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1. Gradient Descent Method

Fast Optimization Algorithms 2 / 78



Gradient methods: some historical aspects

•
(
H, 〈·, ·〉, ‖ · ‖

)
real Hilbert space, f : H → R continuously

differentiable.

• min
x∈H

f (x) = f ∗ : Find x̄ ∈ argmin(f ) such that:

f (x̄) = f ∗.

• Optimality condition: solve the nonlinear equation

∇f (x) = 0.
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Gradient Descent Method (Steepest Descent Method)

 x0 ∈ H

xk+1 = xk − sk∇f (xk)

with sk > 0: the step length or the learning rate.

Attributed to Cauchy, who
first used it in 1847.

Hadamard proposed a
similar method in 1907.

First proof of convergence is
due to Haskell Curry (in
1944).

Cauchy (1789-1857) Hadamard (1865-1963)
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Haskell B. Curry (1900-1982)
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Gradient Descent Method: How to choose the step
length?

How to choose the step length sk > 0?
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Gradient flow as a continuous model

(GDM)

 x0 ∈ H

xk+1 = xk − s∇f (xk)

Question. Could we associate a continuous model to the GDM?

Let us introduce the Ansatz xk ' X (k s), k ∈ N for a smooth function
X : [0,+∞[→ H.
For t = k s, we have

X (t + s) = xk+1 = xk − s∇f (xk) = X (t)− s∇f (X (t)).

Hence,
1

s

[
X (t + s)− X (t)

]
= −sf (X (t)).

By letting the step length α→ 0, we have

(GF)

 Ẋ (t) = −∇f (X (t)), t ≥ 0

X (0) = x0 ∈ H,
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Gradient Flow

(GF)

 ẋ(t) = −∇f (x(t)), t ≥ 0

x(0) = x0 ∈ H
s→0←−−−−−−−−−−
Explicit Euler−−−−−−−−−−−−−−−→

(GDM)

 x0 ∈ H

xk+1 = xk − s∇f (xk)

discrete iteration =
continuous time

step length
, k =

t

s
.
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Convergence result of the Gradient Flow

(GF)

 ẋ(t) = −∇f (x(t)), t ≥ 0

x(0) = x0 ∈ H

Theorem

Let f : H → R be convex, continuously differentiable and bounded from
below.
Assume that S = argmin (f ) 6= ∅. f ∗ = infH f . Then

(i) f (x(t))− f ∗ ≤ d(x0,S)2

2t , t > 0.

(ii) x(t) ⇀ x∞ ∈ S weakly as t → +∞, ∇f (x∞) = 0. (Bruck (1975),
Opial’s lemma).
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Convergence result of the Gradient Flow: the convex
case

Proof. Consider the Lyapounov function
t 7→ E(t) = f (x(t))− f ∗.
We have,

E ′(t) = 〈∇f (x(t)), ẋ(t)〉 = −‖ẋ(t)‖2 ≤ 0.

Hence, the function t 7→ f (x(t)) is nonincreasing,
i.e. for every s ≤ t, we have

f (x(t)) ≤ f (x(s)). (1)

We have,

f (x(t))−f (x0) = −
∫ t

0

‖ẋ(s)‖2ds = −
∫ t

0

‖∇f (x(s))‖2ds.

Since f is bounded below, we get

∫ +∞

0

‖ẋ(s)‖2ds =

∫ +∞

0

‖∇f (x(s))‖2ds < +∞.

On the other hand, we have for every y ∈ H

1

2

d

dt
‖x(t)−y‖2 = 〈ẋ(t), x(t)−y〉 = 〈∇f (x(t)), y−x(t)〉.

Since f is convex, we obtain

1

2

d

dt
‖x(t)− y‖2 ≤ f (y)− f (x(t)).

Using (??), we have for every 0 ≤ s ≤ t

f (x(t))− f (y) ≤ f (x(s))− f (y).

Integrating this inequality, we get

t
(
f (x(t))− f (y)

)
≤
∫ t

0

(
f (x(s))− f (y)

)
ds

≤
1

2
‖x0 − y‖2 −

1

2
‖x(t)− y‖2.

≤
1

2
‖x0 − y‖2

Hence,

f (x(t))− f (y) ≤
1

2t
‖x0 − y‖2, ∀y ∈ H.

Consequently, lim
t→+∞

f (x(t)) = f ∗ and

f (x(t))− f ∗ ≤
d(x0, S)

2

2t
.
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Convergence result of the Gradient Flow: the strongly
convex case

Definition

A function f : H → R is µ-strongly convex iff f − µ
2 ‖ · ‖

2 is convex, i.e. for
every λ ∈ [0, 1] and, x , y ∈ H, we have

f
(
λx + (1− λ)y

)
≤ λf (x) + (1− λ)f (y)− λ(1− λ)µ

2
‖x − y‖2.

• For differentiable functions, this is equivalent to the µ-strong monotonicity
of the gradient∇f , i.e.

〈∇f (x)−∇f (y), x − y〉 ≥ µ‖x − y‖2, ∀x , y ∈ H.

• Another characterization is

f (y) ≥ f (x) + 〈∇f (x), y − x〉+
µ

2
‖y − x‖2.

• The parameter µ > 0 measures the curvature of f .
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Convergence result of the Gradient Flow: the strongly
convex case

Coming back to the proof of the gradient flow convergence, we have for
µ-strongly convex functions and every y ∈ H

1

2

d

dt
‖x(t)− y‖2 = 〈∇f (x(t)), y − x(t)〉 ≤ f (y)− f (x(t))− µ

2
‖x(t)− y‖2.

In this case, the set of solutions S = {x∗}. So for y = x∗, we have

d

dt
‖x(t)− x∗‖2 + µ‖x(t)− x∗‖2 ≤ 0.

Consequently,
‖x(t)− x∗‖2 ≤ e−µt‖x0 − x∗‖2.

We deduce the strong convergence of the trajectory x(t)→ x∗ as
t → +∞.
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Convergence result of the Gradient Descent Method

Let f : H → R be convex and continuously differentiable.
Assume that S = argmin (f ) 6= ∅.
∇f Lipschitz continuous with modulus L > 0, 0 < sL < 2.

Discrete dynamic: xk+1 = xk − s∇f (xk), x0 ∈ H

f (xk)− f ∗ ≤ Ldist(x0,S)2

2k
= O(

1

k
) as k → +∞.

f (xk+1)− f (xk) +
2− sL

2s
‖xk+1 − xk‖2 ≤ 0 (gradient descent

lemma).

xk ⇀ x∞ ∈ S weakly as k → +∞.
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Gradient flow: the nonconvex case

(SD) ẋ(t) +∇f (x(t)) = 0.

f : RN → R real analytic: Lojasiewicz (IHES, 1965).
Any bounded trajectory converges to a critical point of f .

Counterexample: J. Palis and W. De Melo(1982), mexican hat (a
function in R2 of class C∞).
Without geometric hypothesis on f , x(·) may not converge.

Geometry of f : tame optimization,
KL, complexity.
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 Lojasiewicz inequality and (SD)

(SD) ẋ(t) +∇f (x(t)) = 0.

Theorem ( Lojasiewicz inequality, 1963)

Let f : U ⊂ RN → R be real analytic, U be open, x̄ ∈ U be a critical
point of f .
Then, there exists θ ∈ [12 , 1[, C > 0, and a neighbourhood W of x̄ s.t.

∀x ∈W |f (x)− f (x̄)|θ ≤ C‖∇f (x)‖.

Theorem ( Lojasiewicz, 1984)

f : U ⊂ RN → R real analytic. Any bounded trajectory of (SD) has a
finite length and hence converges to a critical point of f , as t → +∞.
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2. Acceleration of Gradient-based
optimization algorithms
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How to accelerate the Gradient Descent Method?

Polyak’s momentum

Nesterov Accelerated Gradient Method (NAG).
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Polyak’s momentum

The first improvement of the Gradient Descent Method is due to
Polyak in

B. T. Polyak, Some methods of speeding up the convergence of
iteration methods. Computational mathematics and mathematical
physics (1964).

The algorithm is given by

(PM)


x0, x1 ∈ H

xk+1 = xk − s∇f (xk)︸ ︷︷ ︸
GDM

+β(xk − xk−1)︸ ︷︷ ︸
momentum

,

where s > 0 is the step length of the GDM and β > 0 is the momentum
coefficient.
The algorithm is accelerated by giving a momentum from the previous
two steps.
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Polyak’s momentum: interpretation

(PM)

 yk = xk + β(xk − xk−1)

xk+1 = yk − s∇f (xk)

Remark

Polyak’s momentum is not a descent method, i.e. f (xk+1) ≤ f (xk)
could be not satisfied.
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What is the continuous surrogate of Polyak’s
momentum?

(PM)

 x0, x1 ∈ H

xk+1 = xk − s∇f (xk) + β(xk − xk−1) (?),

Set h =
√
s and β = 1− γh with γ > 0.

We have

(?) ⇐⇒ (xk+1 − xk)− (xk − xk−1) + (1− β)(xk − xk−1) + h2∇f (xk) = 0

⇐⇒ xk+1 − 2xk + xk−1
h2

+ γ
xk − xk−1

h
+∇f (xk) = 0.

Let us introduce the Ansatz xk ' X (kh) with k = t
h . As the step size

goes to 0, we get

Ẍ (t) + γẊ (t) +∇f (X (t)) = 0, t ≥ 0.

X (0) = x0, Ẋ (0) = x1.
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The heavy ball with friction method

Fixed viscous damping coefficient γ > 0, Polyak (1964, 1987)

(HBF) ẍ(t) + γẋ(t) +∇f (x(t)) = 0, x(0) = x0, ẋ(0) = x1.

H

R

f (x(t))

x(t) x̄ x∗

M(t)

~G

~F ~R
M0

Σ = gphf

•

•

Mechanical interpretation ~G =gravity, ~F= friction, ~R= reaction
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(HBF) in the µ-strongly convex case

Strongly convex functions

f : H → R µ-strongly convex ⇐⇒ f − µ
2‖ · ‖

2 is convex.

f : H → R µ-strongly convex

ẍ(t) + 2
√
µẋ(t) +∇f (x(t)) = 0.

• f (x(t))− infH f = O
(
e−
√
µt
)

as t → +∞.

• Geometry of f ←→ Damping coefficient ←→ Convergence rate.

Theorem

If f : H → R is µ-strongly convex and of class C2, then

f (x(t))− inf
H

f ≤ Ce−
√
µt , ∀t ≥ 0,

with C = f (x0)− infH f + µdist(x0, S)2 + ‖x1‖2.
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(HBF) in the convex case

(HBF)

 ẍ(t) + γẋ(t) +∇f (x(t)) = 0,

x(0) = x0, ẋ(0) = x1.

Theorem (Alvarez (SICON, 2000))

Let f : H → R be convex and of class C 1 such that S = argmin (f ) 6= ∅.
(i) f (x(t)− infH f ≤ C(x0,x1)

t , with
C (x0, x1) = 3

2γ (f (x0)− infH f ) + γdist(x0,S)2 + 5
4γ ‖x1‖

2.

(ii) x(t) ⇀ x∞ ∈ S weakly as t → +∞.

E (t) = 1
2‖ẋ(t)‖2 + f (x(t)) the Lyapounov energy function.

E ′(t) = −γ‖ẋ(t)‖2 ≤ 0 (dissipative system).

f (x(t))− infH f = O
(
1
t

)
as t → +∞.
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HBF versus GDM

(HBF)

 yk = xk + β(xk − xk−1)

xk+1 = yk − s∇f (xk)
(GDM)

 x0 ∈ H

xk+1 = xk − s∇f (xk)
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The Heavy Ball with friction: optimal parameters

(HBF)

 x0, x1 ∈ H

xk+1 = xk − s∇f (xk) + β(xk − xk−1).

Let f be of class C2, µ-strongly convex and L-smooth. The optimal
parameters α and β are given by:

s =
4

(
√
L +
√
µ)2

and β =
[√κ− 1√

κ+ 1

]2
with κ =

L

µ
.

(HBF) is optimal for C2, µ-strongly convex, and L-smooth
functions.

Knowledge of both parameters L and µ is crucial for the analysis.

Tuning parameters s and β for smooth convex functions is unclear.

For general convex functions, (HBF) converges asymptotically at
O(1/t), not surpassing steepest descent.
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The Heavy Ball with friction: some drawbacks

Beside the oscillation problems of the (HBF), it may fail to converge
even for strongly convex functions (non C2).
The following counter-example is given in [LRP] (2015).
Take f : R→ R such that

f ′(x) =


25x if x < 1

x + 24 if 1 ≤ x < 2

25x − 24 if x ≥ 2.

The function is L-smooth and µ-strongly convex with L = 25 and
µ = 1. (HBF) produces a limit cycle with oscillations.

L. Lessard, B. Recht, A. Packard. Analysis and Design of
Optimization Algorithms via Integral Quadratic Constraints.
arXiv:1408.3595 (2015).
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Nesterov’s Accelerated Gradient Method (NAG)

In 1983, Y. Nesterov introduced an algorithm with momentum

(NAG)

 xk+1 = yk − s∇f (yk), 0 ≤ s ≤ 1
L

yk+1 = xk+1 + βk(xk+1 − xk).

with βk = k
k+3 : the momentum coefficient.

Starting with x0 and y0 = x0.

This choice of the extrapolation coefficient is intriguing. It is
considered one of the mysterious results in Optimization.

k

k + 3
' 1− 3

k
as k → +∞.
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Nesterov’s Accelerated Gradient Method (NAG)
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From O
(

1
k

)
to O

(
1
k2

)
Historical NAG α = 3

Suppose that f is convex and L-smooth, then

f (xk)− f ∗ ≤ 2Ldist(x0,S)2

(k + 1)2
= O

(
1

k2

)
.

Convergence of the iterates is an open problem.

Optimal rate among all first-order gradient based methods.

Nemirovsky-Yudin (1983), Nesterov (2004), Drori-Teboulle (2012).

Gradient-based first-order method is a black-box algorithm:(
x0, g0, . . . , xk ; kk

)
7→ xk+1 ∈ x0 + Span(g0, . . . , gk).

A. S. Nemirovsky and D. B. Yudin. Problem Complexity and
Method Efficiency in Optimization. Wiley Interseciences, 1983.
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Nesterov’s Accelerated Gradient Method (NAG)

(NAG)α

 yk = xk +
(
1− α

k

)
(xk − xk−1)

xk+1 = yk − s∇f (yk).

The gradient step is applied to yk , which is obtained by linear
extrapolation from xk and xk−1.
Note the subtle tuning of the extrapolation coefficient
0 < αk := 1− α

k < 1 which tends to one from below as k → +∞.

yk = xk +
(
1− α

k

)
(xk − xk−1)•

xk•

xk−1•

xk+1 = yk − s∇f (yk)
S
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(NAG)α

 yk = xk +
(
1− α

k

)
(xk − xk−1)

xk+1 = yk − s∇f (yk).

α = 3: Historical NAG. f (xk)− f ∗ ≤ O(1/k2) (Nesterov 1983).
The convergence of the sequence (xk) is an open question.

α > 3: xk ⇀ x∞ ∈ S (Chambolle-Dossal, 2015).
f (xk)− f ∗ = o(1/k2) (Attouch-Peypouquet, 2016).

0 < α ≤ 3: f (xk)− f ∗ = O(1/k
2α
3 ).

Apidopoulos-Aujol-Dossal, Attouch-Chbani-Riahi (2016).
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NAG for strongly convex function (NAG-SC)

f : H → R µ-strongly convex function.

(NAG− SC)

 yk+1 = xk − s∇f (xk)

xk+1 = yk+1 +
1−√µs
1+
√
µs (yk+1 − yk).

Equivalently,

xk+1 = xk−s∇f (xk)+
(1−√µs

1 +
√
µs

)
(xk−xk−1)−s

(1−√µs
1 +
√
µs

)(
∇f (xk)−∇f (xk−1

)
.

Like the heavy ball with the gradient correction term

s
(1−√µs

1 +
√
µs

)(
∇f (xk)−∇f (xk−1

)
.
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Nonsmooth convex case: Inertial Proximal Algorithm

min {f (x) : x ∈ H} , f ∈ Γ0(H), S = argminf 6= ∅.

Inertial Proximal algorithm, proxsf (y) := argmin ξ∈H{f (ξ) + 1
2s ‖y − ξ‖

2}

(IP)α

 yk = xk +
(
1− α

k

)
(xk − xk−1)

xk+1 = proxsf (yk).

yk = xk +
(
1− α

k

)
(xk − xk−1)•

xk•

xk−1•

xk+1 = proxsf (yk)
S
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The composite problem and the LASSO

min
x∈H

h(x) := f (x) + g(x),

with f convex and L-smooth and g ∈ Γ0(H).

0 ∈ ∂(f + g)(x) ⇐⇒ 0 ∈ ∇f (x) + ∂g(x)

⇐⇒ 0 ∈ s∇f (x) + s∂g(x), s > 0.

⇐⇒ x ∈ x + s∇f (x) + s∂g(x)

⇐⇒ x − s∇f (x) ∈
(

I + s∂g
)

(x).

⇐⇒ x = proxsg

(
x − s∇f (x)

)
.
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Forward-backward algorithm

(FB)

 x0 ∈ H, 0 < s ≤ 1
L

xk+1 = proxsg

(
xk − s∇f (xk)

)
• LASSO: min

x∈Rn
‖Ax − b‖22︸ ︷︷ ︸

f (x)

+λ‖x‖1︸ ︷︷ ︸
g(x)

, with A ∈ Rm×n and b ∈ Rm.

proxλ‖·‖1 =
(
Tλ(x1), . . . ,Tλ(xn)

)

∂| · |

−1

+1

Tλ = proxλ|·|

−λ +λ
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Iterative Shrinkage-Thresholding Algorithm (ISTA)

(FB)

 x0 ∈ H, 0 < s ≤ 1
L

xk+1 = proxsλ‖·‖1

(
xk − s∇f (xk)

)
h = f + λ‖ · ‖1.

h(xk+1)− h∗ ≤ L‖x0 − x∗‖2

2k
.

• Possibility of a backtracking version.
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Structured minimization: minH(f + g)

• f : H → R convex, C1, ∇f L-Lipschitz continuous; 0 < s ≤ 1
L .

• g : H → R ∪ {+∞} convex, lower semicontinuous, proper.

Inertial Proximal Gradient algorithm

(IPG)α

 yk = xk +
(
1− α

k

)
(xk − xk−1)

xk+1 = proxsg (yk − s∇f (yk))

α = 3: (f + g)(xk)−minH(f + g) = O( 1
k2 ),

Beck-Teboulle: FISTA (SIAM J. Imaging 2009).

α > 3: (f + g)(xk)−minH(f + g) = o( 1
k2 ), xk ⇀ x∞ ∈ S ,

Chambolle-Dossal (JOTA 2015), Attouch-Peypouquet (SIOPT 2016).

α ≤ 3: (f + g)(xk)−minH(f + g) = O
(

1/k
2α
3

)
.

Apidopoulos-Aujol-Dossal (Math Prog ’20), Attouch-Chbani-Riahi
(COCV ’18)
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4. Understanding the acceleration
phenomenon from the perspective of limiting

ODEs
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A continuous ODE associated to NAG

(NAG)α

 yk = xk +
(
1− α

k

)
(xk − xk−1)

xk+1 = yk − s∇f (yk).

Question: Is there any continuous (in time) ODE which is the limit of
(NAG)α by taking the step size s → 0?
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Su-Boyd-Candès model

Let us set h =
√
s. We have
xk+1 = xk +

(
1− α

k

)
(xk − xk−1)− s∇f (yk).

Hence,
xk+1−xk

h =
(
1− α

k

) xk−xk−1

h − h∇f (yk).
We introduce the Ansatz xk ' X (kh) for a smooth curve
X : [0,+∞[→ H, t 7→ X (t) with t = kh = k

√
s.

xk+1 − xk
h

= Ẋ (t) +
h

2
Ẍ (t) + o(h).

xk − xk−1
h

= Ẋ (t)− h

2
Ẍ (t) + o(h).

h∇f (yk) = h∇f (X (t)) + o(h).

By identification with the coefficients of h, we get

Ẍ (t) +
α

t
Ẋ (t) +∇f (X (t)) = 0.

Inertial dynamic with an asymptotic vanishing damping.

lim
s→0

max
0≤k≤ T

h

‖X (kh)− xk‖ = 0.
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Su-Boyd-Candès model for NAG

Asymptotic Vanishing Damping

(AVD)α ẍ(t) +
α

t
ẋ(t) +∇f (x(t)) = 0.

α ≥ 3: Su-Boyd-Candès (NIPS 2014), link with Nesterov

f (x(t))− f ∗ = O
(

1

t2

)
as t → +∞.

α > 3: Attouch-Chbani-Peypouquet-Redont (Math. Prog. 2018)

f (x(t))− f ∗ = o

(
1

t2

)
, x(t) ⇀ x∞ ∈ S as t → +∞.

α ≤ 3: Apidopoulos-Aujol-Dossal (SIOPT 2018),

Attouch-Chbani-Riahi (ESAIM COCV 2019)

f (x(t))− f ∗ = O
(

1

t
2α
3

)
as t → +∞.
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Low versus high resolution ODE of NAG

Remark

Gradient-based optimization algorithms can be studied from the
perspective of limiting ODEs.

Existing ODEs do not distinguish between two different
algorithms: Nesterov’s accelerated gradient method for strongly
convex functions and Polyak’s heavy-ball method.

SDJS introduced a limiting process that uses high-resolution
ODEs: take the step size s small but non-vanishing.

High resolution ODEs are more accurate than low resolution ODE.

B. Shi, S. S. Du, M. I. Jordan, W. J. Su, Understanding the
acceleration phenomenon via high-resolution differential equations,
Math. Program., 2021.
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Low versus high-resolution ODE for NAG-SC and HBF

(HBF) xk+1 = xk−s∇f (xk)+β(xk−xk−1).
(NAG-SC) xk+1 =xk − s∇f (xk ) +

(1−√µs
1 +
√
µs

)
(xk − xk−1)

− s
(1−√µs
1 +
√
µs

)(
∇f (xk)−∇f (xk−1

)
.

The low resolution ODE for (HBF) and (NAG-SC) is

ẍ(t) + 2
√
µẋ(t) +∇f (x(t)) = 0.

The high-resolution ODE for the (HBF) is

ẍ(t) + 2
√
µẋ(t) + (1 +

√
µs)∇f (x(t)) = 0.

The high-resolution ODE for the (NAG-SC) is

ẍ(t) + 2
√
µẋ(t) +

√
s∇2f (x(t))ẋ(t) + (1 +

√
µs)∇f (x(t)) = 0.

The high-resolution ODE for the (NAG-C), convex case, is

ẍ(t) + α
t ẋ(t) +

√
s∇2f (x(t))ẋ(t) + (1 + α

√
s

2t )∇f (x(t)) = 0.
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5. The Ravine method: a little known
method.
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Ravine method. Link with Nesterov method
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Ravine method. Link with Nesterov method

In Nesterov accelerated gradient, (yk) follows the Ravine method.

(NAG)α

 yk = xk +
(
1− α

k

)
(xk − xk−1)

xk+1 = yk − s∇f (yk)

yk+1 = xk+1 +
(

1− α
k+1

)
(xk+1 − xk)

= yk − s∇f (yk) +
(

1− α
k+1

)(
yk − s∇f (yk)− (yk−1 − s∇f (yk−1))

)
.

(Ravine)α

 wk := yk − s∇f (yk)

yk+1 = wk +
(

1− α
k+1

)
(wk − wk−1) .

• (NAG)α extrapolation step + gradient step.
• (Ravine)α gradient step + extrapolation step.
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Geometric view of the Ravine method

Gelfand, Tsetlin (1961), Nesterov (1983), Polyak (2018).

S

yk−1

yk

wk = yk − s∇f (yk)

wk−1 = yk−1 − s∇f (yk−1)

yk+1
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Interpretation of the Ravine method
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Link with the Nesterov method

Conversely, if (yk) follows the Ravine method, i.e.

(Ravine)α

 wk := yk − s∇f (yk)

yk+1 = wk +
(

1− α
k+1

)
(wk − wk−1) .

then, (xk) defined by xk+1 = yk − s∇f (yk) follows (NAG)α:

yk+1 = yk − s∇f (yk) +
(

1− α
k+1

)(
yk − s∇f (yk)− (yk−1 − s∇f (yk−1))

)
= xk+1 +

(
1− α

k+1

)
(xk+1 − xk) .

(NAG)α

 yk = xk +
(
1− α

k

)
(xk − xk−1)

xk+1 = yk − s∇f (yk).
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Low resolution ODE of the Ravine method

Equivalent forms of Ravine

yk+1 = yk − s∇f (yk) +
(

1− α
k+1

)(
yk − s∇f (yk)− (yk−1 − s∇f (yk−1))

)
yk+1 = yk +

(
1− α

k+1

)
(yk−yk−1)−s∇f (yk)−s

(
1− α

k+1

)(
∇f (yk)−∇f (yk−1)

)
(yk+1 − yk)− (yk − yk−1)

h2
+

α

kh + h

yk − yk−1
h

+∇f (yk)

+(1− α
k+1 )(∇f (yk)−∇f (yk−1)) = 0.

Ansatz yk ≈ Y (kh)

Set k = t/h. As h→ 0, Y (t) ≈ yt/h = yk , Y (t + h) ≈ y(t+h)/h = yk+1. Taylor
expansion of Y (t) at t gives

Ÿ (t) + α
t Ẏ (t) +∇f (Y (t)) + o(1) = 0.

Letting h→ 0 gives that Y (·) is a solution trajectory of (AVD)α

Ÿ (t) + α
t Ẏ (t) +∇f (Y (t)) = 0.
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Theorem

The super-resolution ODE with temporal step-size
√
s of (RAG) gives

the inertial dynamic with Hessian driven damping

Ÿ (t) +
α

t
Ẏ (t) +

√
s∇2f (Y (t))Ẏ (t) +

(
1 +

α
√
s

2t

)
∇f (Y (t))

+
s

2

(
1

6
Y (4)(t) +

α

3t

...
Y (t)−

α

t
∇2f (Y (t))Ẏ (t)−∇2f (Y (t))Ÿ (t)−∇3f (Y (t))

(
Ẏ (t), Ẏ (t)

))
= 0.

When neglecting the terms of order higher or equal to 2, we recover the
high-resolution ODE of (RAG) of order 1

Ÿ (t) +
α

t
Ẏ (t) +

√
s∇2f (Y (t))Ẏ (t) +

(
1 +

α
√
s

2t

)
∇f (Y (t)) = 0.

S. Adly, H. Attouch and J. M. Fadili. Comparative Analysis of Accelerated

Gradient Algorithms for Convex Optimization: High and Super Resolution

ODE Approach. HAL CNRS (2023).
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Theorem

The super-resolution ODE with temporal step-size
√
s of (NAG) gives

the inertial dynamic with Hessian driven damping

Ẍ (t) +
α

t
Ẋ (t) +

√
s∇2f (X (t))Ẋ (t) +

(
1 +

α
√
s

2t

)
∇f (X (t))

+
s

2

( 1

6
X (4)(t) +

α

3t

...
X (t)−

α

t
∇2f (X (t))Ẋ (t)−∇2f (X (t))Ẍ (t) +∇3f (X (t))

(
Ẋ (t), Ẋ (t)

))
= 0.

When neglecting the terms of order higher or equal to 2, we recover the
high-resolution ODE of (NAG) of order 1

Ẍ (t) +
α

t
Ẋ (t) +

√
s∇2f (X (t))Ẋ (t) +

(
1 +

α
√
s

2t

)
∇f (X (t)) = 0.

S. Adly, H. Attouch and J. M. Fadili. Comparative Analysis of Accelerated

Gradient Algorithms for Convex Optimization: High and Super Resolution

ODE Approach. HAL CNRS (2023).
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Figure: Trajectories of the super-resolution of order h2 of NAG and RAG with
s = 0.1 for different initial conditions.
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5. On the limit form of the Su-Boyd-Candès
dynamic version of Nesterov’s accelerated

gradient method when the viscous parameter
becomes large

Based on a paper by S.A. and H. Attouch, (2023).
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Analysis of Su-Boyd-Candès Dynamics for Large α

Asymptotic Vanishing Damping (AVD)

ẍ(t) +
α

t
ẋ(t) +∇f (x(t)) = 0.

A natural approach is to consider the limit as α→ +∞ in the
dynamic (AVD).

However, this approach, as shown below, provides limited insights
into the asymptotic behavior of trajectories when α is large.

Instead, we need to employ a more sophisticated analysis, as
indicated by the following result obtained from an elementary
energy analysis.
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Analysis of the Su-Boyd-Candès dynamic for large α

Proposition

Take x0 ∈ H and x1 ∈ H. For each α ≥ 3, let xα : [t0,+∞[→ H be the
solution trajectory of the Cauchy problem ẍα(t) + α

t ẋα(t) +∇f (xα(t)) = 0

xα(t0) = x0, ẋα(t0) = x1
Then,

For each t ≥ t0, xα(t)→ x0 strongly in H as α→ +∞.
For each T finite, T > t0, we have

supt∈[t0,T ] ‖xα(t)− x0‖ ≤ MT
α−1 ,

where MT = t0‖x1‖+ T 2
(
‖∇f (x0)‖+ LrT

(
2(f (x0)− f ∗) + ‖x1‖2

) 1
2

)
,

and Lr is equal to the Lipschitz constant of ∇f on the ball centered at the
origin and of radius

r = ‖x0‖+ T
(
2(f (x0)− f ∗) + ‖x1‖2

) 1
2 .
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The time rescaling approach

 ẍα(t) + α
t ẋα(t) +∇f (xα(t)) = 0

xα(t0) = x0, ẋα(t0) = x1

We set yα(s) = xα
(√

2(α + 1)s
)

, which satisfies the differential

equation 
2s
α+1 ÿα(s) + ẏα(s) +∇f (yα(s)) = 0

yα
(

t20
2(α+1)

)
= x0, ẏα

(
t20

2(α+1)

)
= α+1

t0
x1
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The time rescaling approach

Theorem

Take x0 ∈ H, x1 ∈ H. For each α > 0, let xα : [t0,+∞[→ H be the solution
trajectory of

(AVD)α ẍα(t) +
α

t
ẋα(t) +∇f (xα(t)) = 0,

which satisfies the Cauchy data xα(t0) = x0 and ẋα(t0) = x1. Consider the

sequence of rescaled trajectories (yα), yα : [
t20

2(α+1) ,+∞[→ H defined by

yα(s) = xα
(√

2(α + 1)s
)
.

Then, the following results are satisfied.

(i) For each α > 0, yα satisfies the differential equation

2s

α + 1
ÿα(s) + ẏα(s) +∇f (yα(s)) = 0, (2)

with the Cauchy data yα
(

t20
2(α+1)

)
= x0 and ẏα

(
t20

2(α+1)

)
= α+1

t0
x1.
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The time rescaling approach

(ii) Suppose now that H is a finite dimensional Hilbert space. Let us extend
the function yα to [0,+∞[ by setting

ỹα = yα on [
t20

2(α + 1)
,+∞[, ỹα ≡ x0 on [0,

t20
2(α + 1)

].

When α tends to +∞, the sequence (ỹα) converges uniformly on the bounded
sets of [0,+∞[ to the solution of the following continuous steepest descent

ẏ(s) +∇f (y(s)) = 0, (3)

that satisfies y (0) = x0.

The convexity of f is not required.

The Cauchy data on the velocity ẏα
(

t20
2(α+1)

)
= α+1

t0
x1 explodes as

α→ +∞. This induces singular perturbation phenomenon.
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Time rescaling approach: the convex case

Theorem

Suppose that H is a general real Hilbert space, and that f : H → R is a
convex differentiable function.
Then, as α→ +∞, the sequence of rescaled functions (ỹα) converges
uniformly to y on the bounded intervals of [0,+∞[, where y is the
solution of the continuous steepest descent

ẏ(s) +∇f (y(s)) = 0,

that satisfies y (0) = x0. Precisely, for each T > 0, there exists a
constant CT such that

sup
s∈[0,T ]

‖ỹα(s)− y(s)‖ ≤ CT√
α + 1

.

Open question. In the convex case, is the uniform convergence
property valid on [0,+∞[?
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Time rescaling approach: the convex case

Consider f (x1, x2) = λ1x
2
1 + λ2x

2
2 with λ1 = 0.02 and λ2 = 0.005 with

the initial condition x0 = (2, 2) and x1 = (1, 1). Note that f is of the
form f (x) = 〈x ,Ax〉 with A = diag([λ1, λ2]).
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Figure: Illustration on a quadratic convex function.
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Illustration on a nonconvex function: exploration of
local minima of f .
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6. Perspective, open questions
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Some open questions

Comparaison de IGAHD, RAV et NAG (papier
Adly-Attouch-Fadili)

High-resolution ODE

Large α Adly-Attouch.

Doubly nonlinear.
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Some open questions

 yk = xk +
(
1− α

k

)
(xk − xk−1)

xk+1 = yk − s∇f (yk)

Convergence of NAG’s iterates in the critical case α = 3 (except in 1D).

How to tune efficiently the vanishing damping coefficient α > 3?

Extension to nonconvex case: KL theory only works in a finite
dimensional framework and for autonomous systems. This is why it
cannot be applied directly to (AVD)α which is a non-autonomous system.

We have already mentioned that when f is strongly convex, the

convergence rate of values is O
(

1/t
2α
3

)
, and becomes therefore

arbitrarily fast (in the scale of powers of 1/t) with α large. To exploit
this result in the case of a general convex differentiable function
f : H → R, a natural idea is to use Tikhonov’s regularization method.
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Thank you very much for your
attention
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H. Attouch, R.I. Boţ, E.R. Csetnek, Fast optimization via inertial
dynamics with closed-loop damping, Journal of the European Mathematical
Society (JEMS), 2021, hal-02910307.

Fast Optimization Algorithms 71 / 78



References

H. Attouch, A. Cabot, Asymptotic stabilization of inertial gradient dynamics
with time-dependent viscosity, J. Differential Equations, 263 (9), (2017), pp.
5412–5458.

H. Attouch, A. Cabot, Convergence of a relaxed inertial proximal algorithm
for maximally monotone operators, Mathematical Programming, 184 (2020),
pp. 243–287.

H. Attouch, A. Cabot, Convergence of a relaxed inertial forward-backward
algorithm for structured monotone inclusions, Applied Mathematics and
Optimization, special issue on Games, Dynamics and Optimization, 80 (3)
(2019), pp. 547-598.

H. Attouch, A. Cabot, Z. Chbani, H. Riahi, Accelerated forward-backward
algorithms with perturbations. Application to Tikhonov regularization, JOTA,
179 (2018), No.1, pp. 1-36 .

H. Attouch, Z. Chbani, J. Fadili, H. Riahi, First order optimization
algorithms via inertial systems with Hessian driven damping, Math. Program.
(2020).

Fast Optimization Algorithms 72 / 78



References

H. Attouch, Z. Chbani, J. Peypouquet, P. Redont, Fast convergence of
inertial dynamics and algorithms with asymptotic vanishing viscosity, Math.
Program. Ser. B, 168 (2018), pp. 123–175.

H. Attouch, Z. Chbani, H. Riahi, Rate of convergence of the Nesterov
accelerated gradient method in the subcritical case α ≤ 3. ESAIM COCV, 25
(2019), DOI:10.1051/cocv/2017083.

H. Attouch, Z. Chbani, H. Riahi, Fast proximal methods via time scaling of
damped inertial dynamics, SIAM J. Optim., 29 (3) (2019), pp. 2227–2256.

H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator
Theory in Hilbert spaces, CMS Books in Mathematics, Springer, (2011).

A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for
linear inverse problems, SIAM J. Imaging Sci., 2 (2009), No. 1, pp. 183–202.

Fast Optimization Algorithms 73 / 78



References

P. Bégout, J. Bolte, M. A. Jendoubi, On damped second-order gradient

systems, Journal of Differential Equations, vol. 259, nÂ° 7-8, 2015, pp.
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