The Injectivity Modules of a Tropical Map

E. Wagneur
G–2012–101
December 2012
The Injectivity Modules of a Tropical Map

Edouard Wagneur

GERAD
HEC Montréal
3000, chemin de la Côte-Sainte-Catherine
Montréal (Québec) Canada, H3T 2A7
edouard.wagneur@gerad.ca

December 2012

Les Cahiers du GERAD
G–2012–101

Copyright © 2012 GERAD
1 Introduction

A tropical torsion module M is an idempotent commutative semimodule over the idempotent commutative extended semiring $\mathbb{R} = \mathbb{R} \cup \{-\infty\}$. Endowed with the max operator (written \lor) as first composition law, and classical addition (written \cdot, and which will usually be omitted when no confusion arises), with the (torsion) property that, for any two generators, x, y, there exist $\lambda_{xy} = \inf\{\xi \in \mathbb{R} | x \leq \xi y\}$ and $\lambda_{yx} = \inf\{\xi \in \mathbb{R} | y \leq \xi x\}$. Moreover, the product $\tau(x, y) = \lambda_{xy} \cdot \lambda_{yx}$ in \mathbb{R} is an invariant of the isomorphism class of M, called the torsion of M.

We write $\mathbf{0}$ and $\mathbf{1}$ for the neutral elements of \lor and \cdot respectively.

In [5], we show that any m-dimensional tropical torsion module can be embedded in \mathbb{R}^d, with $d \leq m(m - 1)$, and that m-dimensional tropical torsion modules are classified by a p-parameter family, with $p \leq (m - 1)^2 + 1$.

The aim of the paper is to revisit and extend some of these results by showing that – at least in the 3-dimensional case – the two upper bounds are tight. More precisely, we show that for $m = 3$, we can find tropical torsion modules which cannot be embedded in \mathbb{R}^d for $d < 6$, and that all the $p = 2 \cdot (2 \cdot 3 - 1) = 10$ parameters required for the unambiguous specification of the 3 generators of M are necessary for the characterization of M.

Also, the concept of injectivity set (or injectivity tropical module) briefly dealt with in [5] is further investigated. In particular, we show the counterintuitive result that, for a given tropical map $\varphi: M \rightarrow N$, the quotient M_{φ} defined by the equivalence \sim given by $x \sim y \iff \varphi(x) = \varphi(y)$ is not isomorphic to $\text{Im}\varphi$.

The paper is organised as follows. In Section 2, we briefly recall some of the results of [5] which will be used in the paper. In Section 3, we state the main result of the paper, related to the injectivity modules of a tropical map. Then these results are illustrated in Section 4, by way of two examples, where $m < n$ and $n < m$, respectively. The first one with a tropical map in $\text{Hom}(\mathbb{R}^3, \mathbb{R}^6)$, the second with a map in $\text{Hom}(\mathbb{R}^4, \mathbb{R}^3)$. In both cases, (some of) the injectivity modules are exhibited.

2 The main results of [5]

In this section we briefly recall the main results of [5] which will be used in this paper.

1. The canonical form of the torsion matrix:

$$A = \begin{bmatrix}
\mathbf{1} & \mathbf{1} & a_{13} & \cdots & a_{1m} \\
\mathbf{1} & a_{22} & a_{23} & \cdots & a_{2m} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\mathbf{1} & a_{n2} & a_{n3} & \cdots & a_{nm}
\end{bmatrix}$$

(1)

with $\mathbf{1} = a_{12} \leq a_{22} \leq \cdots \leq a_{n2}$, $a_{ij} \leq a_{ij+1}$, $i = 1, \ldots, n$, $j = 2, \ldots, m$, and $\tau(x_j, x_{j+1}) \leq \tau(x_j, x_{j+1})$, $j = 2, \ldots, m - 1$, where x_j stands for column j of A.

This canonical form also defines the canonical basis of M_A.

2. $\forall j \ (1 \leq j \leq m - 1), \exists i \ (1 \leq i \leq n)$ such that $a_{ij+1} = a_{ij}$ (hence $\lambda_{jj+1} = \mathbf{1}$).

1 Torsion in tropical modules has been introduced in [3], $\tau(x, y)$ is equal to $\exp(\delta(x, y))$, where $\delta(x, y)$ is the Hilbert pseudo-metric, invented by Hilbert in [1].
3. The λ_{ij} (from which we readily get the τ_j) are given by the matrix

$$\Lambda_A = A^t \cdot A^-= \begin{bmatrix} \lambda_{11} & \lambda_{12} & \cdots & \lambda_{1m} \\ \lambda_{21} & \lambda_{22} & \cdots & \lambda_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{m1} & \lambda_{m2} & \cdots & \lambda_{mm} \end{bmatrix}$$

(2)

where A^t, and A^- stand for the transpose of A and for the matrix with entries the inverses of those of A.

4. The Whitney embedding theorem and the classification of tropical modules have been recalled in Section 1 above.

3. The injectivity modules of a tropical map

In this section, we investigate some properties of INJ_A for a tropical torsion matrix (TTM) A. Let M, N be two tropical modules of dimension m, n respectively, $\varphi \in \text{Hom}(M, N)$, and π the canonical projection $M \rightarrow M/\sim$, defined by the equivalence relation $x \sim y$ if and only if $\varphi(x) = \varphi(y)$. Clearly φ is injective on the set $\{\xi \in M | \forall \lambda \in M, \lambda \neq \xi \Rightarrow \varphi(\lambda) \neq \varphi(\xi)\}$ is the injectivity set of φ.

Let A be a square tropical torsion matrix. In [5], we defined $\text{INJ}_A = \{\xi \in \mathbb{R}^n | \exists \sigma \in \mathcal{S}_n \text{ such that } \forall k, \bigvee_{j=1, j \neq k}^n a_{\sigma(k)j} \xi_j \leq a_{\sigma(k)k} \xi_k \}$, and proved the following statement.

Proposition 1 For any square tropical torsion matrix $A \in \text{Hom}(\mathbb{R}^n, \mathbb{R}^n)$ of maximal column rank, there is a unique permutation $\sigma \in \mathcal{S}_n$ such that

$$\{\xi \in \mathbb{R}^n \text{ s. t. for } k = 1, \ldots, n, \bigvee_{j=1, j \neq k}^n a_{\sigma(k)j} \xi_j \leq a_{\sigma(k)k} \xi_k \}.$$

(3)

It is easy to see that the injectivity set of A satisfying 3 is a tropical module.

Clearly, for any $n \times n$ permutation matrix P $\text{INJ}_{PA} = \text{INJ}_A$, and, by Proposition 1, there exists a unique permutation matrix P such that, for $B = PA$, (3) is equivalent to

$$\text{INJ}_A = \{\xi \in \mathbb{R}^n \text{ s. t. for } k = 1, \ldots, n, \bigvee_{j=1, j \neq k}^n b_{kj} \xi_j \leq b_{kk} \xi_k \}.$$

(4)

Let $\tilde{A} = (\text{diag}(b_{ii}^{-1}))B$.

As a straightforward application of a well-known result (cf [2] for instance), we have the following statement.

Proposition 2 INJ_A is generated by the columns of \tilde{A}^*.

Theorem 1 Let A be a TTM $m \times n$, then there are at most \left(\frac{\max\{m,n\}}{\min\{m,n\}}\right)$ tropical modules where A is injective. Each of these injectivity modules is generated by the Kleene star of some square matrix derived from A.

Proposition 3 The tropical modules $\text{Im}A$ and INJ_A are not isomorphic in general.

Proposition 4 If A is a rectangular $n \times m$ matrix with $m \neq n$, then INJ_A is a union of tropical modules, which is not a tropical module in general.
Definition. We say the union of modules $\text{INJ}_A = \bigcup_{i=1}^k M_i$ is isomorphic to the union of modules $\text{INJ}_B = \bigcup_{i=1}^k N_i$ if, for every tropical module $M_i \in \text{INJ}_A$, there is a tropical module $N_i \in \text{INJ}_B$, which is isomorphic to M_i, $i = 1, \ldots, k$.

Remark. The statement in Proposition 3 differ from that in Propostion 4, since INJ_A is a TTM in Proposition 3.

4 Examples

The first two examples illustrate the statement in Theorem 1. In addition, our first example shows that the bound given in [5] for the Whitney embedding is tight, i.e. there exists a 3-dimensional tropical module which cannot be embedded in \mathbb{R}^d for $d < 6 = m(m - 1) = 6$. Also, as a complement to the classification theorem of the same reference, this example will be used to show that all the $p = (m - 1)[m(m - 1) - 1]$ parameters are needed for the classification of M_A.

Our third example shows that we can find n-dimensional tropical modules with $m \leq n$ generators with equal torsion coefficients.

Example 1

Let $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & a & a \\ 8 & 15 \\ 9 & 11 \end{bmatrix}$, with $5 < a < 8$. We have

$\Gamma_A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & a & a \\ 8 & 15 \\ 9 & 11 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 4 \\ 2 & 1 & 4 \\ 2 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 1 & 4 \\ 1 & 1 & 4 \\ 1 & 1 & 4 \end{bmatrix}$, with

$\lambda_{12} = 1$, $\lambda_{21} = 9$, $\lambda_{13} = 4^{-1}$, $\lambda_{31} = 15$, $\lambda_{23} = 1$, and $\lambda_{32} = 12$, given by rows 1, 6, 2, 5, 4, and 3, respectively.

We have $\tau_{12} = \lambda_{12} \cdot \lambda_{21} = 9 < \tau_{13} = \lambda_{13} \cdot \lambda_{31} = 11 < \tau_{23} = \lambda_{23} \cdot \lambda_{32} = 12$.

It follows that all six rows of A are required for the torsion of M_A. Hence, it A cannot be embedded into \mathbb{R}^d for $d < 6$. Note that the τ_{ij} are independent of a.

The tropical modules INJ_A

We compute the tropical modules $M_{ijk} = \text{INJ}_{A_{ijk}}$ for $i = 1, j = 2, k = 3$, and for $i = 1, j = 2, k = 4$, where A_{ijk} is he map given by the square submatrix of A determined by rows i, j, k.

We have: $A_{123} = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 2 & 4 \\ 2 & 14 \end{bmatrix}$, then, since $\sigma = I$, i.e. $P = I$, we have $\tilde{A}_{123} = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 2 & 4 \\ 14^{-1} & 12^{-1} & 1 \end{bmatrix}$, and

$\tilde{A}_{123}^* = \tilde{A}_{123}^2 = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 2 & 4 \\ 13^{-1} & 12^{-1} & 1 \end{bmatrix}$.
Hence M_{123} is generated by \[
\frac{1}{13^{-1}} \begin{bmatrix} 1 & 1 \\ 0 & 12^{-1} \end{bmatrix}, \frac{1}{124} \begin{bmatrix} 1 \\ 12^{-1} \end{bmatrix}, \text{ and } \frac{1}{124} \begin{bmatrix} 5 \\ 12^{-1} \end{bmatrix}.
\]

$A_{124} = \begin{bmatrix} 1 & 1 \\ 1 & 4 \\ 1 & a \\ 1 & a \end{bmatrix}$, with $P = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$ thus

$\tilde{A}_{124} = \text{diag}(1 a^{-1} 5^{-1}) P A_{124} = \begin{bmatrix} 1 & 1 \\ a^{-1} & 4 \\ 5^{-1} & 5^{-1} \\ 5^{-1} & \end{bmatrix}$, and we get

$\tilde{A}_{124}^* = \tilde{A}_{124}^2 = \begin{bmatrix} 1 & 1 \\ 5^{-1} & 5^{-1} \\ 5^{-1} & 4^{-1} \\ 4^{-1} & \end{bmatrix}$

$M_{124} = \{x | 1 \xi_2 \leq \xi_1 \leq a \xi_2, 4 \xi_3 \leq \xi_1 \leq 5 \xi_3, \xi_2 \leq 5 \xi_3 \leq 5 \xi_2 \}$, its generators are given by the columns of $\tilde{A}_{124}^* = \begin{bmatrix} 1 & 1 \\ 5^{-1} & 1 \\ 5^{-1} & 4^{-1} \\ 4^{-1} & \end{bmatrix}$.

We have: $\Gamma_{A_{124}} = \begin{bmatrix} 1 & 1 \\ 1 & a \\ 5 & 4 \\ 1 & a \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 1 & 1^{-1} \\ 1 & a^{-1} \\ 1 & a \end{bmatrix} = \begin{bmatrix} 1 & 1^{-1} \\ 1 & a \\ a & 5 \\ a & \end{bmatrix}$, with the torsion coefficients given by $4^{-1}a$, 5, a, respectively, and

$\Gamma_{A_{124}} = \begin{bmatrix} 1 & 5^{-1} \\ 1 & 4^{-1} \\ 4 & 4^{-1} \end{bmatrix}$ $\begin{bmatrix} 1 & 1^{-1} \\ 1 & 1 \\ 5 & 4 \\ 5 & \end{bmatrix} = \begin{bmatrix} 1 & 1^{-1} \\ 5 & 5 \\ 5 & 4 \\ 4 & \end{bmatrix}$,

with the $\tau(i, j) = 1, 4, 4$, respectively.

Thus $\text{Im}A_{124}$ is not isomorphic to $\text{INJ}_{A_{124}}$.

On the other hand it is easy to see that:

$A_{124} \tilde{A}_{124}^* = \text{diag}(5 \ |a \ P \tilde{A}_{124}^*, \text{i.e.}

M_{124} is equal to its image under A_{124}.

This example also illustrates the fact that the domain of a tropical map $\varphi: M \rightarrow N$ splits into two parts:

- INJ_φ, every point of which is an equivalence class of “~”.
- $M \setminus \text{INJ}_\varphi$ where the equivalence classes contain more than one point of M.

Moreover, as easily seen from the torsion coefficients between generators, the M_{ijk} are neither isomorphic to $\text{Im}A$, nor isomorphic to one another in general.

Our next example, which first appeared in [4] has been shortly examined in [5]. It is revisited here for an illustration of the case $m > n$ in Theorem 1.

Example 2

Let $x_i = \begin{bmatrix} i \\ i \\ i^2 \end{bmatrix}$, $i = 1, 2, \ldots, m$, with $i = i^2 = \|i\|$ for $i = 0$, and $A = [x_1 | x_2 | \cdots | x_m]$. The tropical submodule M_A of \mathbb{R}^3 can be made infinite dimensional by letting $m \rightarrow \infty$.
It is not difficult to see that \(A \) is injective on \(\bigcup_{0 \leq i < j < k} M_{ijk} \), where

\[
M_{ijk} = \{ \xi \mid \bigvee_{\ell \geq 1, \ell \neq i} \xi_{\ell} \leq \xi_{i}, \bigvee_{\ell \geq 1, \ell \neq j} \xi_{\ell} \leq j \xi_{j}, \bigvee_{\ell \geq 1, \ell \neq k} \ell^{2} \xi_{\ell} \leq k^{2} \xi_{k} \}\]

For instance, with \(M = \mathbb{R}^{4} \), we get

\[
\begin{align*}
M_{124} &= \{ \xi \in \mathbb{R}^{4} \mid \xi_{1} \leq \xi_{1}, \xi_{1} \lor 2 \xi_{3} \lor 3 \xi_{4} \leq 1 \xi_{2}, \xi_{1} \lor 2 \xi_{2} \lor 4 \xi_{3} \leq 6 \xi_{4} \} \\
M_{134} &= \{ \xi \in \mathbb{R}^{4} \mid \xi_{1} \leq \xi_{1}, \xi_{1} \lor 1 \xi_{2} \lor 3 \xi_{4} \leq 2 \xi_{3}, \xi_{1} \lor 2 \xi_{2} \lor 4 \xi_{3} \leq 6 \xi_{4} \} \\
M_{234} &= \{ \xi \in \mathbb{R}^{4} \mid \xi_{1} \lor \xi_{3} \lor \xi_{4} \leq \xi_{2}, \xi_{1} \lor 1 \xi_{2} \lor 3 \xi_{4} \leq 2 \xi_{3}, \xi_{1} \lor 2 \xi_{2} \lor 4 \xi_{3} \leq 6 \xi_{4} \}.
\end{align*}
\]

The method described in Theorem 1 is illustrated as follows for the generators of the \(M_{ijk} \), where the \(i \) (resp. \(j, k \)) stands for the rank of the column which dominates row 1 (resp. 2, 3) of \(A \xi \).

For \(M_{123} \), define \(A_{123} = \begin{bmatrix} \mathbb{I} & \mathbb{I} & \mathbb{I} & \mathbb{I} \\ \mathbb{I}^1 & 1 & 2 & 3 \\ \mathbb{I}^2 & 2^2 & 3^2 \\ 0 & 0 & 0 & \mathbb{I} \end{bmatrix} \).

Then from \(A_{123} \xi = \begin{bmatrix} \xi_{1} \\ \xi_{2} \\ \xi_{3} \\ \xi_{4} \end{bmatrix} \), we get \(\tilde{A}_{123} = \begin{bmatrix} \mathbb{I} & \mathbb{I} & \mathbb{I} & \mathbb{I} \\ \mathbb{I}^{-1} & 1 & 2 \\ 2^{-1} & 2^{-1} & 2 \\ 0 & 0 & 0 & \mathbb{I} \end{bmatrix} \), and

\[
\tilde{A}_{123}^3 = \begin{bmatrix} \mathbb{I} & \mathbb{I} & 1 & 3 \\ \mathbb{I}^{-1} & 1 & 3 \\ 3^{-1} & 2^{-1} & 2 \\ 0 & 0 & 0 & \mathbb{I} \end{bmatrix} = \tilde{A}_{123}^*.
\]

Clearly: \(\begin{bmatrix} \mathbb{I} \\ 1^{-1} \\ 3^{-1} \\ 0 \end{bmatrix}, \begin{bmatrix} \mathbb{I} \\ 2^{-1} \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix} \) generate \(\text{INJ}_{A_{123}} \).

For a straightforward verification, let

\[
u = x_{1} \begin{bmatrix} \mathbb{I} \\ 1^{-1} \\ 3^{-1} \\ 0 \end{bmatrix} \lor x_{2} \begin{bmatrix} \mathbb{I} \\ 2^{-1} \\ 0 \end{bmatrix} \lor x_{3} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \lor x_{4} \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} x_{1} \lor x_{2} \lor x_{3} \lor x_{4} \\ 1^{-1} x_{1} \lor x_{2} \lor x_{3} \lor x_{4} \\ 3^{-1} x_{1} \lor 2^{-1} x_{2} \lor x_{3} \lor x_{4} \end{bmatrix}.
\]

We leave it to the reader to check that

\[
\begin{bmatrix} \mathbb{I} & \mathbb{I} & \mathbb{I} & \mathbb{I} \\ \mathbb{I} & 1 & 2 & 3 \\ \mathbb{I} & 1^2 & 2^2 & 3^2 \\ \mathbb{I} & \tau & \tau & \tau \end{bmatrix} u = \begin{bmatrix} u_{1} \\ u_{2} \\ 2^{2} u_{3} \end{bmatrix}, \text{ i.e. } u \in M_{123}.
\]

Example 3

This last example shows that we can find \(n - 1 \) torsion elements in \(\mathbb{R}^{n} \) exhibiting two by two the same torsion.

Let \(A = \begin{bmatrix} \mathbb{I} & \mathbb{I} \end{bmatrix} \). Clearly the torsion coefficients of any two columns of \(A \) are equal to \(\tau \).
For \(n = 2 \), the injectivity module of \(A \) has been investigated in [5]. The general case is illustrated by the case \(n = 6 \). Let \(P \) be the permutation matrix

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}.
\]

Then \(\tilde{A} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & \tau^{-1} & 0 & 0 & 0 & 0 \\
0 & 0 & \tau^{-1} & 0 & 0 & 0 \\
0 & 0 & 0 & \tau^{-1} & 0 & 0 \\
0 & 0 & 0 & 0 & \tau^{-1} & 0 \\
0 & 0 & 0 & 0 & 0 & \tau^{-1}
\end{bmatrix} \quad PA = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
\tau^{-1} & 1 & 1 & 1 & 1 & 1 \\
\tau^{-1} & \tau^{-1} & 1 & 1 & 1 & 1 \\
\tau^{-1} & \tau^{-1} & \tau^{-1} & 1 & 1 & 1 \\
\tau^{-1} & \tau^{-1} & \tau^{-1} & \tau^{-1} & 1 & 1 \\
\tau^{-1} & \tau^{-1} & \tau^{-1} & \tau^{-1} & \tau^{-1} & 1
\end{bmatrix} \sim A.
\]

Since \(\tilde{A} \geq I \), and \(\tilde{A}^2 = \tilde{A} \), then \(\tilde{A}^* = \tilde{A} \), and its columns generate \(\text{INJ}_A \).

References