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Montréal (Québec) Canada

ahad.dehghani@gerad.ca

Jean-Louis Goffin

GERAD & Desautels Faculty of Management, Management Science
McGill University
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Abstract

Interior-point methods in semi-definite programming (SDP) require the solution of a sequence of linear
systems which are used to derive the search directions. Safeguards are typically required in order to handle
rank-deficient Jacobians and free variables. We propose a primal-dual regularization to the original SDP
and show that it is possible to recover an optimal solution of the original SDP via inaccurate solves of a
sequence of regularized SDPs for both the NT and dual HKM directions. This work is a generalization
of recent work by Friedlander and Orban for quadratic programming.

Résumé

Les méthodes de points intérieurs pour l’optimisation semi-définie nécessitent la solution d’une suite
de systèmes linéaires utilisés pour déterminer une direction de recherche. Des garde-fous sont habituelle-
ment mis en place pour se prémunir des situations où les contraintes ne sont pas de rang maximal et
pour traiter les variables libres. Nous proposons une régularisation primale-duale du SDP d’origine et
montrons qu’il est possible de retrouver une solution du SDP initiale. Ceci se fait par le biais de solutions
inexactes d’une suite de SDPs régularisés pour les directions NT et HKM duale. Notre algorithme est
une généralisation d’une contribution récente de Friedlander et Orban.

Acknowledgments: Research partially supported by NSERC Discovery Grant 299010-04.
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1 Introduction

Semidefinite programming (SDP) has been an active topic in optimization for almost two decades. SDP has

lots of applications in computational geometry, experiment design, information and communication theory,

statistics, control theory, eigenvalue maximization, linear matrix inequalities, and optimal experiment design,

to name a few [VB99, VB96].

It has also been recognized in combinatorial optimization as a valuable technique for obtaining bounds on

the solution of NP-hard problems [Ali95, Hel00]. There are two handbooks that covers theory, algorithms,

applications, and softwares for SDP’s [WSV00, FB12].

In this paper, we consider a primal-dual regularization to solve the semidefinite program

minimize
X∈Sn

C •X

subject to Ai •X = bi, i = 1, 2, · · · ,m,
X < 0,

(1)

where C,X, and Ai are in Sn, the set of all symmetric matrices in Rn×n, bi ∈ R, C •X = tr(CX) and X < 0

means that X is positive semidefinite. The Lagrangian associated to (1) is

L(X, y, Z) := C •X −
m∑
i=1

yi(Ai •X − bi)− Z •X. (2)

It is easy to see that ∂
∂XL(X, y, Z) = 0 if and only if C =

∑m
i=1 yiAi + Z. Substituting this value for C

in (2) we get L(X, y, Z) = bT y and the dual of (1) is obtained by maximizing bT y over all Z < 0 that is

maximize
Z∈Sn,y∈Rm

bT y

subject to

m∑
i=1

yiAi + Z = C,

Z < 0.

(3)

Although SDP has remarkable resemblance with linear programming(Lp) and includes Lp, strong duality

does not hold in general. It does hold if at least one of the problems (1) and (3) has a strictly feasible point

[Ali95]. In interior-point methods for SDP, most of the computational cost lies in the solution of a symmetric

indefinite system of linear equations that determines the search direction. At each iteration, a saddle-point

system—also known as a KKT system—of the following form must be solved[
−D A∗
A 0

] [
∆X
∆y

]
=

[
f
g

]
, (4)

where A is a linear operator on Sn, A∗ is its adjoint operator, and D is a linear operator on Sn not necessarily

symmetric. The operator D and the right-hand side (f, g) change at each iteration. This system maybe solved

using direct or iterative methods, or ∆X and ∆y may be solved via

AD−1A∗∆y = AD−1f + g,

D∆X = A∗∆y − f.
(5)

2 Motivation and related works

We may cannot solve (4) and (5) efficiently near rank deficiency of A or near singularity of D. The goal of

this paper is to present a primal-dual regularization based on modifying the linear systems (4) or (5) in order

to alleviate some of these difficulties. Our approach is closely connected to augmented Lagrangian methods
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for convex programming, except that is based on applying a single Newton iteration on each subproblem,

rather than solving it to a certain level of accuracy.

In our algorithms, classical tools from convex optimization such as quadratic regularization and aug-

mented Lagrangian techniques are used and shares many characteristics with algorithms that have already

been proposed. For example: a primal-dual regularization by Friedlander and Orban [Orb10] for quadratic

programming, an adaptive diagonal regularization for linear and quadratic problems implemented by Altman

and Gondzio [AG99], a quadratic regularization based on Moreau-Yosida regularization [MPR+09] for SDP,

and a primal regularization for conic optimization by Anjos and Burer [AB07]. They provide a convergence

proof for the primal regularization scheme proposed by Mészáros [Més98] in the context of second-order cone

programming:

minimize
x∈Rn

subject to Ax = b, x ∈ C,

where C is the symmetric self-dual cone. Both Mészáros [Més98] and Anjos and Burer [AB07] motivate this

type of regularization as a means to handle free variables. The convergence proof of Anjos and Burer [AB07] is

similar to ours but is weaker in at least three respects. The first is that it only considers primal regularization.

The second is that it explicitly assumes boundedness of the Newton direction—an assumption done away

with in the present paper. The third is that it assumes that A has full row rank. Yet more importantly,

their regularization parameter update occurs posthumously in the sense that the parameter value is adjusted

if the Newton direction just computed violates some condition. A clear disadvantage is then that each time

the parameter value is changed, the Newton direction must be recomputed.

A remedy for an ill-conditioned matrix in block (1, 1) in (4) is that to modify D into D+ ρI, where ρ > 0

is a regularization parameter. The new system can be interpreted as the corresponding direction-finding

system for the primal-regularized SDP

minimize
X∈Sn

C •X + 1
2ρ ‖X −Xk‖2F

subject to AX = b, X < 0,
(6)

where Xk is the current iterate and ‖.‖F is the Frobenius norm.

We face similar difficulties when A is nearly rank deficient. In this case, the factorizations are not

numerically stable and the dual problem (3) does not achieve a unique solution. A remedy of this difficulty is

also to add δI to the (2, 2) block of (4). The new system can be interpreted as the direction finding-system

for the dual-regularized SDP
maximize

y,Z
bT y − 1

2δ‖y − yk‖
2

subject to A∗y + Z = C, Z < 0,
(7)

where here and throughout ‖ · ‖ means the Euclidian norm on Rm. Let X∗ and (y∗, Z∗) be solutions of

(1)–(3), respectively. It is not difficult to see that X∗ and (y∗, Z∗) are also the unique solutions of (6)–(7)

in which we set Xk = X∗ and yk = y∗ for any nonnegative δ and ρ. Friedlander and Tseng [FT07] term this

property exact regularization. In sense above, we can say that these regularized problems are exact. We will

see that our primal-dual regularized problems are also exact in the next section.

A primal-dual regularization can be obtained by modifying both block (1, 1) and (2, 2) in (4) simultane-

ously to get

K

[
∆X
∆y

]
=

[
f
g

]
where K :=

[
−(D + ρI) A∗
A δI

]
, (8)

called augmented system. We derive this system in Section 4 and show that (8) is obtained by using simul-

taneous regularization to (1)–(3), although the form of simultaneous primal-dual regularization is different

than that given by (6)–(7). It worth mentioning that (6)–(7) is not a primal-dual pair, although (8) can be

interpreted as a direction-finding system for a primal-dual regularized SDP.

The matrix K appears in (8) belongs to the class of symmetric quasi-definite (SQD) matrices and is

strongly factorizable [Van94, Van95]. That is for any permutation matrix P , the indefinite matrix PKPT

possesses a Cholesky-type factorization L∆LT where L is unit lower triangular and ∆ is diagonal.
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The stability of linear system with SQD matrices is analyzed by Gill et al. [GSS96]; Saunders [Sau95, S+96]

investigate the use of SQD matrices within interior-point methods for linear programming.

We note that (8) is equivalent to(
A(D + ρI)−1A∗ + δI

)
∆y = A(D + ρI)−1f + g,

(D + ρI)∆X = (D + ρI)−1A∗∆y − f.
(9)

known as Schur complement system. It is clear that (5) can be recovered from (9) by setting δ = ρ = 0. We

state and analyze our algorithms based on (8) and test our algorithm by adding regularization parameters ρ

and δ to SDPT3 solver [TTT].

3 Notation

For any given symmetric matrix G ∈ Rn×n, we use λn(G) and λ1(G) to denote the smallest and the largest

eigenvalues of G, respectively. Similarly if G is not symmetric we use σn(G) and σ1(G) to denote the smallest

and the largest singular values of G, respectively.

In order to work with matrices instead of operators we use the following notation. For any m× n matrix

A,vecA denotes the mn-vector obtained from stacking the columns of A on top of one another. For matrices

Ai ∈ Sn(i = 1, 2, · · ·m) we use

AT = [vecA1 vecA2 · · · vecAm].

For any two matrices B ∈ Rm×n and C ∈ Rp×q, the Kronecker product of B and C denoted by B ⊗ C and

defined as a block matrix consisting mn blocks for which the ij−th block is bijC. To see some properties of

Kronecker product used in this paper see Appendix A.

4 A Primal-Dual regularization

SDP’s are convex problem in the sense that minimizing a linear function over a convex set, but they are

not convex in the sense of nonlinear programming, because condition X < 0 generates some nonconvex

constraints. In this section, we first state some definitions from [D.G97] to generalize the notion of inequality,

convexity, and convex programs in vector spaces and then state our primal-dual regularization for SDP’s.

Definition 1 (Generalized inequality) Let P be a convex cone in a vector space V . For any x, y ∈ V we

write x <P y if x − y ∈ P. The cone P defining this relation is called the positive cone in V . To simplify

notation and whenever there is no ambiguity, we omit the index P and write x < y for x <P y. The cone P

is said to be a pointed cone if whenever x ∈ P and −x ∈ P then x = 0.

One can easily verify that x < y, and y < z imply x < z, and since 0 ∈ P , x < x for all x ∈ V. Moreover, if

P is pointed then x < y and y < x imply x = y. Since we have a generalized definition of inequality between

vectors, it is possible to generalize the notion of convexity for mappings.

Definition 2 (Generalized convexity) Let V be a vector space and let W be a vector space having a cone P

specified as the positive cone. A mapping g : V → W is said to be convex if the domain Ω of g is a convex

set and if for all 0 ≤ α ≤ 1

g(αx1 + (1− α)x2) 4 αg(x1) + (1− α)g(x2) for all x1, x2 ∈ Ω.

We note that the convexity is not an intrinsic property of a mapping but it also depends on the specified

positive cone. When V = Rn and

P = {x ∈ Rn | xi ≥ 0, i = 1, 2, · · · , n}
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then the generalized convexity of Definition 2 becomes the usual definition of convexity of functions on Rn.

Now, a general convex program can be stated as

minimize
x∈Ω

f(x)

subject to g(x) 4 0

Bx = b.

(10)

where f and g are convex functions on convex set Ω ⊂ Rn, B ∈ Rm×n, x ∈ Rn, and b ∈ Rm. In the sense

above, the SDP problem (1) and the following regularization of (1) are convex programs

minimize
X∈Sn,r∈Rm

C •X + 1
2ρ ‖X −Xk‖2F + 1

2δ‖r + yk‖2

subject to Ai •X + δri = bi i = 1, 2, · · · ,m,
X < 0,

(11)

where ρ ≥ 0 and δ ≥ 0 are regularization parameters, and Xk and yk are current estimates of primal and

dual solutions of (1), X∗ and y∗, respectively. Note that ρ = 0 and δ = 0 recovers the original problem

statement (1). It is a convex problem in the variable (X, r) and always strictly feasible when δ > 0. The

dual of this problem can be derived by the general duality theory improved for general convex problems in

[D.G97, Chapter 8, Theorem 1]. The Lagrangian of (11) is

L
ρ,δ

(X, r, y, Z) := C •X + 1
2ρ ‖X −Xk‖2F + 1

2δ‖r + yk‖2 −
m∑
i=1

yi(Ai •X + δri − bi)− Z •X. (12)

Since L
ρ,δ

(X, r, y, Z) is convex with respect to (X, r), minimizing it is equivalent to setting its derivative to

zero, that is

∂

∂X
L
ρ,δ

(X, r, y, Z) = C + ρ(X −Xk)−
m∑
i=1

yiAi − Z = 0, (13)

∂

∂r
L
ρ,δ

(X, r, y, Z) = r + yk − y = 0. (14)

Plugging (13) and (14) into (12) and introducing S := X −Xk, we get

L
ρ,δ

(X, r, y, Z) =

(
−ρS +

m∑
i=1

yiAi + Z

)
•X + 1

2ρ ‖S‖
2
F

+ δ‖y‖2 −
m∑
i=1

yiAi •X − δ‖y‖2 + δyT yk + bT y − Z •X

= −ρS •X + 1
2ρ ‖S‖

2
F −

1
2δ‖y − yk‖

2 − 1
2δ‖yk‖+ bT y

= −ρS • (S +Xk) + 1
2ρ ‖S‖

2
F −

1
2δ‖y − yk‖

2 − 1
2δ‖yk‖+ bT y

= − 1
2ρ (S • S + 2S •Xk)− 1

2δ‖y − yk‖
2 − 1

2δ‖yk‖+ bT y

= − 1
2ρ ‖S +Xk‖2F + 1

2ρ ‖Xk‖2F −
1
2δ‖y − yk‖

2 − 1
2δ‖yk‖+ bT y

= bT y − 1
2ρ ‖S +Xk‖2F −

1
2δ‖y − yk‖

2 + 1
2ρ ‖Xk‖2F −

1
2δ‖yk‖

2.

Since the last two terms in the last equality are constant, the dual of (11) is

maximize
S,y,Z

bT y − 1
2ρ ‖S +Xk‖2F −

1
2δ‖y − yk‖

2

subject to

m∑
i=1

yiAi + Z − ρS = C

Z < 0.

(15)

We note that if we let ρ = δ = 0 we can recover (1) and (3) from the regularized problems (11) and (15).
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4.1 Relation between primal-dual regularized problems and augmented La-
grangian method

There is a nice relation between augmented-Lagrangian approach and ours. Here, we show that it is possible

to derive the regularized problems (11)–(15) by applying augmented Lagrangian on (6)–(7). The augmented

Lagrangian of (6) defined as

Lau(X, y, δ) = C •X + 1
2ρ ‖X −Xk‖2F + yTk (b−AX) + 1

2δ‖b−AX‖
2

= C •X + 1
2ρ ‖X −Xk‖2F + yTk r̄ + 1

2δ‖r̄‖
2,

where r̄ = b−AX, δ > 0 is a penalty parameter, and yk is the current estimate of the vector of Lagrangian

multipliers associated to equality constraints. Augmented Lagrangian method [NW06, Chapter 17] solves a

sequence of problems of the form

minimize
X,r̄

C •X + 1
2ρ ‖X −Xk‖2F + yTk r̄ + 1

2δ‖r̄‖
2

subject to AX + r̄ = b

Z < 0.

(16)

By introducing r := 1
δ r̄ (16) can be stated as

minimize
X,r

C •X + 1
2ρ ‖X −Xk‖2F + 1

2δ‖r + yk‖2

subject to AX + δr = b

Z < 0,

(17)

which is exactly (11). Therefore, solving (11) is the same as applying augmented lagrangian method on the

primal regularized subproblem. Similarly, dual problem (15) can be viewed as applying augmented lagrangian

on dual regularized problem (7). If we choose Xk = X∗ and (yk, Zk) = (y∗, Z∗) then feasibility of X∗ implies

r = r̄ = 0 and consequently (16) and (17) become (6). By the discussion followed (7) we conclude that

primal-dual regularized problems are also exact.

5 An Interior-Point method for the regularized SDP

In this section, we develop a primal-dual interior point method to solve the primal and dual regularization

(11) and (15) of (1) and (3) simultaneously. We note that problem (11) and (15) are always strictly feasible

when δ and ρ are positive. Therefore, we can eliminate the usual assumption in SDP that the primal or dual

problems must have a strictly feasible solutions, i.e, strong duality always holds between (11) and (15). The

logarithmic barrier problem associated to (11) is

minimize
X∈Sn,r∈Rm

C •X + 1
2ρ ‖X −Xk‖2F + 1

2δ‖r + yk‖2 − µ log(detX)

subject to Ai •X + δri = bi i = 1, 2, · · · ,m,
(18)

where µ is a positive real number called the barrier parameter. For each µ > 0, there is a corresponding

Lagrangian:

Lµ (X, r, y, Z) = C •X + 1
2ρ ‖X −Xk‖2F + 1

2δ‖r + yk‖2 − µ (log detX)

−
m∑
i=1

(yiAi •X + δyiri − yibi) . (19)
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The first-order optimality conditions for (18) are obtained as:

∇XLµ = C + ρS − µX−1 −
m∑
i=1

yiAi = 0 (20a)

∇rLµ = δ(r + yk)− δy = 0 (20b)

∇yLµ = −Ai •X − δri + bi = 0 i = 1, 2, · · · ,m, (20c)

X � 0. (20d)

The strict convexity of (18) implies that there exists a unique solution to (20). The central path is defined

as the set of all such solutions when µ > 0 varies. If we let Z := µX−1 then the optimality conditions (20)

can be written as

Ψ(w) = Ψ(X, r, S, y, Z) :=



C + ρS − Z −
∑m
i=1 yiAi

δ(r + yk)− δy
ρX − ρ(S +Xk)
A1 •X + δr1 − b1

...
Am •X + δrm − bm

XZ − µI


= 0, (21)

and (X,Z) � 0 implicitly. One can easily verify that the same optimality conditions can be derived by

working with the barrier problem associated with the dual regularized problem (15).

We can simplify the notation slightly by defining the operator A : Sn → Rm as

(AX)i = Ai •X, i = 1, 2, · · · ,m.

The adjoint of A is A∗ : Rm → Sn satisfying

A∗y =

m∑
i=1

yiAi.

Using this notation and since S = X −Xk, we can rewrite (21) more compactly as

C + ρS −A∗y − Z = 0 (22a)

δ(r + yk)− δy = 0 (22b)

ρX − ρ(S +Xk) = 0 (22c)

AX + δr − b = 0 (22d)

XZ − µI = 0. (22e)

Let (Xk, yk) be temporarily fixed. A primal-dual interior-point method applied to the regularized problems

(11) and (15) is based on applying Newton’s method to a sequence of nonlinear systems of the form

Ψk(w) = Ψk(X, r, S, y, Z) =


C + ρS −A∗y − Z
δ(r + yk)− δy
ρX − ρ(S +Xk)
AX + δr − b
XZ − σµkI

 = 0, X � 0, Z � 0, (23)

where σ ∈ [0, 1] is the centering parameter, and µk = Xk • Zk/n > 0 is the current duality measure. When

Newton’s method applied to (23) direction (∆X,∆r,∆S,∆y,∆Z) is obtained. It is clear from (26) that

if ∆X is symmetric then both ∆Z and ∆S are symmetric too. There are two approaches, which result

in symmetric directions ∆X. First, since Ψk maps a point w ∈ Sn × Rm × Sn × Rm × Sn to a point in

Sn ×Rm ×Sn ×Rm ×Rn×n, XZ is usually not symmetric even if X and Z are. In this case, a linearization

of XZ − σµkI is transformed by an operator H : Rn×n → Sn and then apply Newton’s method to the new
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system [R.D97, MZ98, AHO98, Zha98]. Second, (23) is solved directly without using any transformation and

then ∆X is symmetrized [HRVW96, KSH97]. In this case, the modified direction may be neither a Newton

direction nor a descent direction. Therefore, symmetrization should be done in such a way that the modified

direction at least be a descent direction. In this paper, we follow the former strategy. A Newton step for

(23) when the last row replaced by H(XZ) = 0 from the current iterate wk solves the system
0 0 ρI −A∗ −I
0 δI 0 −δI 0
ρI 0 −ρI 0 0
A δI 0 0 0
Ek 0 0 0 Fk




∆X
∆r
∆S
∆y
∆Z

 = −


C + ρS −A∗y − Z
δ(r + yk)− δy
ρX − ρ(S +Xk)
AX + δr − b
H(XZ)

 = 0, (24)

where Ek := ∂
∂XH(XkZk) and Fk := ∂

∂ZH(XkZk). Reducing (24) by eliminating ∆r and ∆S, we obtain −ρI A∗ I
A δI 0
Ek 0 Fk

 ∆X
∆y
∆Z

 =

 C −A∗yk − Zk
b−AXk

−H(XkZk)

 , (25)

with

∆r = −r + ∆y, (26a)

∆S = −S + ∆X, (26b)

∆Z = C −A∗yk − Zk −A∗∆y + ρ∆X. (26c)

If F is a nonsingular operator on Sn we can eliminate ∆Z from the last row to obtain

∆Z = −F−1
k (H(XkZk) + Ek∆X) (27)

and [
−
(
F−1
k Ek + ρI

)
A∗

A δI

] [
∆X
∆y

]
=

[
Rd −F−1

k R
C

rp

]
, (28)

where Rd := C −A∗yk − Zk, rp := b−AXk, and R
C

:= −H(XkZk)

If we work directly with the original primal and dual problems (1) and (3), we get[
−F−1

k Ek A∗
A 0

] [
∆X
∆y

]
=

[
Rd −F−1

k R
C

rp

]
, (29)

which is is precisely (28) with ρ = δ = 0.

Motivated by the works of Alizadeh, Haeberly, and Overton [AHO98] and Monterio [R.D97], Zhang

[Zha98] introduced a general symmetrization scheme based on so-called similar symmetrization operator

HP : Rn×n → Sn defined as

HP (M) = 1
2 [PMP−1 + (PMP−1)T ], (30)

where P is some nonsingular matrix. Different choices of P lead to different Newton directions For example,

Alizadeh et al [AHO98] set P = I to find the direction known the AHO direction. Zhang [Zha98] uses

P = Z
1
2 and establishes the complexity analysis of some path following methods, including an infeasible

long-step path-following method. Monteiro [R.D97] uses P = Z
1
2 and P = X−

1
2 to establish polynomial

complexity of the short- step feasible path-following method. There are many other choices of P as well as

other kinds of symmetrization of the linearization of the XZ −µI in order to find a suitable search direction

for SDP problems. For a comprehensive discussion of these search directions we refer the reader to [M.J99].

In this paper our analysis is based on two well-known directions: the dual HKM direction, with P = X−
1
2 ,

and the Nesterov-Todd (NT) direction, with P = W−
1
2 , where

W = X
1
2 (X

1
2ZX

1
2 )−

1
2X

1
2 = Z−

1
2 (Z

1
2XZ

1
2 )

1
2Z−

1
2 . (31)
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In order to cast (25) in matrix form, we need to represent the operators E and F in matrix form. The

first and the second rows of (25) are equivalent to

−ρvec∆X + AT∆y + vec∆Z = vecRd, (32)

ATvec∆X + δ∆y = rp, (33)

respectively, where

vecRd = vecC −AT y − vecZ, (34)

rp = b−AvecX. (35)

In the next section, we use some properties of the Kronecker product (see Appendix A) to translate the

third row of (25) in matrix form.

6 Linearization

The most obvious linearization of XZ − σµkI = 0 is

XZ + ∆XZ +X∆Z = σµkI. (36)

If we apply the transformation (30) with P = X−
1
2 to (36), and pre and postmultiplying the equation

HP (XZ +X∆Z + ∆XZ) = σµkI by X
1
2 , we obtain

2X(∆Z)X +XZ(∆X) + (∆X)ZX = Rc, (37)

where

Rc = 2(σµkX −XZX) = 2X
1
2 (σµkI −X

1
2ZX

1
2 )X

1
2 . (38)

Using (91b) in Appendix A we can write (37) in Kronecker product notation as follows:

2(X ⊗X)vec∆Z + (XZ ⊗ I + I ⊗XZ)vec∆X = vecRc. (39)

If we define

E = XZ ⊗ I + I ⊗XZ (40)

F = 2X ⊗X, (41)

then (39) can be written as

Evec∆X + Fvec∆Z = vecRc. (42)

Using equations (32), (33), and (42) we can write the optimality condition (25) at w = wk in matrix form: −ρI AT I
A δI 0
E 0 F

 vec∆X
∆y

vec∆Z

 =

 vecRd
rp

vecRc

 . (43)

Eliminating vec∆Z the following system is obtained[
−(F−1E + ρI) AT

A δI

] [
vec∆X

∆y

]
=

[
vecRd − F−1vecRc

rp

]
, (44)

where the remaining search directions are recovered via (26a)–(26c). Dropping index k (26c) has matrix form

vec∆Z = vecC −AT y − vecZ −AT∆y + ρvec∆X. (45)
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We note that F−1E and F are symmetric and positive definite, but E may not be symmetric. Using the

definitions of F,vecRd, and vecRc we have

vecRd − F−1vecRc = vecC −AT y − vecZ − (X−1 ⊗X−1)vecRc

= vecC −AT y − vecZ − (X−1 ⊗X−1)vec(σµX −XZX)

= vecC −AT y − vecZ − vec(σµX−1 − Z)

= vecC −AT y − σµvecX−1.

(46)

Therefore, we can rewrite (44) as[
−(F−1E + ρI) AT

A δI

] [
vec∆X

∆y

]
=

[
vecC −AT y − σµvecX−1

rp

]
. (47)

When the scaling matrix P = W−
1
2 is used, Todd et al [TTT98] show that the optimality conditions of

primal-dual pair (1)–(3) have the following form

A∗∆y + ∆Z = 0, (48a)

A∆X = 0, (48b)

W−1∆XW−1 + ∆Z = σµX−1 − Z. (48c)

Equivalently, in matrix form, 0 AT I
A 0 0
Ē 0 I

 vec∆X
∆y

vec∆Z

 =

 0
0

vec(σµX−1 − Z)

 , (49)

where Ē := W−1 ⊗W−1. If we consider the regularized system corresponding to (49) we get −ρI AT I
A δI 0
Ē 0 I

 vec∆X
∆y

vec∆Z

 =

 vecRd
rp

vec(σµX−1 − Z)

 . (50)

Eliminating vec∆Z, we get the following system, similar to (47)[
−(Ē + ρI) AT

A δI

] [
vec∆X

∆y

]
=

[
vec(σµX−1 − Z)

rp

]
. (51)

the remaining search directions are recovered from (26). We use (47) and (51) to design our algorithms.

7 A long-step path-following interior-point method

Let M ∈ Rn×n be a real matrix. We denote the vector of eigenvalues of M by λ(M) ∈ Cn. If all eigenvalues

are real we assume the order

λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M).

We also define

X(α) := X + α∆X, Z(α) := Z + α∆Z, µ(α) :=
X(α) • Z(α)

n
.

It is not difficult to see that for any matrix M ∈ Rn×n with real eigenvalues (e.g., M = XZ with X,Z � 0)

and for any nonsingular matrix P ∈ Rn×n and scalar τ ∈ R,

HP (M) = µI if and only if M = µI,

we refer to [Zha98, Proposition 4.1] for the proof. Hence the central path XZ = µI = X•Z
n I is equivalently

described as {(X, y, Z)) | HP (XZ) = µI}.
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Corresponding to one of the most popular centrality condition in linear programming,

γ
C
µ ≤ xizi ≤ γ̄Cµ, i = 1, 2, · · · , n,

in SDP we require

γ
C
µ ≤ λi(HP (XZ)) ≤ γ̄

C
µ, i = 1, 2, · · · , n,

where γ̄
C

can be +∞, in which case the condition is one-sided.

Path-following methods generate iterates that remain within a neighborhood of the central path. We

define a neighborhood Nk of the central path as the set of points (X, r, S, y, Z) that satisfy a specific subset

of the conditions

γ
C
µe ≤ λ(HP (XZ)) ≤ γ̄

C
µe, (52a)

‖AvecX + δkr − b‖ ≤ γP µ, (52b)

‖vecC + ρkvecS −AT y − vecZ‖ ≤ γ
D
µ, (52c)

‖δk(r + yk)− δky‖ ≤ γRµ, (52d)

‖ρkvecX − ρkvec(S +Xk)‖ ≤ γ
S
µ, (52e)

where 0 < γ
C
< 1 < γ̄

C
≤ +∞ and (γ

P
, γ

D
, γ

R
, γ

S
) > 0 are given constants. In particular, to stay within

this neighborhood, a steplength α must satisfy

γ
C
µ(α)e ≤ λ(HP (X(α)Z(α))) ≤ γ̄

C
µ(α)e. (53)

The following lemma demonstrates some nice properties of the transformation HP .

Lemma 1 Let X,Z ∈ Rn×n be symmetric, P ∈ Rn×n nonsingular, and M ∈ Rn×n then

1. If X and Z are positive definite then λ(HP (XZ)) = λ(XZ) for both P = X−
1
2 and P = W−

1
2

2. tr(HP (M)) = tr(M)

3. ‖HP (M)‖F ≤ ‖M‖F

Proof. When P = X−
1
2 we have HP (XZ) = 1

2{X
− 1

2XZX
1
2 + X

1
2ZXX−

1
2 } = X

1
2ZX

1
2 and the result is

obtained by using (91g) in Appendix A. When P = W−
1
2 (31) implies that WZ = XW−1 and PTP = W−1.

Therefore, W and P are symmetric and

Hp(XZ) = 1
2 (PXZP−1 + P−1ZXP ) = 1

2P (XZ + P−2ZXP 2)P−1

= 1
2P (XZ +WZXW−1)P−1 = 1

2P (XZ +WZWZ)P−1

= P (XZ)P−1.

The above similarity property finishes the proof of the first item. The proofs of the second and third items

of the lemma are obvious.

The following lemma is due to [TTT98, Theorem 3.5] and state the relation between (48c) and the linearization

of central path.

Lemma 2 ∆X and ∆Z satisfy (48c) if and only if ∆X and ∆Z satisfy HP (XZ + ∆XZ + X∆S) = σµI,

where P = W−
1
2 .

Our interior-point scheme generates the next iterate wk+1 as follows. We compute ∆w = (∆X,∆r,∆S,

∆y,∆Z) from (44) and (26), and steplength αk ∈ (0, 1] such that

wk(αk) := (Xk + αk∆X, rk + αk∆r, Sk + αk∆S, yk + αk∆y, Zk + αk∆Z) ∈ Nk+1. (54)

Since the neighborhood Nk+1 involves ρk+1 and δk+1, the value of those parameters must be selected

together with αk ∈ (0, 1] to ensure that (54) is satisfied.
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8 Convergence analysis

In this section, we state our algorithms based on the dual HKM and NT directions and provide some tools

that we need for the global convergence.

Algorithm 8.1 Primal-dual regularized interior-point algorithm for the dual HKM direction

Step 0. [Initialize] Choose minimum and maximum centering parameters 0 < σmin ≤ σmax < 1,

a constant σmax < β < 1, proximity parameters 0 < γ
C
< 1 < γ̄

C
, (γ

P
, γ

D
, γ

R
, γ

S
) > 0, initial

regularization parameters ρ0 > 0, δ0 > 0, choose initial primal X0 � 0, r0 ∈ Rm and dual guesses

S0 ∈ Sn, y0 ∈ Rm, Z0 � 0 so that w0 ∈ N0. Let µ0 = X0 • Z0/n, choose a tolerance ε > 0, and set

k = 0.

Step 1. [Test convergence] If µk ≤ ε, declare convergence and stop.

Step 2. [Step computation] Choose a centering parameter σk ∈ [σmin, σmax]. Compute the Newton

step ∆wk = (∆Xk,∆rk,∆Sk,∆yk,∆Zk) from wk by solving[
−(F−1

k Ek + ρkI) AT

A δkI

] [
vec∆X

∆y

]
=

[
vecC −AT yk − σkµkvecX−1

k

b−AvecXk

]
. (55)

and recover ∆rk,∆Sk, and ∆Zk from (26).

Step 3. [Linesearch] Select δk+1 ∈ (0, δk] and ρk+1 ∈ (0, ρk] and compute αk as the largest α ∈ (0, 1]

such that

wk(αk) ∈ Nk+1, (56)

µk(αk) ≤ (1− αk(1− β))µk. (57)

where wk(α) = wk + α∆wk and µk(α) = Xk(α)Zk(α)/n.

Step 4. [Update iterate] Set wk+1 = wk(αk), µk+1 = µk(αk). Increment k by 1 and go to Step 1.

Our second algorithm basically is the same as the first one. The only difference is that in Step 2 we solve a

system based on the NT direction.

Algorithm 8.2 Primal-dual regularized interior-point algorithm for the NT direction

Apply Algorithm 8.1 where Step 2 is replaced by Step 2 ′,

Step 2 ′. [Step computation] Choose a centering parameter σk ∈ [σmin, σmax]. Compute the Newton

step ∆wk = (∆Xk,∆rk,∆Sk,∆yk,∆Zk) from wk by solving[
−(Ēk + ρkI) AT

A δkI

] [
vec∆X

∆y

]
=

[
vec(σkµkX

−1
k − Zk)

b−AvecXk

]
, (58)

and recover ∆rk,∆Sk, and ∆Zk from (26).

We provide convergence analysis for two particular strategies for updating the regularization parameters.

Each strategy uses a different subset of the conditions (52) to define a neighborhood Nk.

8.1 Bounds on matrix coefficients

Since at each iteration of our algorithms we need to solve system (55) or (58), we first provide bounds on the

eigenvalues of the matrix

K =

[
−Q AT

A δI

]
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where Q = J+ρI and J ∈ Rn2×n2

is symmetric and positive definite and A ∈ Rm×n2

.The following eigenvalue

bounds can be easily derived using Lemma 6 in Appendix A.

λn2(J) + ρ ≤ λn2(Q) ≤ λ1(Q) ≤ λ1(J) + ρ. (59)

It is easy to see that the following congruence relation holds[
−Q AT

A δI

]
=

[
I 0

−AQ−1 I

] [
−Q 0

0 AQ−1AT + δI

] [
I −Q−1AT

0 I

]
. (60)

Since Q ∈ Rn2×n2

and AQ−1AT + δI ∈ Rm×m and are symmetric and positive definite, Silvester’s law of

inertia implies that K has exactly n2 negative and m positive eigenvalues. If we denote them in the following

order

λn2+m ≤ · · · ≤ λ1+m < 0 < λm ≤ λm−1 · · · ≤ λ2 ≤ λ1,

and use σmax(A) and σmin(A) for the largest and smallest singular values of A, we have the following result

similar to Silvester and Wathen [SW94, Lemma 2.2] and Rusten and Winther [RW92, Lemma 2.1].

Theorem 1 For all ρ > 0 and δ > 0 we have the following eigenvalue bounds for K

λn2+m ≥ 1
2 [δ − λ1(Q)]− 1

2 [(λ1(Q)− δ)2 + 4(σmax(A)2 + λ1(Q))δ]1/2 (61a)

λ1 ≤ 1
2 [δ − λn2(Q)] + 1

2 [(λn2(Q)− δ)2 + 4(σmax(A)2 + λn2(Q))δ]1/2 (61b)

λ1+m ≤ −λn2(Q) (61c)

λm ≥ 1
2 [δ − λ1(Q)] + 1

2 [(λ1(Q)− δ)2 + 4(σmin(A)2 + λ1(Q))δ]1/2 (61d)

Moreover, λm = δ—the smallest positive eigenvalue of K—if and only if A does not have full row rank. In

this case, its associated eigenspace is {0} ×Null(AT ). Its geometric multiplicity is thus m—rank(A).

Proof. Let (u, v) 6= (0, 0) be an eigenvector associated to the eigenvalue λ of K, then

−Qu+ AT v = λu (62a)

Au+ δv = λv. (62b)

It is not difficult to see λ = δ if and only if A does not have full row rank, and in this case {0}×Null(AT )

is the eigenspace associated to λ.

If λ > δ, from (62b), we have v = (λ − δ)−1Au with u 6= 0. Substituting into (62a) and taking inner

product with u yields

λ‖u‖2 = −uTQu+ (λ− δ)−1uTATAu

from which we enter the following inequality

λ‖u‖2 ≤ −λn2(Q)‖u‖2 + (λ− δ)−1σmax(A)2‖u‖2. (63)

Since u 6= 0 we obtain

f(λ) = λ2 + (λn2(Q)− δ)λ−
(
σmax(A)2 + λn2(Q)δ

)
≤ 0 for all λ > δ.

In particular, we must have f(λ1) ≤ 0. This is true only if λ1 located between two roots of f(λ) = 0.

This yields (61b).

Now, if λ < δ from (63) and the same logic we can find the lower bound to λn2+m and establish (61a).

When λ < δ, the right-hand side of (63) is negative. Therefore, we must have λ < 0, and so λm ≥ δ. But

by the implication drawn from (62), λm = δ only if A is rank deficient. This completes the proof of the last

part of the theorem.
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We can establish (61c) by taking inner product of (62a) with u and (62b) with v and subtracting, to

obtain

(λ− δ)‖v‖2 = uTQu+ λ‖u‖2 ≥ λn2(Q)‖u‖2 + λ‖u‖2.

This implies that for all λ < 0 we must have λ ≤ −λn2(Q). In particular, this proves (61c).

Having established earlier that δ > 0 was the smallest positive eigenvalue of K if and only if A does not

have full rank, we may assume without loss of generality for the last part that A has full row rank. Extracting

u from (62a) gives u = (Q+ λI)−1AT v with v 6= 0. Injecting u into (62b) and taking inner product with v

we get

(λ− δ)‖v‖2 = vTA(Q+ λI)−1AT v ≥ (λ1(Q) + λ)−1σmin(A)2‖v‖2.

Since v 6= 0 we obtain the following inequality

g(λ) = λ2 + (λ1(Q)− δ)λ− (σmin(A)2 + λ1(Q)δ) ≥ 0 for all λ > δ.

Therefore, λ must be at least the right-most root of g(λ) = 0. In particular, this is true of λm, and proves

(61d).

In the proof of Theorem 1, we showed that if λ < δ then λ is negative. Therefore, we must have λm ≥ δ.
Using the left-hand side of (59) and the fact that J � 0, we see that λn2(Q) ≥ ρ and (61c) shows that

λm+1 ≤ −ρ. Since ‖K−1‖ = max(λ−1
m , |λ−1

m+1|) we have the following corollary.

Corollary 1 If J is positive definite then for all ρ > 0 and δ > 0,

‖K−1‖ ≤ 1/min(ρ, δ). (64)

We note that F−1E and Ē are symmetric and positive definite. Therefore, theorem 1 and Corollary 1

guarantee that the coefficient matrices in Algorithms 8.1-8.2 and their inverses are uniformly bounded.

Let w(α) = w+α∆w. Then Algorithms (8.1) and (8.2) guarantee to achieve the following progress along

Newton direction

AvecX(α) + δr(α)− b = AvecX + δr − b+ α(Avec∆X + δ∆r)

= (1− α)(AvecX + δr − b),
(65)

and using the first row of (24) we obtain

C + ρS(α) +A∗y(α)− Z(α)

= C + ρS +A∗y − Z + α(ρ∆S −A∗∆y −∆Z)

= (1− α)(C + ρS +A∗y − Z),

or, equivalently,

vecC + ρvecS(α)−AT y(α)− vecZ(α) = (1− α)(vecC + ρvecS −AT y − vecZ). (66)

Since the Newton step is computed from the current wk,

δr(α) = δ(r + α∆r) = (1− α)δr + αδ∆y (67a)

ρS(α) = (S + α∆S) = (1− α)ρS + αρ∆X. (67b)

If ∆X and ∆Z only satisfy (36) then we obtain

µ(α) = (X + α∆X) • (Z + α∆Z)/n

= (1− α)µ+ α(X • Z + Z •∆X + Z •∆Z)/n+ α2(∆X •∆Z)/n,
(68)

and using (36) again we obtain

X • Z + Z •∆X + Z •∆Z = tr(XZ + ∆XZ +X∆Z) = nσµ, (69)
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therefore,

µ(α) = (1− α+ σα)µ+ α2(∆X •∆Z)/n. (70)

The following lemma shows that if ∆X and ∆Z satisfy (36), then (69) and (70) hold true if (36) is transformed

by HP for any nonsingular matrix P .

Lemma 3 Let ∆X and ∆Z satisfy (36) and P be any nonsingular matrix. Then (69) and (70) hold true if

∆X and ∆Z satisfy HP (XZ + ∆XZ +X∆Z) = σµI and

HP (X(α)Z(α)) = (1− α)HP (XZ) + ασµI + α2HP (∆X∆Z). (71)

Proof. The proof of the first part is an immediate application of Lemma 1 part 2. For the second part, we

have

X(α)Z(α) = (X + α∆X)(Z + α∆Z) (72)

= XZ + αX∆Z + α∆XZ + α2∆X∆Z (73)

= (1− α)XZ + α(XZ +X∆z + ∆XZ) + α2∆X∆Z. (74)

Linearity of HP and (36) conclude the proof.

Since the conclusion of Lemma 3 is true for all nonsingular matrix, particular for P = X−
1
2 and P = W−

1
2 ,

we have (69), (70), and (71) hold true when (∆X,∆Z) satisfy Step 2 or Step 2 ′ of Algorithms 8.1-8.2.

9 Algorithm based on fixed regularization parameters

Our first method leaves the regularization parameters δk and ρk fixed throughout the iterations. It forces

iterate to stay in a neighborhood that satisfy (52a)–(52c).

Algorithm 9.1 Variation of the primal-dual method with constant regularization

Apply Algorithm 8.1 or 8.2 with ρk = ρ0 and δk = δ0 for all k. In Step 3, only conditions (52a), (52b), and

(52c) are enforced.

Since regularization parameters are fixed we denote them ρ and δ for readability. Convergence properties

rely on the following technical lemma.

Lemma 4 Suppose (∆X,∆y,∆Z) is given by Step 2 of Algorithms 8.1-8.2, and {rk}, {Sk}, and {Zk} are

bounded. Then (∆X,∆y,∆Z) is also bounded.

Proof. First, we show that the right-hand side of (55)–(58) are bounded. From (52b) we have

‖AvecXk − b‖ ≤ ‖AvecXk + δrk − b‖+ δ‖rk‖
≤ γ

P
µk + δ sup

k
‖rk‖

≤ γ
P
µ0 + δ sup

k
‖rk‖,

(75)

which shows that the second block of the right-hand side of (55)–(58) are bounded. We also have

‖vecC −AT yk − σµkvecX−1
k ‖ ≤ ‖vecC −AT yk + ρvecSk − vecZk‖

+ ρ sup
k
‖Sk‖F + ‖σµkX−1

k − Zk‖F

≤ γ
D
µ0 + ρ sup

k
‖Sk‖F + ‖σµkX−1

k − Zk‖F .
(76)

Using the centering condition (52a) and Lemma 1, we have

γ
C
µk ≤ λi(XkZk) ≤ γ̄

C
µk, (77)
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reciprocating (77) and multiplying σ to it and subtracting 1 from the result we get

σ

γ̄
C

− 1 ≤ σµkλi(X−1
k Z−1

k )− 1 ≤ σ

γ
C

− 1, (78)

which leads us to ∣∣λi(σµkX−1
k Z−1

k − I)
∣∣ ≤M, for all i = 1, 2, · · ·n,

where M := max(| σγ̄
C
− 1|, | σγ

C
− 1|). Therefore,

‖σµkX−1
k Z−1

k − I‖F ≤
√
nM. (79)

Using (79) the upper bound on the last term in (76) is obtained

‖σµkX−1
k − Zk‖F = ‖(σµkX−1

k Z−1
k − I)Zk‖F ≤

√
nM sup

k
‖Zk‖F . (80)

This proves that the first block of the (55)–(58) are also bounded. By Corollary 1 the inverse of the matrix

in (55)–(58) are uniformly bounded and so (∆X,∆y) is bounded. To see that ∆Z is bounded, we note ∆Z

satisfy (45), which has a bounded right-hand side. This completes the proof of the lemma.

In the next lemma, we show the existence of a steplength α such that Step 3 of Algorithm 9.1 is satisfied.

Lemma 5 Suppose (∆X,∆y,∆Z) is given by Step 2 of Algorithm 9.1, and {rk}, {Sk}, and {Zk} are

bounded. Suppose also that there exists an index k0 such that µk ≥ ε for all k ≥ k0. Then there exists

α∗ ∈ (0, 1] such that for all α ∈ (0, α∗], step 3 of Algorithm 9.1 is satisfied.

Proof. Firstly, we need α ∈ (0, 1] satisfies (56) in Step 3. Define G := HP (Xk(α)Zk(α))− γ
C
µk(α)I. From

(70) and (71) we have

G = (1− α)[HP (XkZk)− γ
C
µkI] + ασkµk(1− γ

C
)I + α2

[
HP (∆X∆Z)− γ

C

∆X •∆Z

n
I

]
,

using part 3. of Lemma 1, (92a)–(92d) in Appendix A the following inequality is obtained

λn(G) ≥ (1− α)λn(HP (XkZk)− γ
C
µkI) + ασkµk(1− γ

C
)− α2τ, (81)

where τ =
(
γ
C
|∆X •∆Z|+ 1

n‖∆X∆Z‖F
)
. Using lemma 4 we can find π1 > 0 that depends only on n and

|τ | ≤ π1. (82)

Therefore, using (81) and (52a) we need to choose α > 0 such that σminµk(1−γ
C

)−απ1 ≥ 0, that is we need

α ≤ σmin(1− γ
C

)µk
π1

. (83)

Similarly, X(α) and Z(α) satisfy the right-hand side of (52a) if

α ≤ σmin(γ̄
C
− 1)µk

π2
, (84)

for some π2 > 0 which only depends on n.

We need α to satisfy (52b) and (52c). In order to find such an α we may use (52b), (65), and (70) to get

γ
P
µk(α)− ‖AvecXk(α) + δrk(α)− b‖ ≥ ασkγP µk + α2γ

P
∆X •∆Z/n

≥ γ
P

(ασminµk − α2π3)
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and by (66) we get

γ
D
µk(α)− ‖vecC + ρvecSk(α)−AT yk(α)− vecZk(α)‖ ≥ ασkγDµk + α2γ

D
∆X •∆Z/n

≥ γ
D

(ασminµk − α2π3)

where π3 = ‖∆X‖F ‖∆Z‖F /n. Therefore, it is enough to choose

α ≤ σminµk
π3

, (85)

Secondly, the steplength α must satisfy (57). Again from (70) we have

(1− α(1− β))µk − µk(α) = α(β − σk)µk + α2∆X •∆Z/n

≥ α(β − σmax)µk − α2π3.

Therefore, it is sufficient to choose

α ≤ (β − σmax)µk
π3

(86)

Finally, We need that Xk(α) and Zk(α) must be positive definite. Since eigenvalues of Xk(α) and Zk(α)

are continuous function respect to α and Xk(0) = Xk and Zk(0) = Zk are positive definite, there exists ᾱ

such that Xk(α) and Zk(α) are positive definite for all α ∈ (0, ᾱ]. The proof of the lemma is completed if we

let

α∗ = min

{
1,
σmin(1− γ

C
)ε

π1
,
σmin(γ̄

C
− 1)ε

π2
,
σminε

π3
,

(β − σmax)ε

π3
, ᾱ

}
,

and note that Algorithm 9.1 in Step 3 chooses the largest possible α.

Now, we are in a position to establish the convergence properties of Algorithm 9.1. In the following

theorem, we show that the duality measure µk converges to zero under a boundedness assumption.

Theorem 2 Suppose that Algorithm 9.1 generates the sequence {wk}, and that the sequence {(rk, Sk, Zk)}
is bounded. Then µk → 0 as k → +∞.

Proof. By Lemma 5 for any index k we have µk ≥ 0. If limk→+∞ µk 6= 0, then there exists an index k0

such that µk ≥ ε for any k ≥ k0. Using Lemma 5 again we can find α∗ such that Step 3 of Algorithm 9.1 is

satisfied. particularly, we have

0 < ε ≤ µk+1 ≤ (1− α∗(1− β))µk ≤ · · · ≤ (1− α∗(1− β))k+1µ0.

This is a contradiction because the rightmost term above converges to zero.

Global convergence of the algorithm is obtained by examine the limiting behavior of the sequences {rk} and

{Sk}.

Theorem 3 Suppose Algorithm 9.1 with ε = 0 generates the sequence {wk}, and that {(rk, Sk, Zk)} remains

bounded. Then if r̂ and Ŝ denote particular limit points of {rk} and {Sk} along subsequences index K ⊂ N,

every limit point of {(Xk, Zk)}K determines a primal-dual solution of the primal-dual pair

minimize
X

(C + ρŜ) •X subject to AX = b− δr̂, X � 0, (87)

maximize
y,Z

(b− δr̂)T y subject to A∗y + Z = C + ρŜ, Z � 0. (88)

Proof. Let {(Xk, Zk)} converge to (X̄, Z̄) along subsequence index K. Since
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‖C −A∗yk − Zk‖F = ‖C −
m∑
i=1

[yk]iAi − Zk‖F = ‖vecC −AT yk − vecZk‖2

≤ ‖vecC −AT yk − vecZk + ρSk‖2 + ρ sup
k
‖Sk‖F

≤ γ
D
µ0 + ρ sup

k
‖Sk‖F ,

is bounded, without loss of generality we can assume (C −A∗yk − Zk) → (C −A∗ȳ − Z̄) along K for some

ȳ ∈ Rm. In the limit along K, we have

A∗y + Z = C + ρŜ,

Ai • X̄ = bi − δr̂i, (i = 1, 2, · · · ,m),

λi(XZ) = 0, (i = 1, 2, · · · ,m),

(X,Z) < 0

(89)

which follow form the neighborhood conditions (52a)–(52c), Lemma 1, and the fact that µk → 0. We note

that (89) are the optimality conditions for the primal-dual pair (87) and (88).

In the next theorem, we state some results regarding the limit points of {rk} and {Sk} and feasibility of

(1) and (3).

Theorem 4 Suppose Algorithm 9.1 with ε = 0 generates the sequence {wk}, and that {(rk, Sk, Zk)} remains

bounded. Then

i. If lim infk∈N ‖rk‖ = 0, every limit point of {Xk}K is feasible for (1), where K ⊆ N is an index set such

that {rk}K → 0.

ii. If lim infk∈N ‖Sk‖ = 0, every limit point of {(Xk, Zk)}K′ determines a feasible point for (3), where

K′ ⊆ N is an index set such that {Sk}K′ → 0.

iii. If there exists an index set K′′ ⊆ N such that {rk}K′′ → 0 and {Sk}K′′ → 0, every limit point of

{Xk, Zk}K′′ determines a primal-dual solution of (1) and (3).

Proof. By assumption in part i, there exists an index set K ⊆ N such that {rk}K → 0. Using Triangular

inequality and (52b), we obtain

|Ai •Xk − bi| ≤ ‖AvecXk − b‖ ≤ ‖AvecXk + δrk − b‖+ δ‖rk‖
≤ γ

P
µk + δ‖rk‖ for all k ∈ K and (i = 1, 2, · · · ,m).

Now, if we let k go to infinity along K and use Theorem 2 we obtain Ai • X̄ = bi for all i = 1, 2, · · · ,m. Since

Xk � 0 for all k ∈ K and eigenvalues are continuous we have X̄ � 0. This completes the proof of part i.

The proof of part ii is obtained by applying Theorem 3 with Ŝ = 0. The proof of part iii is a direct

consequence of parts i-ii and Theorem 3.

Note that in part iii of Theorem 4 our assumption is that both sequences {rk} and {Sk} are going to

zero along the index set K′′, but in general they may approach zero along different index sets. Therefore, the

assumption of part iii has to be slightly restrictive. However, if the algorithm generates a single limit point,

then it must be a primal-dual solution. We prove this fact in the next corollary.

Corollary 2 Suppose Algorithm 9.1 with ε = 0 generates the sequence {wk} such that {(Xk, yk, Zk)} has the

single limit point (X̄, ȳ, Z̄) and that there exists α∗ > 0 such that αk ≥ α∗ for all sufficiently large k. Then

(X̄, ȳ, Z̄) is a primal-dual solution of (1) and (3).
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Proof. We have Xk+1 = Xk + αk∆Xk, Xk → X̄, and αk is uniformly bounded away from zero. Therefore,

we must have ∆Xk → 0. Using (67b) we obtain

‖Sk+1‖ = ‖(1− αk)Sk + αk∆Xk‖ ≤ (1− αk)‖Sk‖+ αk‖∆Xk‖
≤ (1− α∗)‖Sk‖+ ‖∆Xk‖.

Taking limit superior from both side we obtain Sk → 0. Similarly, ∆yk → 0 and from (67a) we obtain

‖rk+1‖ ≤ (1− α∗)‖rk‖+ ‖∆yk‖,

by which we conclude rk → 0. Theorem 4(iii) completes the proof.

10 Algorithm based on decreasing regularization parameters

Our second method is based on decreasing the regularization parameter ρk and δk at each iteration and

enforces conditions (52a), (52d), and (52e).

Algorithm 10.1 Variation of the Primal-dual with variable regularization Apply Algorithm 9.1 with the

following specializations. In Step 3, only conditions (52a), (52d), and (52e) are enforced, and ρk+1 and δk+1

are chosen so that

ρk+1 ≥ κρρk, (90a)

δk+1 ≥ κδδk, (90b)

for some 0 < κρ < 1 and 0 < κδ < 1.

In Step 3 of Algorithm 9.1 we assume that ρk+1 ≤ ρk and δk+1 ≤ δk, however (90a) and (90b) require they

are not decreasing faster than linear rate. This feature of Algorithm 10.1 allow us to establish convergence

result of Algorithm 10.1 and recover a solution of (1) and (3). The convergence results of Algorithm 10.1 are

similar to those of Algorithm 9.1. In what follows, we establish a result analogous to Theorem 3.

Theorem 5 Suppose Algorithm 10.1 with ε = 0 generates the sequence {wk} and that {(Xk, Zk)} remains

bounded. Suppose also that there exists k0 ∈ N and α∗ ∈ (0, 1] such that αk ≥ α∗ for all k ≥ k0. Then the

sequence {(Xk, rk, Sk, Zk)} is bounded and every limit point of {(Xk, Zk)} determines a primal-dual solution

pair (1) and (3).

Proof. Our assumption that αk ≥ α∗ > 0 for all k ≥ ko and (57) imply that µk → 0. By definition of Nk
we also have ‖δkrk‖ ≤ γRµk and ‖ρkvecSk‖ ≤ γSµk, and thus δkrk → 0 and ρkSk → 0.

We have from (52d), (65), and (90b)

‖AvecXk+1 + δk+1rk+1 − b‖ = ‖AvecXk+1 + δk+1rk+1 − b± δkrk+1‖
= ‖(1− αk)(AvecXk + δkrk − b) + (δk+1 − δk)rk+1‖

≤ (1− α∗)‖AvecXk + δkrk − b‖+
δk − δk+1

δk+1
γ
R
µk+1

≤ (1− α∗)‖AvecXk + δkrk − b‖+ (1− κδ)γRµk,

for all k ≥ k0. Upon taking the limit superior in the last inequality, and using the fact that µk → 0, we obtain

that (AvecXk + δkrk − b)→ 0. Similarly, one can show that (vecC + ρkvecSk −AT yk −vecZk)→ 0. Since

{(Xk, Zk)} is bounded, using the above discussion we conclude that {AT yk} is bounded. Let gk := AT yk
for all k and consider any limit point (X̄, ḡ, Z̄) of {(Xk, gk, Zk)}. We note that the range space of AT is a

closed sub space, therefore ḡ = AT ȳ for some ȳ ∈ Rm. Therefore, in the limit we have

AvecX̄ = b, vecC = AT ȳ + vecZ̄, λ(X̄Z̄) = 0, (X̄, Z̄) � 0.
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11 Preliminary numerical results

We use MATLAB to code and run our algorithm on Intel Core dual CPU processor T8300 @ 2.4 GHZ,

with 3 GB of RAM. Algorithm 10.1 is tested on problems from SDPLIB [Bor99] a collection containing a

total of 93 SDP problem. Some problems from commonly used DIMACS set of benchmark problems[PS99].

We modify SDPT3 code to incorporate our regularization within an inexact infeasible primal-dual path-

following interior-point framework. Ninty problems from above collections are solved and the performance of

our regularization is compared to that of SDPT3. The details results of the two solvers SDPT3 and SDPR

(regularized SDP) are collected in Table 1–2 and Table 3–4, respectively. For each problem, we select δ0 = 1

and use the update rules

δk+1 =
δ

10
.

We set ρk = 0 for all iterations and let SDPT3 use its own preprocessing to check for independency of Ai.

Safeguards are used to ensure that δk never take values less than 108.

The benchmark optimization software and performance profiles of Dolan and Moré [DM02] is used to

compare the performance of SDPT3 and SDPR on these 90 problems. We compare the number of iterations

needed to solve an instant problem.

Table 1: Results from SDPT3 on 90 problems.

ProbName #iter Gap P infeas D infeas CPUTT
(secs)

arch0.dat- 26 3.22E-09 3.92E-09 1.27E-11 3.326
arch2.dat- 24 9.42E-09 5.11E-10 2.99E-11 3.198
arch4.dat- 22 1.14E-08 8.52E-10 2.10E-11 2.755
arch8.dat- 25 4.71E-08 1.14E-08 6.20E-11 3.165
control1.d 17 6.55E-08 2.68E-09 2.35E-11 0.248
control10. 25 2.10E-04 4.78E-07 1.51E-09 44.421
control11. 24 7.50E-05 2.41E-07 1.33E-09 66.774
control2.d 21 3.68E-09 2.54E-08 2.98E-11 0.633
control3.d 21 3.52E-06 1.02E-07 1.10E-10 1.52
control4.d 21 9.41E-07 2.13E-07 1.53E-10 3.826
control5.d 23 1.89E-05 5.79E-07 1.93E-10 9.923
control6.d 22 3.77E-05 5.79E-07 5.02E-10 24.267
control7.d 22 1.96E-05 6.36E-08 4.62E-10 42.938
control8.d 23 1.49E-05 2.24E-07 5.39E-10 84.237
control9.d 22 1.96E-05 5.94E-08 5.14E-10 133.717
equalG11.d 17 2.79E-06 1.03E-12 1.00E-12 35.601
equalG51.d 18 3.44E-05 5.78E-11 5.07E-12 64.364
gpp100.dat 14 8.89E-07 2.74E-10 6.17E-11 0.597
gpp124-1.d 18 8.51E-08 3.45E-11 8.85E-12 0.982
gpp124-2.d 15 5.94E-07 1.16E-10 2.21E-11 0.649
gpp124-3.d 14 1.27E-06 4.15E-10 8.55E-11 0.581
gpp124-4.d 15 5.52E-07 5.62E-10 7.44E-11 0.622
gpp250-1.d 17 1.58E-05 5.37E-12 1.31E-12 1.901
gpp250-2.d 15 1.93E-07 1.28E-10 2.61E-11 1.684
gpp250-3.d 15 4.22E-07 3.32E-10 5.38E-11 1.699
gpp250-4.d 14 6.78E-06 2.24E-10 5.28E-11 1.589
gpp500-1.d 19 5.67E-05 9.47E-12 2.15E-12 12.209
gpp500-2.d 16 2.06E-06 3.29E-12 1.65E-12 10.51
gpp500-3.d 16 7.86E-06 4.22E-12 2.23E-12 10.776
gpp500-4.d 17 4.58E-06 8.37E-12 2.68E-12 11.213
hinf1.dat- 26 1.23E-05 3.37E-08 6.34E-09 0.311
hinf10.dat 34 3.92E-04 3.12E-07 1.23E-07 0.468
hinf11.dat 28 1.16E-02 3.53E-07 8.43E-08 0.417
hinf12.dat 60 5.80E-05 3.65E-12 1.98E-06 0.942
hinf13.dat 29 3.04E-02 9.81E-06 6.91E-07 0.625
hinf14.dat 34 1.73E-04 9.91E-08 5.48E-08 0.903
hinf15.dat 26 2.91E-01 7.83E-05 3.61E-06 0.84
hinf2.dat- 16 5.82E-08 3.20E-06 1.45E-11 0.189
hinf3.dat- 20 5.17E-06 6.53E-06 2.42E-10 0.224
hinf4.dat- 21 1.22E-05 8.36E-08 1.43E-09 0.238
hinf5.dat- 21 4.76E-05 9.24E-05 1.06E-10 0.229
hinf6.dat- 22 7.76E-06 4.54E-06 3.50E-11 0.236
hinf7.dat- 18 8.45E-04 5.17E-06 1.78E-10 0.187
hinf8.dat- 21 6.10E-04 1.50E-05 5.71E-09 0.235
hinf9.dat- 22 8.47E-09 5.90E-07 8.97E-15 0.233

Table 2: Results from SDPT3 on 90 problems (cont.)

ProbName #iter Gap P infeas D infeas CPUTT
(secs)

infd1.dat- 11 3.78E+17 3.35E+00 3.22E+01 0.137
infd2.dat- 11 5.33E+18 1.31E+00 1.53E+03 0.142
infp1.dat- 31 2.59E+13 1.47E-01 1.65E+00 0.392
infp2.dat- 31 1.00E+13 3.36E-02 1.28E+00 0.378
maxG11.dat 15 6.10E-06 3.05E-13 1.00E-12 13.694
maxG32.dat 15 3.11E-05 4.01E-12 1.00E-12 120.211
maxG51.dat 17 2.10E-06 1.45E-13 1.00E-12 30.976
mcp100.dat 12 9.00E-07 1.23E-11 1.00E-12 0.41
mcp124-1.d 12 2.12E-06 1.46E-11 1.00E-12 0.428
mcp124-2.d 13 2.23E-07 2.43E-12 1.50E-12 0.479
mcp124-3.d 12 4.63E-06 3.33E-13 1.02E-12 0.527
mcp124-4.d 13 6.96E-07 2.19E-12 1.00E-12 0.496
mcp250-1.d 14 6.17E-07 9.54E-14 1.00E-12 0.858
mcp250-2.d 13 2.80E-06 5.25E-13 1.00E-12 1.047
mcp250-3.d 13 5.51E-06 1.25E-12 1.50E-12 1.149
mcp250-4.d 14 1.53E-05 1.09E-12 1.00E-12 1.269
mcp500-1.d 15 6.58E-07 4.67E-13 1.00E-12 3.817
mcp500-2.d 16 2.55E-06 1.60E-12 1.48E-12 5.469
mcp500-3.d 14 3.39E-05 9.07E-14 1.00E-12 5.455
mcp500-4.d 13 6.25E-05 1.05E-12 1.03E-12 5.857
qap10.dat- 17 2.99E-05 1.98E-07 1.03E-09 4.467
qap5.dat-s 10 6.51E-07 1.71E-11 2.70E-10 0.399
qap6.dat-s 16 2.03E-06 4.73E-07 1.81E-10 1.113
qap7.dat-s 18 3.18E-06 3.51E-07 2.87E-10 2.391
qap8.dat-s 17 4.61E-05 8.80E-07 2.44E-09 0.967
qap9.dat-s 21 3.77E-06 8.43E-08 1.49E-10 4.052
qpG11.dat- 15 4.13E-05 4.57E-13 1.00E-12 13.665
qpG51.dat- 17 5.00E-05 1.36E-11 1.06E-12 30.318
ss30.dat-s 21 1.06E-05 1.39E-07 2.56E-11 12.801
theta1.dat 11 3.85E-07 1.18E-11 4.58E-12 0.553
theta2.dat 13 9.43E-08 1.08E-12 1.00E-12 1.72
theta3.dat 14 2.23E-07 1.16E-11 1.00E-12 4.621
theta4.dat 14 7.14E-07 3.82E-13 1.00E-12 10.85
theta5.dat 14 4.03E-07 4.19E-13 1.00E-12 26.87
theta6.dat 14 1.98E-07 3.39E-13 1.00E-12 62.183
thetaG11.d 18 5.08E-06 4.28E-13 1.01E-12 47.714
truss1.dat 9 1.30E-07 2.31E-09 9.79E-11 0.132
truss2.dat 13 5.35E-07 9.37E-10 5.70E-10 0.281
truss3.dat 12 1.37E-07 5.87E-14 1.00E-12 0.17
truss4.dat 11 1.64E-09 3.85E-09 1.17E-11 0.142
truss5.dat 15 1.53E-07 1.52E-10 2.79E-12 0.691
truss6.dat 24 8.11E-05 1.25E-07 2.89E-11 0.797
truss7.dat 21 1.86E-04 1.13E-08 1.46E-11 0.569
truss8.dat 16 7.48E-08 1.80E-10 1.02E-11 3.115
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Table 3: Results from regularized SDP (SDPR) on
90 problems.

ProbName #iter Gap P infeas D infeas CPUTT
(secs)

arch0.dat- 26 3.23E-09 4.52E-09 1.27E-11 5.123
arch2.dat- 24 6.56E-09 4.05E-10 2.08E-11 5.28
arch4.dat- 22 1.13E-08 9.46E-10 1.74E-11 5.138
arch8.dat- 25 1.83E-08 1.39E-08 2.48E-11 4.925
control1.d 17 3.63E-08 2.12E-09 2.13E-10 0.227
control10. 23 4.60E-04 6.75E-08 8.36E-09 77.549
control11. 25 6.93E-05 3.61E-07 2.44E-08 136.909
control2.d 21 2.13E-07 1.41E-08 5.68E-10 0.851
control3.d 25 6.75E-07 1.42E-07 9.54E-09 2.481
control4.d 21 1.58E-06 1.09E-07 9.08E-09 4.572
control5.d 22 1.31E-05 1.05E-07 8.07E-09 10.858
control6.d 22 8.48E-05 1.21E-07 1.12E-08 25.646
control7.d 23 1.79E-05 6.31E-08 8.10E-09 47.769
control8.d 24 1.97E-05 2.86E-07 1.55E-08 93.496
control9.d 23 8.42E-06 9.87E-08 4.99E-09 167.068
equalG11.d 18 6.21E-07 7.07E-11 1.36E-12 50.574
equalG51.d 20 1.38E-05 3.92E-09 3.92E-11 101.035
gpp100.dat 15 1.08E-07 9.58E-09 6.01E-11 0.457
gpp124-1.d 19 5.15E-07 1.71E-09 1.90E-11 0.909
gpp124-2.d 15 5.08E-07 1.46E-09 3.78E-11 0.673
gpp124-3.d 15 1.41E-06 3.81E-09 9.95E-11 0.756
gpp124-4.d 15 3.31E-06 6.57E-09 4.22E-10 0.789
gpp250-1.d 19 5.39E-07 1.39E-09 1.45E-11 2.709
gpp250-2.d 18 9.64E-08 1.23E-09 2.83E-11 4.595
gpp250-3.d 17 4.48E-07 2.65E-09 1.71E-11 4.52
gpp250-4.d 16 7.28E-06 2.28E-09 1.84E-11 2.015
gpp500-1.d 23 8.32E-07 8.00E-10 5.00E-12 16.689
gpp500-2.d 18 2.85E-06 1.78E-09 2.57E-12 13.964
gpp500-3.d 19 5.57E-07 1.66E-10 1.14E-11 14.415
gpp500-4.d 17 1.35E-05 1.06E-10 2.94E-12 13.301
hinf1.dat- 34 1.93E-07 1.34E-07 3.92E-09 0.416
hinf10.dat 31 3.81E-04 7.04E-06 8.83E-08 0.365
hinf11.dat 30 4.46E-04 5.82E-06 1.57E-07 0.482
hinf12.dat 40 8.04E-05 1.32E-05 2.88E-07 0.731
hinf13.dat 23 7.33E-02 2.28E-05 7.37E-07 0.498
hinf14.dat 29 1.75E-05 1.40E-06 4.91E-09 0.918
hinf15.dat 30 1.74E-03 1.01E-05 1.26E-08 1.096
hinf2.dat- 14 2.20E-04 3.38E-07 6.61E-08 0.171
hinf3.dat- 17 4.20E-04 2.84E-06 1.56E-08 0.183
hinf4.dat- 24 1.03E-05 7.08E-07 1.91E-09 0.324
hinf5.dat- 15 6.80E-01 5.74E-05 1.58E-06 0.163
hinf6.dat- 21 9.35E-04 8.93E-06 2.08E-09 0.22
hinf7.dat- 22 4.44E-06 1.63E-05 4.44E-13 0.237
hinf8.dat- 23 1.19E-04 2.19E-06 8.78E-10 0.324
hinf9.dat- 22 8.97E-07 4.58E-07 4.57E-14 0.223

Table 4: Results from regularized SDP (SDPR) on
90 problems (cont.)

ProbName #iter Gap P infeas D infeas CPUTT
(secs)

infd1.dat- 31 1.17E-01 1.93E-01 3.25E-09 0.454
infd2.dat- 31 2.52E-01 2.55E-01 2.16E-08 0.374
infp1.dat- 31 2.59E+13 1.95E-01 1.65E+00 0.481
infp2.dat- 31 9.90E+12 3.94E-02 1.28E+00 0.491
maxG11.dat 15 3.53E-06 1.33E-12 1.00E-12 14.888
maxG32.dat 17 1.01E-05 6.46E-13 1.00E-12 151.427
maxG51.dat 19 2.28E-06 5.16E-14 1.00E-12 35.612
mcp100.dat 13 1.31E-07 2.10E-12 1.00E-12 1.315
mcp124-1.d 13 3.00E-07 1.68E-12 1.00E-12 0.771
mcp124-2.d 13 4.07E-07 2.53E-13 1.00E-12 0.613
mcp124-3.d 13 2.17E-06 3.63E-13 1.00E-12 0.675
mcp124-4.d 13 1.06E-05 1.09E-11 1.00E-12 0.566
mcp250-1.d 14 7.46E-07 1.95E-13 1.00E-12 1.33
mcp250-2.d 13 2.79E-06 5.41E-12 1.00E-12 1.46
mcp250-3.d 13 1.60E-05 1.92E-12 1.00E-12 1.206
mcp250-4.d 16 4.52E-06 1.10E-12 1.00E-12 1.703
mcp500-1.d 15 1.05E-06 1.12E-12 1.00E-12 4.307
mcp500-2.d 16 3.10E-06 2.76E-13 1.00E-12 6.931
mcp500-3.d 15 2.91E-05 1.08E-12 1.00E-12 9.421
mcp500-4.d 15 4.11E-05 3.18E-13 1.04E-12 8.09
qap10.dat- 31 1.55E-04 4.30E-08 7.17E-09 13.298
qap5.dat-s 13 7.18E-07 1.76E-11 9.79E-11 2.124
qap6.dat-s 17 7.89E-04 1.15E-07 2.60E-08 3.183
qap7.dat-s 23 1.91E-04 8.26E-08 1.56E-08 4.176
qap8.dat-s 32 1.56E-04 5.72E-08 1.13E-08 3.293
qap9.dat-s 24 2.39E-04 5.78E-08 1.01E-08 4.03
qpG11.dat- 17 1.79E-04 1.96E-13 1.03E-12 16.422
qpG51.dat- 21 3.89E-03 9.77E-08 5.93E-11 37.824
ss30.dat-s 21 1.44E-06 9.21E-08 6.12E-11 12.27
theta1.dat 33 2.66E-08 2.57E-11 1.28E-10 1.845
theta2.dat 26 1.04E-07 6.44E-12 1.30E-11 1.523
theta3.dat 27 5.42E-08 6.90E-12 1.26E-11 5.153
theta4.dat 21 2.65E-07 1.70E-11 5.38E-12 12.581
theta5.dat 24 3.08E-07 1.93E-11 5.56E-12 40.932
theta6.dat 21 6.81E-07 1.64E-10 1.62E-10 103.082
thetaG11.d 20 1.87E-05 8.70E-12 1.00E-12 50.265
truss1.dat 9 1.87E-08 9.45E-12 6.42E-11 0.195
truss2.dat 12 1.40E-07 4.08E-11 1.50E-10 0.241
truss3.dat 12 5.50E-08 5.09E-12 1.00E-12 0.171
truss4.dat 10 9.55E-09 5.40E-11 2.58E-11 0.134
truss5.dat 15 2.30E-07 2.00E-10 1.51E-11 0.615
truss6.dat 25 6.56E-06 4.68E-08 2.56E-09 0.803
truss7.dat 24 3.31E-05 2.91E-08 5.86E-09 0.604
truss8.dat 16 8.34E-08 6.59E-11 1.19E-11 2.895

The interpretation of Figure 1 is that these two solvers are identical within a factor τ < 1.6. In other

words, performance profile saying that the number of iterations needed to solve a problem by one solver is

not more than 1.6 time of the iterations needed by the other one.

12 Discussion and future research

We present a primal-dual regularization for SDPs for two directions, NT and dual of HKM. There are about

twenty directions and we believe it is possible to extend the convergence analysis to some of these directions.

In our analysis, we take advantage of part one of Lemma 1 this property may not hold for other directions.

However, conditions λ(HP (XZ)) = λ(XZ) may be replaced by weaker conditions to include more directions

in the convergence analysis.

The strong similarity between interior-point methods for SDP and for the larger classes of problems, such

as conic programming and even in more general convex programming problems suggests that our results can

be extended to those general classes. Our approach is based on bounding the eigenvalues of reduced system

(44) but we believe that using 3-by-3 system (43) has theoretical advantages over the reduced system (44);

the assumptions for convergence are weaker and the proofs are simpler. Orban and Friedlander [Orb10] use

3-by-3 system (43) in quadratic programming context and simplify the convergence analysis using of Armand
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Figure 1: Performance profile comparing our implementation v.s. SDPT3 on a set of 90 problems

and Benoist results [AB11]. It remains to be discover whether or not the Armand and Benoist [AB11] can

be extended to SDP and whether using 3-by-3 system has advantages in practice.

A Appendix

We list some important operation rules for Kronecker products that used in this paper. Although some of

the proofs are easy to derive, we refer to book [HJ91] for the proofs. λ(A) is used for the spectrums of A.

A⊗B = [aijB], (91a)

vec(AXB) = (BT ⊗A)vecX, (91b)

(A⊗B)T = AT ⊗BT , (91c)

(A⊗B)−1 = A−1 ⊗B−1, (91d)

(A⊗B)(C ⊗D) = (AC ⊗BD), (91e)

If λ(A) = µi and λ(B) = νj then λ(A⊗B) = µiνj , (91f)

λ(AB) = λ(BA), where A,B ∈ Rn×n. (91g)

If A is a symmetric n × n real matrix we order eigenvalues of A by λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) the

following lemma gives us some useful relations between the smallest and the largest eigenvalues of the sum

of two matrices.
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Lemma 6 If A and B are n× n symmetric matrices then

λn(A+B) ≥ λn(A) + λn(B), (92a)

λ1(A+B) ≤ λ1(A) + λ1(B), (92b)

‖A− C‖F ≥ λn(A)− λn(C), (92c)

|λn(A)| ≤ 1√
n
‖A‖F . (92d)

Proof. By Theorem 8.1.5 of [GCVL96, page 396] we have

λi(A) + λn(B) ≤ λi(A+B) ≤ λi(A) + λ1(B) ∀i = 1, 2, . . . n.

Particularly, for i = n and i = 1 we can easily derive (92a) and (92b). To prove (92d), it is enough to let

A+B = C and use (92a) together with the fact that λn(B) ≥ −‖B‖F .
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[Més98] C. Mészáros. On free variables in interior point methods. Optimization Methods and Software, 9(1-
3):121–139, 1998.

[M.J99] M.J. Todd. A study of search directions in primal-dual interior-point methods for semidefinite program-
ming. Optimization Methods and Software, 11(1-4):1–46, 1999.

[MPR+09] J. Malick, J. Povh, F. Rendl, A. Wiegele, et al. Regularization methods for semidefinite programming.
SIAM Journal on Optimization, 20(1):336–356, 2009.



Les Cahiers du GERAD G–2012–12 23

[MZ98] R.D.C. Monteiro and Y. Zhang. A unified analysis for a class of long-step primal-dual path-following
interior-point algorithms for semidefinite programming. Mathematical Programming, 81(3):281–299, 1998.

[NW06] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Optimizations Research.
Springer, second edition, 2006.

[Orb10] M. P. Friedlander D. Orban. A primal-dual regularized interior-point method for convex quadratic
programs. Les Cahiers du GERAD, G–2010–47, HEC Montréal, Canada, 2010.
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[TTT] K.C. Toh, R.H. Tütüncü, and M.J. Todd. On the implementation and usage of SDPT3–a MATLAB
software package for semidefinite-quadratic-linear programming, version 4.0, July 2006.
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