Group for Research in Decision Analysis

Symmetric tensor approximation hierarchies for the completely positive cone

Hongbo Dong University of Iowa, United States

We construct two approximation hierarchies for the completely positive cone based on symmetric tensors. We show that one hierarchy corresponds to dual cones of a known polyhedral approximation hierarchy for the copositive cone, and the other hierarchy corresponds to dual cones of a known semidefinite approximation hierarchy for the copositive cone. As an application, we consider a class of bounds on the stability number of a graph obtained from the polyhedral approximation hierarchy, and we construct a primal optimal solution with its tensor lifting for each such linear program. We also discuss several potential research directions based on this work.