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Motivation: Dimensioning a solar plant

Collector | ~ E

v

Steam cycle

Figure: A solar power plant (source) and its schematic representation (taken from [Lemyre Garneau, 2015]).
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The problem

” Objective function

Minimize  f(x)

subject to I Feasible decision space (2
xeQCR"
— Decision vector
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The problem

Minimize  f(x) = (A(x), a(x), ..., fm(x))"
subject to
xeQCR"

® fi:R" 5> RU{oo} fori=1,2,...,m, m> 2, are objective functions.

® R™ is the objective space.

3/40



The problem

Minimize  f(x) = (A(x), a(x), ..., fm(x))"
subject to
xeQCR"

® R™ is the objective space.

e O={xeX:¢g(x)<0,VjeJ}CR"

® X is the set of unrelaxable constraints.

® ¢ :R" = RU{oo} for j € J are relaxable constraints.

The f; for i =1,2,...,m and ¢ for j € J, are supposed to be blackboxes.

fi:R" > RU{oo} for i =1,2,...,m, m> 2, are objective functions.
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Derivative-free optimization and blackbox optimization

G >2 TByte

Long runtime Large memory Software
requirement might fail
No derivatives Local Non-smooth,
available optima noisy

Capyright B 2008 Bosing, Al s reserved.
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Derivative-free optimization and blackbox optimization

Definition (Taken from [Audet and Hare, 2017])

“Derivative-free optimization is the mathematical study of optimization algorithms
that do not use derivatives.”

Definition (Taken from [Audet and Hare, 2017])

“Blackbox optimization is the study of design and analysis of algorithms that
assume the objective and/or constraint functions are given by blackboxes.”
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Another application of (multiobjective) blackbox
optimization

® Tuning of hyperparameters of neural networks.

Architecture pa-

rameters: nb of E— " Loss objec-
layers, dropout, ... - tive value
. . BN
Algorithm choice aroied .4 k??g - @ e Training time
(Adam, sGD,.) | L T value
Learning rate ———» ] b -~ ),

Figure: Neural network illustration taken from https://www.nature.com/articles/d41586-024-02392-8.
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Pareto dominance

Definition (notations taken from [Audet et al., 2008])

Given two decision vectors x* and x? in Q,

o x' < x? (x! weakly dominates x?) if and only if fi(x') < fi(x?) for

i=1,2,...,m
® x!' < x? (x' dominates x*) if and only if x' < x* and at least one objective is
strictly better than another.
o x! << x* (x! strictly dominates x?) if and only if fi(x') < fi(x?) for
i=1,2,...,m.
1

o x' ~ x? (x! and x? are incomparable) if neither x* weakly dominates x> nor x>

weakly dominates x.

Remark: Definitions can be extended to objective vectors.
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Pareto dominance

f

f

Figure: An illustration of Pareto dominance for a minimization biobjective problem.
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Pareto dominance
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Figure: An illustration of Pareto dominance for a minimization biobjective problem.
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Pareto dominance
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Pareto dominance

f

INDIFFERENCE ZONE

INDIFFERENCE ZONE

f

Figure: An illustration of Pareto dominance for a minimization biobjective problem.
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Pareto front and Pareto set

Definition
x € § is said to be Pareto-optimal if there is not other vector in €2 that dominates it.
The set of Pareto-optimal solutions (decision variables) is called the Pareto set and
the image of the Pareto set is called the Pareto front.

f f

f f
(a) (b)

Figure: From left to right: (a) A non-convex Pareto front for a biobjective minimization problem. (b) A piecewise
continuous Pareto front for a biobjective minimization problem.
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Last remarks

S

“When you put it like that, it makes complete sense.”

Pros

A more precise modeling.

Cons

|'
c
~+

(Generally) harder to solve than
single-objective optimization problems.
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How ? Direct search methods

Direct search methods for single-objective optimization

® Coordinate Search (CS) [Fermi and Metropolis, 1952].

® Nelder-Mead (NM) [Nelder and Mead, 1965].

® Mesh Adaptive Direct Search (MADS) [Audet and Dennis, 2006].
® Generated Set Search (GSS) [Kolda et al., 2003].
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Coordinate search (CS) for single objective optimization

INITIAL INCUMBENT

10/40



Coordinate search (CS) for single objective optimization

E

POLL: GENERATION

10/40



Coordinate search (CS) for single objective optimization

E

POLL: EVALUATION
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Coordinate search (CS) for single objective optimization

I(;H»l

k+1

SUCCESS: UPDATE 6+t = ¢k
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Coordinate search (CS) for single objective optimization

(sk+1
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Coordinate search (CS) for single objective optimization

POLL

: EVALUATION

I&kﬁ»l
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Coordinate search (CS) for single objective optimization

I(;H»Q

k+2

SUCCESS: UPDATE §%+2 = gk*1
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Coordinate search (CS) for single objective optimization

POLL: GENERATION AND EVALUATION

I&kﬁ»Z
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Coordinate search (CS) for single objective optimization

15k+3

k+3

FAILURE: UPDATE 63 = (1/2)5%*2
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Coordinate search (CS) for single objective optimization

I6k+3

POLL: GENERATION AND EVALUATION
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Coordinate search (CS) for single objective optimization

I5k+4

k+4

SUCCESS: UPDATE §+* = §k+3

10/40



Coordinate search (CS) for single objective optimization

I6k+4

POLL: GENERATION AND EVALUATION
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Coordinate search (CS) for single objective optimization

I5k+5

k+5

SUCCESS: UPDATE §+*° = gk*4
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Coordinate search (CS) for single objective optimization

I6k+5

POLL: GENERATION AND EVALUATION
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Coordinate search (CS) for single objective optimization

¢6k+6

FAILURE: UPDATE 6+ = (1/2)6**®
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Mesh Adaptive Direct Search (MADS) for single objective
optimization [Audet and Dennis, 2006]

6k
Xk
[

THE MESH OF PARAMETER §*
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Mesh Adaptive Direct Search (MADS) for single objective
optimization [Audet and Dennis, 2006]

(5k
Xk
°

SEARCH
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Mesh Adaptive Direct Search (MADS) for single objective
optimization [Audet and Dennis, 2006]

1

P K K
A 8

)(k I

POLL: GENERATION ON THE FRAME OF PARAMETER A > 6%
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Mesh Adaptive Direct Search (MADS) for single objective
optimization [Audet and Dennis, 2006]

1
pk AF Iék
X

POLL: EVALUATION AND SUCCESS
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Mesh Adaptive Direct Search (MADS) for single objective
optimization [Audet and Dennis, 2006]
Jo-

k+1

UPDATE: A¥*1 > Ak
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Mesh Adaptive Direct Search (MADS) for single objective
optimization [Audet and Dennis, 2006]
Jo-

k+1

Ak+l

SEARCH AND POLL: FAILURE
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Mesh Adaptive Direct Search (MADS) for single objective
optimization [Audet and Dennis, 2006]

¢6k+2

k+2

UPDATE: A 2 < Ak
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Mesh Adaptive Direct Search (MADS) for single objective
optimization [Audet and Dennis, 2006]

¢6k+2

X[t g
p AK+2

SEARCH AND POLL: FAILURE
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Mesh Adaptive Direct Search (MADS) for single objective
optimization [Audet and Dennis, 2006]

= gh+3

k+3

UPDATE: A*3 < Ak+2
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Mesh Adaptive Direct Search (MADS) for single objective
optimization [Audet and Dennis, 2006]

x gk+3

N E T
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Mesh Adaptive Direct Search (MADS) for single objective
optimization [Audet and Dennis, 2006]

= gh+3

k+3

SEARCH: SUCCESS

11/40



Mesh Adaptive Direct Search (MADS) for single objective
optimization [Audet and Dennis, 2006]

okts

ket T pkera

UPDATE: A*t* > Ak+3

11/40



Main convergence results for CS and MADS

Theorem (Adapted from [Audet and Hare, 2017])

Let Q = R". Assume that f : R" — R has bounded level sets and f € C*. Then the
sequence of iterates x*crn generating by CS will converge to a point X satisfying:

Vf(%x)=0.
For clarity, we consider that Q2 = R".

Theorem ([Audet and Dennis, 2006])

Assume that all iterates lie in a compact set. Then there exists a subsequence of
iterates {x*Yxck generated by MADS converging to a point X € Q.
Assume that f is locally Lipschitz near X € 2. Then for all refining directions

deR’,
Fo(%;d) = lim sup <Y 1) = F¥)
y—X £\0 t

> 0.
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A first approach to extend direct search methods to
multiobjective optimization: scalarization-based approaches

Transform the original problem

Minimize  f(x) = (A(x), f(x), ..., fm(x))"
subject to
xeQCR”

into a succession of parameterized single-objective subproblems

Minimize  9,(x) = ¢, o f(x)
subject to
x e QCR"

Existing methods
BiMADS [Audet et al., 2008] and MultiMADS [Audet et al., 2010].
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A first approach to extend direct search methods to
multiobjective optimization: scalarization-based approaches

Example (Weighted sum formulation (very bad))

Minimize Y7 wifi(x)
subject to
x € QCR".

with w; >0 for i=1,2,..., m and Z?;lw,-zl.

f

f(Q)

fi

Figure: The weighted sum approach may generate only a subset of the Pareto front. 13 /40



A first approach to extend direct search methods to
multiobjective optimization: scalarization-based approaches

Limitations

® May waste a lot of evaluations to explore a non-interesting part of the objective
space.

® [nformation lost due to the resetting of the algorithm between each subproblem
resolution.

Figure: Deployment of the multiobjective BIMADS (on the left) and DMS (on the right) methods on the Farl benchmark
test function for a maximal budget of 4000 evaluations in the biobjective space.
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Second approach: Methods with a posteriori articulation of
preferences

Type ‘ Name ‘ Assumptions ‘ Convergence

Direct Search methods | DMS [Custédio et al., 2011] Locally lipschitz To a point/set
and variants [Dedoncker et al., 2021]

Linesearch approaches | DFMO [Liuzzi et al., 2016a] Lipschitz continuous | To a set

Implicit filtering MOIF [Cocchi et al., 2018] At least C* To a point
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DMulti-MADS [Bigeon et al., 2021]: characteristics

® |s strongly inspired by Direct MultiSearch (DMS) [Custédio et al., 2011] and
BiMADS [Audet et al., 2008].

® Does not aggregate any of the objective functions.

® Handles more than 2 objectives, contrary to BIMADS.

® Converges to a set of locally optimal Pareto points, under mild assumptions.

® |s competitive according to other state-of-the-art algorithms
(NSGAII [Deb et al., 2000], DMS, MOIF [Cocchi et al., 2018], BIMADS).
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DMulti-MADS [Bigeon et al., 2021]: ingredients

® Organized around an (optional) search and a poll.

p?

6k

k
A 3

p*

® Keep a list of non-dominated points (called an iterate
list [Custédio et al., 2011])

LK ={(,0),x e, >0,j=1,2,...,|L"}
® The selection rule. The poll center (x, A) must satisfy

wh Ak . kK j
77 Apax <A with Al = max A
J=1,2,..,|LK]

with 7 € QN (0,1) and w' € N (most of the time, 7 = %)

® Success when t < x*.
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DMulti-MADS: an illustration

f

f
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DMulti-MADS: an illustration

f

af(xh%)

e f(x0h)

. f(Xk'a)
»f(x?)

fi
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DMulti-MADS: an illustration

Corresponding frames of parameter A*J

f

o f(xk%)

. f(xk’l)

Q o f(xF3)
o f(x*?)

f
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DMulti-MADS: an illustration

Selection of the current frame center x%!, taking w* =0

f

o f(xk%)

. f(xk’l)

o f(xF3)
. f(xk’z)

f
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DMulti-MADS: an illustration

Search step

f

»f(s')
. f(xk’d)

o f(x 1)

o F(x3)
o F(x*2)

A
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DMulti-MADS: an illustration

Poll step

f

o f(s')
. f(xk’d)

o f(x 1)

o F(x3)
o F(x*2)

A
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DMulti-MADS: an illustration

Evaluation at p! fails |

e

f

o f(s?)
o F(x*4)

o f(xk1)

o (x*9)
o f(xk2)

fi
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DMulti-MADS: an illustration

f

*f(p?)
o f(s')
. f(xk’d)

o f(x"1)

o f(x<3)
. f(xk’2)

f
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DMulti-MADS: an illustration

5T

f

o f(s')
o f(x%)

o f(x"1)

*f(p?)

+f(p*)
o F(xH?)
. f(xk,Z)

f
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DMulti-MADS: an illustration

k1

p* dominates x*! : success !
f
*f(p®)
o f(s')
o (x5
5
o f(x 1)
*F(p*) *f(p*)
Q o f(xF3)
o F(x*2)

f
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DMulti-MADS: an illustration

Keep new non-dominated points: affect them A > A1

f

*f(p®)
o f(s')
. f(Xk,A)
o F(x*Y)
o f(p*) o f(p%)
Q o f(xF3)
.f(xk,Z)

f
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DMulti-MADS: Handling constraints [Bigeon et al., 2024]

® Handles relaxable constraints via the use of the constraint violation
function [Audet and Dennis, 2009]: defined as

Z max{c(x),0}> if x € X;
h(x) = q jes
+o00 otherwise.

® Use an adaptive filter-based approach [Bigeon et al., 2024].

Other direct search algorithms to handle general constraints in multiobjective
optimization exist: see for example [Silva and Custédio, 2024]
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Main convergence results

For clarity, we consider that Q = R".

Theorem ([Bigeon et al., 2021])

Assume that all iterates lie in a compact set. Then there exists at least a
subsequence of iterates {xk Ykek generated by DMulti-MADS converging to a point
% e

Assume that f is locally Lipschitz near X € Q. Then for all refining directions

d € R", there exists an index i(d) € {1,2,..., m} such that

f; td) — f;
fia)(X; d) = lim sup (@) (y + td) — fig) () >
(d) AT ,

0.
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Experiments: Constrained problems

® Use of a constrained benchmark set [Liuzzi et al., 2016b] of functions with
|P| = 214 (containing 103 problems with m = 2), n € [3,30].

® Implementation details: wt = 1, use of OrthoMads [Abramson et al., 2009]
strategy with n 4 1 directions and granular mesh [Audet et al., 2019].

® Evaluations by hypervolume-based data profiles for multiojective
optimization [Bigeon et al., 2021].
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Experiments: comparison of biobjective solvers

50 1 apFMO

4 DMulti-MADS-PB
g © NSGAii
> 40 NOMAD (BiMADS) wo models !
2 @ N0MAD (BiMADS) w models et
172} IS Laiald *
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g p—w’ .o
9 Fad 0e®® AL
% 30 \aad R A A AA
i
z, KaGs - Aaaat
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o 20 ! os®
& Rls . 4 g
£ » e
g | Lt A/
= 10 R4 e SAA gV
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T T T T T T
0 200 400 600 800 1,000

Figure: Data profiles using NOMAD (BiMADS), DFMO, DMulti-MADS-PB and NSGA-I| obtained on 103 biojective

Groups of n + 1 functions evaluations

(a) er =5 x 1072

analytical problems with 30 different runs of NSGA-II.
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Experiments: comparison of biobjective solvers
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Figure: Data profiles using NOMAD (BiMADS), DFMO, DMulti-MADS-PB and NSGA-I| obtained on 103 biojective
analytical problems with 30 different runs of NSGA-II.
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Experiments: comparison of multiobjective solvers

50

A DFMO
® NSGAii
¢ DMulti-MADS-PB

Percentage of problems solved

T T T T T
0 200 400 600 800 1,000
Groups of n + 1 functions evaluations

(a) e, =101

Figure: Data profiles using DFMO, DMulti-MADS-PB and NSGA-I| obtained on 214 multiobjective analytical problems
with 30 different runs of NSGA-II.
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Real world problems: SOLARS8 and
SOLAR9Y [Lemyre Garneau, 2015]

Characteristics

® Simulate a solar plant.

® SOLARS : Maximize absorbed energy and minimize cost; 13 variables (with 2
integers), m =2, |J| = 9.

® SOLARY : Maximize power and minimize losses; 29 variables (with 7 integers),
m=2, |J|=17.

® An evaluation ~ 19s.

® Run for a total of 5000 evaluations (~ 1 day).
® Use normalized hypervolume indicator to see the evolution of the algorithms.
® All algorithms start from an infeasible point.

® Fix integer variables.
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Real world problems: SOLARS8 and
SOLAR9Y [Lemyre Garneau, 2015]

1.0 4
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S il
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Figure: Convergence profiles for the SOLARS8 problem (fixing integer variables) using DFMO, DMulti-MADS, NOMAD
(BiMADS) and NSGA-II with 10 different runs of NSGA-II for a maximal budget of 5, 000 evaluations
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Real world problems: SOLARS8 and
SOLAR9Y [Lemyre Garneau, 2015]
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Figure: Pareto front approximations obtained at the end of the resolution of SOLARS (fixing integer variables) for DFMO,
DMulti-MADS, NOMAD (BiMADS) and an instance of NSGA-II in the objective space.
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Real world problems: SOLARS8 and
SOLAR9Y [Lemyre Garneau, 2015]
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Figure: Convergence profiles for the SOLAR9 problem (fixing integer variables) using DFMO, DMulti-MADS, NOMAD
(BiMADS) and NSGA-II with 10 different runs of NSGA-II for a maximal budget of 5, 000 evaluations
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Real world problems: SOLARS8 and
SOLAR9Y [Lemyre Garneau, 2015]
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Figure: Pareto front approximations obtained at the end of the resolution of SOLARY (fixing integer variables) for DFMO,
DMulti-MADS, NOMAD (BiMADS) and an instance of NSGA-II in the objective space.
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Extensions
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Search strategies for multiobjective direct search methods

Various search strategies have been implemented in the single-objective case

® Quadratic search [Conn and Le Digabel, 2013, Custédio et al., 2010,
Van Dyke and Asaki, 2013].

® Global search strategies [Custédio and Madeira, 2015, Talgorn et al., 2018]
® Nelder-Mead search [Audet and Tribes, 2018].

Scalarization-based approaches may be interested, if one manages to use a moderate
budget of evaluations.
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MultiMADS strategy (inspired
by [Audet et al., 2010, Audet et al., 2008])

f

o F(x*%)

o f(x*1)

o f(x*%)
o (x*?)

A

26 /40



MultiMADS strategy (inspired
by [Audet et al., 2010, Audet et al., 2008])

If x* € arg min,cpx £, (x), set : h(x) = fi(x)

f

o F(x5%)

o f(x*1)

o f(x*%)

o f(xk?)

A
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MultiMADS strategy (inspired
by [Audet et al., 2010, Audet et al., 2008])

Otherwise, set:

) = {—dist (9D) if f(x) € D,

ith f(x*) << r.
dist’(0D)  otherwise with £(x") r

.f(XkA) o
D o F(x)
o F(x53)
o f(x"?)

A
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MultiMADS strategy (inspired
by [Audet et al., 2010, Audet et al., 2008])

f

o F(x*%)

o f(x*1)

D o f(x53)
o f(x"?)

A
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DoM search strategy (inspired by [Li and Yao, 2017])

Illustration of a dominance move

f f f

e 0! e sle

2% Gee

fi fi fi

(a) (b) (c)

Figure: Representation of a dominance move for objective vector z! to dominate objective vector 22 for a biobjective
minimization problem.
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DoM search strategy (inspired by [Li and Yao, 2017])

Maximize the minimum dominance move from each point of the current solution set
to a new candidate.

f
?f(xk"‘)
.......... ° f(xkyl)
v f(t)w
Hpoamsoasancooacoos ° f(xkﬂ)
{JP90596006056050055005009509G0609A000T ° f(xk 2)

f
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DoM search strategy (inspired by [Li and Yao, 2017])

The formula
Set:

— mi 0,fi(y) —fi if there i € L such that
r;nelrg Zl max(0, fi(y) — fi(x)) if thereis no y such tha
nlloe) = fily) < fi(x), i=1,2,...,m

rynelT Zl max (0, fi(x) — fi(y)) otherwise;

with L € {Fk \ {xKY, 19\ {xF, {Xk}}.
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DoM search strategy (inspired by [Li and Yao, 2017])

f

)

o F(x 1)

o F(x53)
o F(x"2)

fi
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DoM search strategy (inspired by [Li and Yao, 2017])

f

o (x4

e f(xkh)

o f(x3)
o F(xH2)

fi
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Which single-objective subsolvers to use ?

Quadratic search strategy

1. Build local quadratic models of the constraints and the scalarization function.
2. Solve a QCQP to obtain a new candidate.

Nelder-Mead search strategy

1. Build an ordered simplex using the scalarization function.

2. Apply a succession of substeps to update the simplex and explore the decision
space: reflection - outside contraction - expansion.
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Mixed-integer multiobjective optimization: adapting the
mesh

The granular mesh [Audet et al., 2019]

® The mesh size parameter 6° and frame size parameter A¥ are vectors in R”
such that:

8k = 105 1851 and AF = aF x 10 Vi=1,2,...,n
with a¥ € {1,2,5} and bf € Z.

® Use the decrease and increase functions defined by:

5x 107! ifa=1,
decrease(a x 10°) = { 1 x 10° if a =2,
2 x 10° if a=5,

2x10°  ifa=1,
increase(a x 10°) = { 5 x 10° if a =2,
1x 10°* if a =5.
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Mixed-integer multiobjective optimization: adapting the
mesh

Successive decreases of the mesh (adapted from [Audet et al., 2019])

I(Sk 16k+1

Joe

Ak
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Mixed-integer multiobjective optimization: adapting the
mesh

Update the mesh
® In case of failure (adapted from [Audet et al., 2019]),

AR decrease(AX) if i el
' max (1,decrease(Af-‘)) if i €/”.

® Increasing the mesh is slightly more complicated and uses a combination of
increase and previous success direction [Audet et al., 2019]:

AR _ increase(A¥) under some conditions,
i = .
Ak otherwise.

® 3% € {1,2,5}" and b° € Z" are initialized using / € (R U {—00})" and
u€ (RU{+o00})".

® The mesh size parameter 6 € R” is updated using the following formula
(adapted from [Audet et al., 2019]):

e 1051 167 =5 ificle
I (1,10b/{(+17‘b?7bfk+1|) if i €/
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Mixed-integer strategy - Convergence profiles: Solar 9
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Figure: Convergence profiles for the SOLAR9 problem using DFMOINT, DMulti-MADS, NOMAD (BiMADS) and NSGA-II
with 10 different runs of NSGA-II for a maximal budget of 5,000 evaluations.
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Mixed-integer strategy - Pareto fronts plot: Solar 9
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Figure: Pareto front approximations obtained at the end of the resolution of SOLAR9 for DFMOINT, DMulti-MADS,
NOMAD (BiMADS) and an instance of NSGA-Il in the objective space.
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Impact of a Nelder-Mead search strategy: Solar 8

Figure: Convergence profiles obtained for SOLARS8 for DMulti-MADS with and without Nelder-Mead search and Nomad

3.9.1 (BiMADS).
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Impact of a Nelder-Mead

search strategy: Solar 8
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Figure: Pareto fronts obtained for SOLAR8 for DMulti-MADS with and without Nelder-Mead search and Nomad 3.9.1

(BIMADS).
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Conclusion

® Direct search algorithms are a class of flexible and robust methods to solve
blackbox multiobjective optimization problems.

® They represent an interesting alternative to classical heuristics (evolutionary
algorithms particule-swarm).

® The Nomad software proposes a state-of-the-art implementation of the MADS
and DMulti-MADS algorithm: see
https://www.gerad.ca/fr/software/nomad/.

® |f you have some information on the structure of your problem, use it !

Future research perspectives

® Solve larger problems by using parallelism / random subspace projection.

® Tackle stochastic objectives and/or constraints.
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