ

2 ‖ B −Z
k +Uk ‖2F

7 Zk+1 := arg minZ
λ1

ρ ‖ Z ‖2,1 + 1
2 ‖ B

k+1 −Z +Uk ‖2F
8 Uk+1 := Uk +Bk+1 −Zk+1

9 k = k + 1

10 until meet stopping criterion

3.2 Distributed GR-ELM

We shall now discuss one approach for solving Equation 11 when the number of training samples is large,

with a modest number of neurons. We use global variable consensus ADMM [9] to solve the problem in a
distributed way, so each processor handles a subset of training data. Applications where data is stored or

collected in a distributed fashion, or there are so many training data that to process them on a single machine

is impossible or inconvenient, may be benefited with this approach [9].

We partition the training set in M parts. Let

X =

X1

...
XM

 , T =

 T1

...
TM

 (24)

with Xj ∈ RNj×n, and Tj ∈ RNj×m where
∑M
j=1Nj = N . We consider that each processor j has access to

the parameters of the hidden nodes so it can generate the matrix Hj ∈ RNj×Ñ following Equation 2. Thus,

Hj and Tj will be handled by the j-th processor.

We can write Equation 12 in the consensus form

minimize
B,Z

C

2

M∑
j=1

‖HjBj − Tj ‖2F +
λ2
2

M∑
j=1

‖ Bj ‖2F +λ1 ‖ Z ‖2,1

subject to Bj −Z = 0, j = 1, . . . ,M,

(25)
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where the local variables Bj ∈ RÑ×m and the global variable Z ∈ RÑ×m. The resulting ADMM algorithm,

in scaled form, is

Bk+1
j := arg min

Bj

C

2
‖HjBj − Tj ‖2F +

λ

2
‖ Bj ‖2F +

ρ

2
‖ Bj −Zk +Uk

j ‖2F (26)

Zk+1 := arg min
Z

λ1
ρ
‖ Z ‖2,1 +

1

2

M∑
j=1

‖ Bk+1
j −Z +Uk

j ‖2F (27)

Uk+1
j := Uk

j +Bk+1
j −Zk+1. (28)

We can express the Z-update (Equation 27) as an averaging step and proximal step involving the sum of

norms [9]

Zk+1 := arg min
Z

(
λ1
Mρ
‖ Z ‖2,1 +

1

2
‖ Bk+1 −Z +U

k ‖2F ,
)

(29)

where B
k+1

= 1/M
∑M
j=1B

k+1
j and U

k+1
= 1/M

∑M
j=1U

k+1
j . The solutions for Equation 26 and Equa-

tion 29 is

Bj =

(
HT
j Hj +

λ2 + ρ

C
I

)−1 [
HT
j Tj +

ρ

C
(Zk −Uk

j )
]

(30)

and

Zk+1 = S λ1
Mρ

(B
k+1

+U
k
), (31)

respectively, where Sκ is the block soft-thresholding operator for matrices defined as before. We implement

the Distributed GR-ELM (DGR-ELM) in Message Passing Interface (MPI) using a single program, multiple

data (SPMD). Algorithm 2 resumes the DGR-ELM.

Algorithm 2: Distributed generalized regularized extreme learning machine

1 Require: M processors, with each processor j storing training samples (Xj ,Tj) = {xpj , tpj}
Nj
pj=1,

regularization parameters λ1, λ2, C, ρ and activation function h(·), parameter A and ν.
2 Initialize: M processes, along with Bj , Uj and Z.
3 Calculate the j-th hidden layer output matrix Hj(Xj ,A,ν) using Equation 2.
4 repeat
5 Uj := Uj +Bj −Z
6 Bj := arg minB

C
2 ‖HjBj − Tj ‖2F +λ2

2 ‖ Bj ‖2F +ρ
2 ‖ Bj −Z +Uj ‖2F

7 Let W := Bj +Uj
8 Allreduce W

9 Z := arg minZ
λ1

Mρ ‖ Z ‖2,1 + 1
2 ‖W −Z ‖2F

10 until meet stopping criterion

In step 1 we assume that each processor has access to the regularization parameters, activation function

and parameters A and ν but the parameters and activation function could be generated/stored in only one

processor and broadcasted to other processors.

In step 8, Allreduce denotes the operation MPI Allreduce to compute the global sum over all processors

and store the result in W =
∑M
j=1(Bj + Uj) = M(B + U) on every processor. In step 9, all processors

(redundantly) compute the Z-update. Although a single processor could compute the Z-update and brodcast

the result to other processors, this approach complicates the code and is generally no faster [9].
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3.3 Computational notes

The update of B stated in Equation 17 involves the inverse of G = (HTH + ηI) that we solve by Cholesky

factorization followed by a forward and backward substitution. Since we maintain ρ fix, we can factor G

once, and use the cached factorization in subsequent solve steps.

When Ñ > N we can use the matrix inversion lemma to reduce computation

(ηI +HTH)−1 = (ηI)−1 − (ηI)−1HT(I−1 +H(ηI)−1HT)−1H(ηI)−1

=
1

η
(I −HT(ηI +HHT)−1H). (32)

Then, factorization of (ηI +HHT) can be cached and forward and backward substitution can be used in

the updates. This procedure also applies to Equation 30.

3.4 Stopping criterion

We follow the suggestions given in [9] for stopping criterion. We terminate the algorithm when primal and

dual residuals, given by

Rk = Bk −Zk and S = ρ(Zk −Zk−1), (33)

respectively, satisfy

‖ Rk ‖F ≤ εpri and ‖ Sk ‖F ≤ εdual. (34)

The tolerances εpri > 0 and εdual > 0 are set using an absolute and relative criterion,

εpri =
√
mÑ εabs + εrel max{‖ Bk ‖F , ‖ Zk ‖F } (35)

εdual =
√
mÑ εabs + εrelρ ‖ Uk ‖F , (36)

where εabs > 0 and εrel > 0 are the absolute and relative tolerance, respectively.

3.5 Discussion

Our approach is a generalization of the regularized extreme learning machine. If T = y ∈ Rm, then

Equation 11 is the elastic net regularization problem (Equation 8). Also, when λ1 = 0 and C = 1 we have

ridge regularization for multi outputs with common ridge parameter, λ2, and the solution is an extension of

Equation 10 given by

B = (HTH − λ2I)−1HTT . (37)

In Equation 11 we would only need to use the regularization parameters λ1 and λ2 and we would still have

an equivalent minimization problem. However, when applying ADMM for solving Equation 11 the update

of Bk+1 (Equation 15) depends on η = (λ2 + ρ)/C, which would be limited if C = 1, since we usually fix

ρ = 1. If C = 1 then η would always be greater than one. The only way having η < 1 when fixing C = 1 is

changing both λ2 and ρ which we avoid since ρ is also used in the update of Zk+1 (Equation 22).

Although outlier robustness is out of the scope of this paper, with a small change in the objective function,

GR-ELM could be robust to outliers. In Equation 11, if we change the Frobenius norm with the matrix 1-

norm of the error, then for the particular case of single output and appropriate choice of regularization

parameters we would have the same optimization problem as the OR-ELM.
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4 Experiments

In this section, we evaluate the proposed GR-ELM. We selected 14 binary classification datasets (Table 1)

and eight multiclass classification datasets (Table 2). These datasets are taken from UCI Repository and

LIBSVM portal [17, 18].

For binary classification datasets, labels are either -1 or 1. For a multiclass dataset with m classes, the

k-th class is represented by a m-dimensional vector with all elements equals to -1 except for the k-th element

of the vector, which is equal 1. Attributes of training data are normalized to have values in [−1, 1]. The

testing data are normalized accordingly to the factors used in the normalization of training data.

All the experiments were conducted in a 3.6 GHz core i7 with 8 GB of RAM. Simulations for GR-ELM

are carried in MATLAB 8.5 and simulations for DGR-ELM are done in C using MPI and GNU Scientific

Library (GSL) for linear algebra with ATLAS library.

4.1 Parameters specifications

The initial number of neurons (Ñ) in the hidden layer is set to 1000 for all datasets. For ADMM, we fixed

ρ = 1, and regularization parameters λ1 and C are selected by 5-fold cross-validation. We tested 14

values for C: [0.01, 0.1, 0.2, 0.5, 1, 2, 5, 20, 50, 100, 200, 500, 1000]. For λ1, 100 values were tested decreasing

from 100 to λmin in a log scale. The value of λmin is defined as 0.0001 if N > n and 0.01 otherwise. The

parameter λ2 is fixed to 0.1. We use the same parameters for both GR-ELM and DGR-ELM. The values

of A and ν are randomly generated based on uniform distribution and the sigmoid functionh(xk;ai, νi) =

Table 1: Information about binary classifcation datasets

Datasets # Training data # Testing Data # Attributes

Bupa 173 172 6
Australia 346 344 14
Breast Cancer 342 341 10
Diabetes 384 384 8
Heart 135 135 13
Ionosphere 176 175 34
Mushroom 4062 4062 22
SVMGuide1 3089 3089 4
Magic 9510 9510 11
COD RNA 29768 29767 8
Colon Cancer 31 31 2000
Leukemia 38 34 7129
Spambase 2301 2300 57
Adult 6414 26147 123

Table 2: Information about multiclass classifcation datasets

Datasets # Training data # Testing Data # Features # Classes

Iris 75 75 4 3
Wine 90 88 13 3
Vowel 528 462 10 11
Segment 1155 1155 19 7
Satimage 4435 2000 36 6
DNA 2000 1186 180 3
SVMGuide2 197 194 20 3
USPS 7291 2007 256 10
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1/ (1 + exp(−ai · x − νi)) is chosen as activation function for GR-ELM and DGR-ELM. For GR-ELM,

the absolute and relative tolerance is εabs = 10−3 and εrel = 10−2, respectively. For convenience and code

simplification we fixed the number of iteration of DGR-ELM to 100.

4.2 Performance of GR-ELM

We compare the proposed GR-ELM with ELM with ridge regularization. Table 3 and Table 4 resumes

the training & testing accuracy (and corresponding standard deviation) and time for binary and multiclass

classification datasets, respectively, of 20 trials for each dataset. In each trial, random permutation within

training data set and testing data set is performed. Table 5 summarize the regularization parameters obtained

through 5-fold cross-validation. Table 6 show the mean number of neurons of 20 trials for binary and multiclass

classification datasets.

Table 3: Mean accuracy with corresponding standard deviation and running time for training and testing in
binary class datasets (λ2 = 0.1 and Ñ = 1000 )

Datasets
GR-ELM ELM

Train. Acc. Test. Acc. Train. Time Test Time Train. Acc. Test. Acc. Train. Time Test Time

Bupa 80.46 ± 0.81 71.77 ± 0.89 0.0107 0.0022 81.07 ± 0.67 71.42 ± 0.95 0.0008 0.0025
Australian 88.73 ± 0.48 84.59 ± 0.46 0.0137 0.0006 88.53 ± 0.35 84.52 ± 0.39 0.0025 0.0053
Breast Cancer 97.50 ± 0.20 96.60 ± 0.26 0.0170 0.0005 97.87 ± 0.19 96.74 ± 0.09 0.0023 0.0050
Diabetes 79.02 ± 0.43 76.85 ± 0.55 0.0490 0.0005 79.93 ± 0.35 76.86 ± 0.37 0.0033 0.0058
Heart 87.63 ± 0.35 87.26 ± 0.70 0.0078 0.0008 87.41 ± 0.00 87.15 ± 0.69 0.0007 0.0022
Ionosphere 96.14 ± 0.57 87.29 ± 0.67 0.0096 0.0008 97.05 ± 0.40 87.14 ± 0.57 0.0010 0.0028
Mushroom 100.00 ± 0.00 100.00 ± 0.00 0.1049 0.0835 100.00 ± 0.00 100.00 ± 0.00 0.0403 0.0822
SVMGuide 97.14 ± 0.05 96.74 ± 0.04 0.1556 0.0854 97.09 ± 0.05 96.67 ± 0.05 0.0392 0.0817
Magic 88.00 ± 0.11 86.63 ± 0.14 0.1632 0.1424 87.87 ± 0.09 86.63 ± 0.10 0.0993 0.1841
COD RNA 95.68 ± 0.04 95.23 ± 0.05 0.4347 0.6348 95.50 ± 0.05 95.20 ± 0.06 0.3435 0.6553
Colon Cancer 100.00 ± 0.00 82.90 ± 4.07 0.0052 0.0015 100.00 ± 0.00 82.42 ± 4.25 0.0001 0.0022
Leukemia 100.00 ± 0.00 76.91 ± 4.80 0.0050 0.0046 100.00 ± 0.00 76.76 ± 4.47 0.0001 0.0059
Spambase 95.49 ± 0.17 93.09 ± 0.20 0.1038 0.0452 95.08 ± 0.12 92.99 ± 0.21 0.0389 0.0529
Adult 85.20 ± 0.18 84.18 ± 0.08 0.1302 0.3905 84.98 ± 0.15 84.21 ± 0.06 0.0622 0.5340

Table 4: Mean accuracy with corresponding standard deviation and running time for training and testing in
multiclass datset (λ2 = 0.1 and Ñ = 1000 )

Datasets
GR-ELM ELM

Train. Acc. Test. Acc. Train. Time Test. Time Train. Acc. Test. Acc. Train. Time Test. Time

Iris 100.0 ± 0.00 94.53 ± 0.96 0.0117 0.0004 98.67 ± 0.00 93.07 ± 1.02 0.0003 0.0014
Wine 100.0 ± 0.00 95.57 ± 0.82 0.0106 0.0015 100.0 ± 0.00 95.57 ± 0.82 0.0005 0.0015
Vowel 100.0 ± 0.00 50.02 ± 1.93 0.2739 0.0072 100.0 ± 0.00 50.18 ± 1.97 0.0061 0.0073
Segment 97.82 ± 0.14 95.75 ± 0.26 0.4296 0.0200 97.98 ± 0.14 95.74 ± 0.26 0.0252 0.0210
Satimage 93.52 ± 0.14 90.26 ± 0.32 0.3359 0.0459 93.86 ± 0.15 90.35 ± 0.29 0.0439 0.0426
DNA 97.99 ± 0.18 93.38 ± 0.55 0.2079 0.0267 98.03 ± 0.17 93.36 ± 0.56 0.0288 0.0267
SVMGuide2 92.28 ± 0.80 81.96 ± 0.73 0.0162 0.0008 93.68 ± 0.31 81.34 ± 0.88 0.0010 0.0031
USPS 97.87 ± 0.12 92.21 ± 0.25 0.2646 0.0535 97.95 ± 0.11 92.26 ± 0.22 0.0713 0.0522

Our simulations indicate that GR-ELM has similar testing accuracy when compared to ELM with ridge

regularization, although usually faster testing and compacter network is achieved. Training time for GR-

ELM is higher when compared to the training time of ELM, which is expected since solving Equation 11 is

computationally more demanding than solving ridge regularized ELM. However, there is no need to know

the optimal value of the number of neurons when working with GR-ELM. If the initial number of neurons is

larger enough, ridge regularized ELM and GR-ELM should perform similarly in testing accuracy perspective.

However, faster testing and compacter network is expected for GR-ELM.
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Table 5: Parameters specifications of binary dataset and mean number of neurons (λ2 = 0.1 and Ñ = 1000 )

Datasets
GR-ELM ELM

λ1 C Numb. Neur. C Numb. Neur.

Bupa 0.0201 5 803.80 50 1000
Australian 1.3219 10 66.95 5 1000
Breast Cancer 0.5722 5 48.50 10 1000
Diabetes 6.1359 50 23.95 10 1000
Heart 0.0534 0.5 256.90 1 1000
Ionosphere 0.1630 2 217.40 5 1000
Mushroom 0.1630 500 950.05 1000 1000
SVMGuide 0.0001 1000 1000.0 1000 1000
Magic 0.5722 50 778.55 200 1000
COD RNA 1.1498 1000 963.45 1000 1000
Colon Cancer 0.0145 2 642.45 10 1000
Leukemia 0.0100 1000 742.20 1000 1000
Spambase 0.0351 2 880.20 10 1000
Adult 0.0201 0.1 732.40 0.5 1000

Table 6: Parameters specifications of multiclass dataset and mean number of neurons (λ2 = 0.1 and Ñ = 1000 )

Datasets
GR-ELM ELM

λ1 C Numb. Neur. C Numb. Neur.

Iris 2.3101 1000 186.90 1000 1000
Wine 0.0001 50 1000.0 500 1000
Vowel 0.0001 1000 1000.0 1000 1000
Segment 0.1630 100 999.65 1000 1000
Satimage 0.1630 10 999.55 100 1000
DNA 0.0038 0.2 999.90 2 1000
SVMGuide2 0.5722 5 193.00 10 1000
USPS 0.2154 1 1000.0 5 1000

4.3 Performance of DGR-ELM

We now evaluate the distributed version of GR-ELM. Although DGR-ELM has an appealing application on

large datasets, we evaluated DGR-ELM using all datasets to see its behavior using small datasets as well.

Table 7 resume the mean accuracy of 20 runs for binary classification problems using DGR-ELM for 1, 2 and 4

processes. The same experiment is done for multiclass classification datasets and the results are summarized

in Table 8.

As expected, the training and testing accuracy for both, binary and multiclass classification problems,

are similar to training and testing accuracy obtained for GR-ELM. In other words, training data can be

distributed in different machines and DGR-ELM should achieve similar training and testing accuracy as if

we would have all training set concentrated in one machine.

Table 9 summarize the mean training and testing time for 20 runs using DGR-ELM with 1, 2 and

4 processes for binary classification problems. The same results for multiclass classification problems are

shown in Table 10. We point out that faster training time is not the main concern of this paper. Faster

training time can be achieved by using LAPACK instead of GSL for Cholesky factorization, and by using a

GPU-based linear algebra package as suggested by Boyd [9].
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Table 7: Mean accuracy with corresponding standard deviation for training and testing in binary classification
problems using DGR-ELM for 1, 2 and 4 processes (λ2 = 0.1 and Ñ = 1000 )

Datasets
1 2 4

Train. Acc. Test. Acc. Train. Acc. Test Acc. Train. Acc. Test. Acc.

Bupa 79.95 ± 0.55 72.66 ± 0.81 78.92 ± 0.49 72.34 ± 0.29 77.46 ± 0.00 72.09 ± 0.00
Australian 89.25 ± 0.42 84.80 ± 0.54 88.73 ± 0.23 84.40 ± 0.50 88.17 ± 0.37 84.82 ± 0.12
Breast Cancer 97.61 ± 0.21 96.91 ± 0.23 97.46 ± 0.14 96.60 ± 0.17 97.47 ± 0.14 96.63 ± 0.15
Diabetes 78.98 ± 0.55 76.86 ± 0.44 79.06 ± 0.19 77.04 ± 0.33 78.48 ± 0.13 77.17 ± 0.70
Heart 88.01 ± 0.28 87.59 ± 0.55 87.39 ± 0.10 87.42 ± 0.10 87.41 ± 0.00 87.21 ± 0.32
Ionosphere 96.41 ± 0.42 87.45 ± 0.86 94.73 ± 0.26 87.02 ± 0.26 93.20 ± 0.80 86.49 ± 0.53
Mushroom 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00
SVMGuide 97.13 ± 0.04 96.73 ± 0.04 97.10 ± 0.05 96.76 ± 0.05 97.09 ± 0.05 96.77 ± 0.04
Magic 87.95 ± 0.11 86.63 ± 0.10 87.77 ± 0.09 86.62 ± 0.10 87.52 ± 0.09 86.51 ± 0.10
COD RNA 95.37 ± 0.06 95.13 ± 0.05 95.30 ± 0.05 95.10 ± 0.05 95.24 ± 0.05 95.07 ± 0.05
Colon Cancer 100.0 ± 0.00 80.84 ± 2.18 100.0 ± 0.00 79.42 ± 3.15 100.0 ± 0.00 80.77 ± 2.66
Leukemia 100.0 ± 0.00 77.88 ± 4.09 100.0 ± 0.00 78.53 ± 3.24 100.0 ± 0.00 78.18 ± 4.60
Spambase 95.45 ± 0.18 93.06 ± 0.21 94.90 ± 0.20 93.05 ± 0.19 94.18 ± 0.13 92.96 ± 0.21
Adult 85.21 ± 0.15 84.17 ± 0.09 84.73 ± 0.11 84.16 ± 0.07 84.27 ± 0.14 84.09 ± 0.07

Table 8: Mean accuracy and corresponding standard deviation in multiclass classification problems using
DGR-ELM for 1, 2 and 4 processes (λ2 = 0.1 and Ñ = 1000 )

Datasets
1 2 4

Train. Acc. Test. Acc. Train. Acc. Test Acc. Train. Acc. Test. Acc.

Iris 100.0 ± 0.00 94.64 ± 0.19 100.0 ± 0.00 93.33 ± 0.00 98.67 ± 0.00 93.33 ± 0.00
Wine 100.0 ± 0.00 95.45 ± 0.00 100.0 ± 0.00 96.57 ± 0.16 100.0 ± 0.00 96.59 ± 0.00
Vowel 100.0 ± 0.00 50.42 ± 1.78 100.0 ± 0.00 48.76 ± 1.96 100.0 ± 0.00 49.71 ± 1.60
Segment 97.89 ± 0.13 95.77 ± 0.24 97.31 ± 0.16 95.54 ± 0.22 96.74 ± 0.13 95.00 ± 0.23
Satimage 93.53 ± 0.16 90.29 ± 0.25 92.75 ± 0.17 89.91 ± 0.25 91.89 ± 0.15 89.46 ± 0.25
DNA 97.90 ± 0.23 93.21 ± 0.40 97.33 ± 0.22 93.25 ± 0.38 96.34 ± 0.30 92.67 ± 0.63
SVMGuide2 91.30 ± 0.74 81.44 ± 0.34 91.21 ± 0.24 81.94 ± 0.42 89.73 ± 1.10 82.11 ± 0.76
USPS 97.86 ± 0.13 92.20 ± 0.37 97.56 ± 0.10 92.11 ± 0.30 97.15 ± 0.11 91.86 ± 0.35

5 Conclusions

In this paper, we proposed a generalization of R-ELM, namely GR-ELM, and we derive an alternative

algorithm when training data is distributed (DGR-ELM). By using `2,1 norm and Frobenius norm, we were

able to extend the R-ELM for multiclass classification problems. R-ELM is a particular case of our proposed

method when considering single output in the network. Our experiments showed that by using GR-ELM

instead of ELM with ridge regularization, usually a compacter network is achieved without compromising

the testing accuracy. As a consequence, testing time was usually faster when using GR-ELM since ELM with

ridge regularization results in dense networks. For DGR-ELM, our results indicated that similar training and

testing accuracy can be obtained when training data is distributed.

For future investigations we will focus on the following observations: (a) although we only tested the

GR-ELM and DGR-ELM for classification problems, there is no restriction for applying it to other problems

such as regression; (b) in our simulations, sigmoid additive type of SLFNs were used and extensions to other

types of activation functions as well as kernel can be done; (c) although we have not tested in this paper,

simple modifications can make GR-ELM robust to outlier; and (d) improvements in training time for DGR-



Les Cahiers du GERAD G–2016–32 13

ELM can be achieved by using GPU-based linear algebra package and by using LAPACK instead of GSL for

Cholesky factorization.

Table 9: Mean time for binary classification problems using DGR-ELM for 1, 2 and 4 processes (λ2 = 0.1

and Ñ = 1000 )

Datasets
1 2 4

Train. Time Test. Time Train. Time Test. Time Train. Time Test. Time

Bupa 0.0408 0.0055 0.0159 0.0062 0.0169 0.007
Australian 0.0875 0.0009 0.0414 0.0011 0.025 0.002
Breast Cancer 0.0855 0.0006 0.046 0.0011 0.0244 0.0017
Diabetes 0.1015 0.0004 0.0489 0.0005 0.0361 0.0006
Heart 0.0334 0.0013 0.0135 0.0021 0.015 0.0032
Ionosphere 0.0416 0.0016 0.0175 0.0025 0.0175 0.0036
Mushroom 0.486 0.1978 0.4132 0.2033 0.5163 0.2141
SVMGuide 0.4165 0.1926 0.3801 0.1961 0.6586 0.2004
Magic 0.8767 0.3986 0.6108 0.4148 0.657 0.4538
COD RNA 2.3304 1.1616 1.4491 1.3217 1.1825 1.4507
Colon Cancer 0.008 0.008 0.008 0.0104 0.01 0.0118
Leukemia 0.0087 0.0321 0.008 0.0386 0.0096 0.0426
Spambase 0.3597 0.1066 0.3446 0.1127 0.4251 0.1188
Adult 0.6548 1.3012 0.4992 1.4524 0.5684 1.6618

Table 10: Mean time for multiclass classification problems using DGR-ELM for 1, 2 and 4 processes (λ2 =

0.1 and Ñ = 1000 )

Datasets
1 2 4

Train. Time Test. Time Train. Time Test. Time Train. Time Test. Time

Iris 0.0324 0.0006 0.024 0.0009 0.0216 0.0015
Wine 0.0401 0.0038 0.0303 0.0041 0.0234 0.0045
Vowel 0.4905 0.0202 0.2442 0.021 0.1877 0.0218
Segment 0.5817 0.0577 0.5156 0.0578 0.3324 0.06
Satimage 0.766 0.1029 0.8923 0.1051 1.4223 0.1091
DNA 0.4373 0.0794 0.5015 0.0818 0.4767 0.0862
SVMGuide2 0.0717 0.0016 0.0462 0.0022 0.0461 0.0035
USPS 1.1786 0.1585 1.387 0.1657 2.2268 0.1774
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is currently an Associate Professor in the Department of Decision Science, HEC Montréal. He is also member
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