Group for Research in Decision Analysis

Occupation Measures and LMI Formulation of Piecewise Affine Optimal Control Design Problems

Luís Rodrigues Concordia University, Canada

This talk considers the class of deterministic continuous-time optimal control problems (OCPs) with piecewise-affine (PWA) vector field, polynomial Lagrangian and semialgebraic input and state constraints. The OCP is first relaxed as an infinite-dimensional linear program (LP) over a space of occupation measures. This LP, a particular instance of the generalized moment problem, is then approached by an asymptotically converging hierarchy of linear matrix inequality (LMI) relaxations. The relaxed dual of the original LP returns a polynomial approximation of the value function that solves the Hamilton-Jacobi-Bellman (HJB) equation of the OCP. Based on this polynomial approximation, a suboptimal policy is developed to construct a state feedback in a sample-and-hold manner. The results show that the suboptimal policy succeeds in providing a stabilizing suboptimal state feedback law that drives the system relatively close to the optimal trajectories and respects the given constraints. This is joint work with M. Rasheed Abdalmoaty (Astrium, EADS) and Didier Henrion (LAAS).