
Les Cahiers du GERAD ISSN: 0711–2440

A lifted-space dynamic programming al-
gorithm for the Quadratic Knapsack
Problem

F. Djeumou Fomeni

G–2021–27

May 2021

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée : F. Djeumou Fomeni (Mai 2021). A lifted-space
dynamic programming algorithm for the Quadratic Knapsack
Problem, Rapport technique, Les Cahiers du GERAD G–2021–27,
GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2021-27) afin de mettre à
jour vos données de référence, s’il a été publié dans une revue sci-
entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: F. Djeumou Fomeni (May 2021). A lifted-space
dynamic programming algorithm for the Quadratic Knapsack
Problem, Technical report, Les Cahiers du GERAD G–2021–27,
GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2021-27) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec à Montréal, ainsi que du Fonds de
recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2021
– Bibliothèque et Archives Canada, 2021

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec à Montréal, as well as the Fonds de
recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2021
– Library and Archives Canada, 2021

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2021-27
https://www.gerad.ca/en/papers/G-2021-27
https://www.gerad.ca/en/papers/G-2021-27

A lifted-space dynamic programming algorithm for the
Quadratic Knapsack Problem

Franklin Djeumou Fomeni a

a CIRRELT & Department of Analytics, Operations
and Information Technologies (AOTI), UQAM,
Montréal (Québec), Canada, H2X 3X2

djeumou fomeni.franklin@uqam.ca

May 2021
Les Cahiers du GERAD
G–2021–27
Copyright © 2021 GERAD, Djeumou Fomeni

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:

• Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

Les Cahiers du GERAD G–2021–27 ii

Abstract : The Quadratic Knapsack Problem (QKP) is a well-known combinatorial optimization
problem which amounts to maximizing a quadratic function of binary variables, subject to a single
linear constraint. It has many applications in finance, logistics, telecommunications, facility location,
etc. The QKP is NP-hard in the strong sense and the state-of-the-art algorithm for solving the QKP
can only handle problems of small and moderate sizes. In this paper, we present a novel heuristic
algorithm for finding good QKP feasible solutions. This algorithm consists of combining the dynamic
programming approach with a local search procedure, with the novelty that both are adapted and
implemented in the space of lifted variables of the QKP. The algorithm runs in O(n3c) times and is
able to find optimal solutions to more than 97% of standard instances, about 80% of some well-known
hard QKP instances, as well as optimality gaps of 0.1% or less for other instances.

Keywords: Knapsack problems, integer programming, dynamic programming, local search, binary
quadratic optimization

Acknowledgements: We gratefully acknowledge the financial support provided by the Natural Sci-
ences and Engineering Council of Canada (NSERC), through its Discovery Grant program. We also
gratefully acknowledge the support of the Université du Québec À Montréal through their PARFARC
program. Thanks are also due to Calcul Quebec and Compute Canada for providing the author with
access to their high-performance computing infrastructure.

Les Cahiers du GERAD G–2021–27 1

1 Introduction

The Quadratic Knapsack Problem (QKP) is a much-studied combinatorial optimization problem which

amounts to maximizing a quadratic function of binary variables subject to a single knapsack constraint.

Given a set of items (with their respective weight and profit measurements) and a knapsack with a

limited capacity, the QKP aims at selecting a subset of the items so as to maximize the total profit of

the items included in the knapsack. In this case, each item included in the knapsack has an individual

profit, while there is additional profit for each pair of items selected too.

Mathematically, the problem can be stated as follows:

max
n∑

i=1

n∑
j=1

qijxixj (1)

s.t.
n∑

i=1

wixi ≤ c (2)

x ∈ {0, 1}n, (3)

here, n is the number of items, c is the (positive and integral) capacity of the knapsack, the wi are

the (positive and integral) weights of the items, and the qij are the (non-negative and integral) profits.

For i = 1, . . . , n, the binary variable xi takes the value 1 if and only if the ith item is inserted into

the knapsack. Thus for the QKP, not only there is a profit for selecting individual items, but there is

also an additional profit for selecting pairs of items, which is reflected in the quadratic term xixj . The

QKP is a generalization of the standard linear knapsack problem (KP). Indeed, we have x2i = xi for

all i and if we set qij = 0 for all i 6= j, the QKP will simply become a KP.

The QKP was first introduced in 1980 by Gallo et al. [15] and has since then attracted a significant

amount of attention from researchers in the combinatorial optimization community. It has a wide

range of important applications, for example in the location of satellites, airports, railway stations

or freight terminals. Unlike the KP that can be solved in pseudo-linear time [3, 19] using dynamic

programming (DP), the QKP is known to be NP-hard in the strong sense (see, e.g., [9]), which makes

it unlikely that a pseudo-polynomial time algorithm exists. In fact, there is evidence that, even in the

special case in which wi = 1 for all i, one cannot even approximate the optimal profit within a constant

factor in polynomial time (e.g., Khot [22]). Even for this special case, the best approximation factor

obtained to date is O(n1/4) (Bhaskara et al. [5]).

Existing exact solution methods for the QKP [7, 8, 9, 12] are limited either by the size of the

problems that can be solved, or by the amount of time needed to solve these instances. On the other

hand, several heuristic and metaheuristic algorithms have been developed for the QKP and have all

reported the abilities of producing good quality solutions within a short amount of computational time.

These reported results are all based on standard QKP instances that are usually generated following

the scheme initially proposed by Gallo et al. [15]. However, in a recent study of the asymptotic

behavior of the QKP, Schauer [30] showed that such standard instances may sometimes be relatively

easy for modern heuristic algorithms. Additionally, they presented a set of problem instances that can

be formulated as QKP and which proved to be very challenging to many existing state-of-the-art QKP

heuristic algorithms.

The main contribution in this paper is that we develop a novel deterministic heuristic algorithm for

the QKP. This algorithm is based on adapting and implementing the dynamic programming approach

in the space of quadratic variables, which can also be referred to as the space of lifted variables.

The algorithm is pseudo-polynomial as it runs in O(n3c) times, and uses O(nc) of memory space.

The advantage of moving up in the space of lifted variables is that one can, more efficiently, capture

some of the quadratic attributes of the problem, such as the profit contribution of pairs of items,

and obtain much better quality solutions than with the existing heuristic solutions. Furthermore, we

have also developed a modified version of the ‘fill-up-and-exchange’ local search procedure in order to

improve the DP solutions. This procedure is also designed to operate in the space of lifted variables

for much better solutions. We have conducted a thorough computational experiment with a total of

Les Cahiers du GERAD G–2021–27 2

1480 QKP instances, including both standard and challenging QKP instances. The results show that

our algorithm can find optimal solutions to more than 97% of the standard QKP instances. It can

also find optimal solution to more than 80% of the challenging QKP instances, and for the instances

for which optimality cannot be found, the algorithm produces feasible solutions that are within 0.1%

(on average) of optimality.

The novelty in our proposed algorithm is the fact that it considers known algorithms such as the DP

and the ‘fill-up-and-exchange’ local search procedure and lifts them in the space of quadratic variables

to yield exceptional results, especially for some challenging QKP instances.

The remainder of the paper is as follows. In Section 2, we review the relevant literature on the

KP, as well as the existing heuristic and exact solution algorithms for the QKP. In Section 3, our

new heuristic is presented along with a complexity analysis, which shows how the algorithm can run

in O(n3c) times and use O(n3c) of memory space. A reduced-memory version that will only require

O(nc) of memory space is then presented in Section 4 along with our local search procedure to improve

the Lifted DP solutions. The results of our computational experiments are presented and analyzed in

Section 5. Finally, some concluding remarks are made in Section 6.

2 Literature review

Since the literature on knapsack problems is vast, we do not attempt to cover it all here. Instead, we

refer the reader to the books [20, 23] and the survey [24]. Nevertheless, there are certain key concepts

from the literature which are vital to what follows and are therefore covered in the following four

subsections.

2.1 The classical dynamic programming approach to the KP

In this section, we present an implementation of the classical DP approach to the KP. For any k ∈
{1, . . . , n} and r ∈ {0, . . . , c}, let f(k, r) be the maximum profit obtainable by packing a selection of

the first k items whose total weight is equal to r. That corresponds to:

f(k, r) = max

{
k∑

i=1

pixi :

k∑
i=1

wixi = r, xi ∈ {0, 1} (i = 1, . . . , k)

}
,

where pi = qii.

If no such packing exists, then let f(k, r) = −∞, and by convention, let f(0, 0) = 0. Now, observe

that:

f(k, r) =

{
max {f(k − 1, r), f(k − 1, r − wk) + pk} if r ≥ wk,

f(k − 1, r) otherwise.
(4)

This is a classic dynamic programming recursive function, which indicates that the KP obeys the

so-called Bellman [4] ‘principle of optimality’. One can then compute the f(k, r) using Algorithm 1.

This algorithm clearly runs in O(nc) time, but it only outputs the optimal profit and one then

needs to ‘trace back’ the path from the optimal state to the initial state f(0, 0). The time taken to do

this is negligible.

2.2 The DP heuristic approach to the QKP

In 2014, Djeumou-Fomeni and Letchford [13] showed that the adaptation of the above classical DP

cannot result into an exact solution method for the QKP (except for some problems that are interme-

diate in generality between the KP and the QKP, e.g., [21, 29]). This is because there is no analogue

of the Bellman’s principle of optimality in the case of the QKP. They then went on to show, however,

that is possible to use the idea of the DP to yield a heuristic algorithm for the QKP. This idea requires

to redefine f(k, r) as the profit of the best packing found by the heuristic that uses a selection of the

Les Cahiers du GERAD G–2021–27 3

Algorithm 1 : The classical DP algorithm

Initialise f(0, 0) to 0 and f(k, r) = −∞ for all other k, r.
for k = 1, . . . , n do

for r = 0, . . . , c do
if f(k − 1, r) > f(k, r) then

Set f(k, r) := f(k − 1, r).
end if
if r + wk ≤ c and f(k − 1, r) + pk > f(k, r + wk) then

Set f(k, r + wk) := f(k − 1, r) + pk.
end if

end for
end for
Output max0≤r≤c f(n, r).

first k items and whose total weight is equal to r. The use of ‘best packing’ enforces that one has to

define a set S(k, r) as the set of items (viewed as a subset of {1, . . . , k}) to keep track of this best

packing. Their proposed heuristic then performs as described in Algorithm 2 below.

Algorithm 2 :Dynamic programming for the QKP

Initialise f(0, 0) to 0, and f(k, r) to −∞ for all other k, r.
Initialise S(k, r) = ∅ for all k, r.
for k = 1, . . . , n do

for r = 0, . . . , c do
if f(k − 1, r) > f(k, r) then

Set f(k, r) := f(k − 1, r) and S(k, r) := S(k − 1, r).
end if
if r + wk ≤ c then

Let β be the profit of S(k − 1, r) ∪ {k}.
if β > f(k, r + wk) then

Set f(k, r + wk) := β,
Set S(k, r + wk) := S(k − 1, r) ∪ {k}.

end if
end if

end for
end for
Let r∗ = arg max0≤r≤c f(n, r).
Output the set S(n, r∗) and the associated profit f(n, r∗).

This algorithm runs inO(n2c) time and usesO(n2c) of memory in order to store the set S(k, r). This

memory requirement can be reduced to O(nc), see [13] for details. The algorithm is then strengthened

using some sorting of the items at the beginning, some tie-breaking rules (when β is calculated) and a

‘fill-and-exchange’ local search at the end to yield a great deterministic heuristic algorithm for the QKP.

2.3 Other existing heuristics for the QKP

Prior to the DP heuristic of Djeumou-Fomeni and Letchford [13], several primal heuristic algorithms

have been devised for the QKP, but mainly for the purpose of obtaining a rapid feasible solution that

could be used in exact solution methods. In these lines, Gallo et al. [15] used the idea of upper planes

to find an upper bound to the profit contribution of each item and then solved a linear knapsack

problem, wherein the profit of each item is its corresponding upper plane. The solution of such

a knapsack problem is clearly a feasible solution for the QKP. They were also the first to propose
the idea of the local search procedure called ‘fill-up-and-exchange’ to the context of the QKP. This

procedure consists of either adding one item to the knapsack, or exchanging one item in the knapsack

Les Cahiers du GERAD G–2021–27 4

for one item outside. Chaillou et al. [10] presented a greedy heuristic, which starts by sorting all the

items in the non-decreasing order of their ‘loss-to-weight’ ratio δi/wi, where δi represents the decrease

in the profit that would be incurred if item i were removed, then placing all the items in the knapsack,

and finally removing them iteratively (following the ordering initially established) until feasibility is

achieved. Elsewhere, Billionet & Calmels [6] presented a hybrid method, in which the method of

Chaillou et al. [10] is used to form an initial solution, and then the fill-up-and-exchange procedure

of Gallo et al. [15] is used to improve that solution. Some other more complex heuristics have been

proposed, based for example on Lagrangian relaxation [9] and tabu search [16]. For details, we refer

the reader to [24].

In the more recent literature of the QKP, approximation algorithms have been proposed in [26, 31,

32]. On the other hand, recent metaheuristic algorithms have been presented for the QKP. Chen and

Hao [11] proposes an iterated “hyperplane exploration” approach, which adopts the idea of searching

over a set of hyperplanes defined by a cardinality constraint to delimit the search to promising areas

of the solution space. This method also combines Tabu Search to locate high quality solutions within

the reduced solution space. Patvardhan et al. [27] also proposed a parallel improved quantum inspired

evolutionary algorithm for the QKP. We refer interested readers to these two references of other existing

meta-heuristics for the QKP. Primal heuristic solutions that are obtained by rounding the fractional

solution of a continuous relaxation have been used in [12, 14].

It should be noted that most of these existing heuristic algorithms have reported results solely

based on standard QKP instances that are usually generated following the scheme initially proposed

by Gallo et al. [15]. However, in a recent research, Schauer [30] showed that such standard instances

may sometimes be relatively easy for modern heuristic algorithms. A set of problem instances that

can be formulated as QKP is then presented in their work and shown to be very challenging to many

existing QKP heuristic algorithms. In this paper, our computational results show that the proposed

lifted DP algorithm can perform admirably well on a large proportion of the hard instances presented

by Schauer [30].

2.4 Exact solution methods for the QKP

Over the past few decades, several solution algorithms have been developed for the QKP. We refer

interested reader to the surveys by Kellerer et al. [20] and by Pisinger [24] for a good review of some of

these approaches. One of the most effective exact algorithms for the QKP is that of Caprara et al. [9],

which is based on Lagrangian relaxation, subgradient optimization, and branch-and-bound. It can

quickly solve instances with up to 400 items when the profit matrix is fully dense, and instances

with up to 200 items for low density profit matrix. This algorithm was made even more effective by

Pisinger et al. [25], using several powerful reduction techniques. There are also some algorithms by

Billionnet and Soutif [7, 8] that are based on integer programming linearization and on Lagrangian

relaxation. These algorithms produce the opposite effect of Caprara’s algorithm in the sense that

they perform well for low density QKP instances and have less interesting results on high density

QKP instances. More recently, Djeumou-Fomeni et al. [12] proposed a cut-and-branch algorithm with

reported results for instances with up to 800 items regardless of the density of the problem. It is clear

that these exact algorithms are all limited by either the size of the problems that can be solved, or the

amount of time needed to solve these instances.

3 Lifted DP heuristic for the QKP

If we were to adapt the classical dynamic programming algorithm (see Algorithm 1) to the QKP, we

could define f(k, r) in a natural way, as:

max


k∑

i=1

k∑
j=1

qijxixj :

k∑
i=1

wixi = r, xi ∈ {0, 1} (i = 1, . . . , k)

 .

It has been shown in [13] that, using this definition, there is no analogue of the recursive Equation (4).

Les Cahiers du GERAD G–2021–27 5

The main contribution of this paper is to device a heuristic algorithm based on the idea of the DP,

but which will operate in the space of the lifted variables to yield an efficient heuristic solution for the

QKP. In order to do this, we consider the complete graph G = (N , E), where N = {1, . . . , n} is the

set of nodes and corresponds to the set of items in the original problem (1)–(3), and E is the set of

edges which represents any pair of chosen items. Notes that E = {e = (i, j) : ∀i, j ∈ N , i < j}. The

objective function (1) can be written as

n∑
i=1

qiixi + 2
∑
e∈E

qijye,

where ye = xixj for e = (i, j). The new variables ye are the lifted space variables, which will be used

in the proposed Lifted DP algorithm. It should be noted that lifted space variables are often used for

the linearization of quadratic 0–1 optimization problem, see for example [17, 18, 28, 29, 33]. But, to

the best of our knowledge, it has not been used previously in the context of DP algorithm. The use of

these variables allows us to capture both the contribution of the items and that of the pairs of items

within the DP algorithm.

Since the Bellman’s principle of optimality cannot hold for the QKP (see [13]), it will be helpful

to re-define f(k, r) as the profit of the best packing found by the heuristic that uses a selection of the

first k items and whose total weight is equal to r. It is also helpful to define S(k, r) as the set of

items (viewed as a subset of {1, . . . , k}) that gives the profit f(k, r). Note that these are the same

definitions used in [13]. However, in this paper, we will extend the index k to also cover the first k

pairs of items (edges). Thus, we will analogously define f(e, r) and S(e, r) when we consider the pairs

of items represented by the edges of our complete graph.

The implementation of the DP algorithm with both the linear space variables (the items) and the

lifted space variables (the pairs of items) requires to consider the profit and the weight contributions

of both at each iteration. As far as an item k is concerned, its profit contributions can be calculated

as qk + 2
∑

i∈S(k−1,r−wk)

qik, with its weight contribution simply being wk. However, when it comes to

the edges, one has to be careful, since one or both the items forming the edge might have already been

included into the knapsack. Thus, for a given edge e = (i, j), its weight and profit contributions can

be calculated as follows:

w(e) =


wi + wj if i, j /∈ S(e− 1, r − wi − wj)
wi if i /∈ S(e− 1, r − wi) and j ∈ S(e− 1, r − wi)
wj if i ∈ S(e− 1, r − wj) and j /∈ S(e− 1, r − wj)
0 if i, j,∈ S(e− 1, r)

while its profit contribution can be calculated as:

qe =



qii + qjj + 2
∑

i′∈S(e−1,r−wi−wj)

(qi′i + qi′j) if i, j /∈ S(e− 1, r − wi − wj)

qii + 2
∑

i′∈S(e−1,r−wi)

qi′i if i /∈ S(e− 1, r − wi) and j ∈ S(e− 1, r − wi)

qjj + 2
∑

i′∈S(e−1,r−wj)

qi′j if i ∈ S(e− 1, r − wj) and j /∈ S(e− 1, r − wj)

0 if i, j ∈ S(e− 1, r)

We can now present our heuristic algorithm which performs as described in Algorithm 3 below.

The contributions of the for loops in Line 3 and Line 4 of the algorithm to the complexity of the

algorithm are O(n) and O(c), respectively. Similarly, the for loops in Line 17 and Line 18 contribute

for O(n2) and O(c), respectively. Finally, one should note that the quantities β and β(e) used in

Algorithm 3 can be computed in linear time, using the following identities:

β = f(k − 1, r) + qkk + 2
∑

i∈S(k−1,r)

qik,

Les Cahiers du GERAD G–2021–27 6

and

β(e) = f(e− 1, r) +



qe + qii + qjj + 2
∑

i′∈S(e−1,r)

(qi′i + qi′j) if i, j /∈ S(e− 1, r)

qii + 2
∑

i′∈S(e−1,r)

qi′i if i /∈ S(e− 1, r) and j ∈ S(e− 1, r)

qjj + +2
∑

i′∈S(e−1,r)

qi′j if i ∈ S(e− 1, r) and j /∈ S(e− 1, r)

0 if i, j ∈ S(e− 1, r)

Therefore, the overall time complexity of this algorithm is O(n3c). Elsewhere, the memory space

required to store the set S(k, r), for k = 1, . . . , n + |E|, and r = 0, . . . , c is O(n3c). This memory

storage complexity is a major drawback to Algorithm 3 as it means that only instances with very

limited sizes can be solved on an ordinary computer. In the next section, we will show that it is

possible to reduce the memory requirement to O(nc) without worsening the running time of the

algorithm.

Algorithm 3 :Lifted dynamic programming for the QKP

1: Initialise f(0, 0) to 0, and f(k, r) to −∞ for all other k, r.
2: Initialise S(k, r) = ∅ for all k, r.
3: for k = 1, . . . , n do
4: for r = 0, . . . , c do
5: if f(k − 1, r) > f(k, r) then
6: Set f(k, r) := f(k − 1, r) and S(k, r) := S(k − 1, r).
7: end if
8: if r + wk ≤ c then
9: Let β be the profit of S(k − 1, r) ∪ {k}.

10: if β > f(k, r + wk) then
11: Set f(k, r + wk) := β,
12: Set S(k, r + wk) := S(k − 1, r) ∪ {k}.
13: end if
14: end if
15: end for
16: end for
17: for e = 1, . . . , |E| do
18: for r = 0, . . . , c do
19: if f(e− 1, r) > f(e, r) then
20: Set f(e, r) := f(e− 1, r) and S(e, r) := S(e− 1, r).
21: end if
22: if r + w(e) ≤ c then
23: Let β(e) be the profit of S(e− 1, r) ∪ {e}.
24: if β(e) > f(e, r + w(e)) then
25: Set f(e, r + w(e)) := β,
26: Set S(e, r + w(e)) := S(e− 1, r) ∪ {e}.
27: end if
28: end if
29: end for
30: end for
31: Let (k∗, r∗) = arg max

0≤r≤c,
1≤k≤n+|E|

f(k, r).

32: Output the set S(k∗, r∗) and the associated profit f(k∗, r∗).

Les Cahiers du GERAD G–2021–27 7

4 Memory reduction and local search

This section is dedicated to some improvements of Algorithm 3 presented above. First, we show an

implementation version of the algorithm that requires less memory storage. Then we present a modified

version of the ‘fill-up-and-exchange’ local search procedure that aims at improving the solution obtained

from the lifted space DP heuristic.

4.1 Reducing the memory requirement of the algorithm

The reduction of the memory requirement of Algorithm 3 will come from the observation that one

can drop the index k from the state function f(k, r) for k = 1, . . . , n + |E|, and r = 0, . . . , c. Indeed,

note that all of the computations carried out in any given stage depend only on the values that were

computed in the preceding stage. For this reason, we do not need to store the calculation of all the

f(k, r) along with their corresponding sets S(k, r). Instead, we will define f(r) to be the current value

of the most profitable packing found so far, regardless of the stage k, having a total weight of r. This

implies that for each r = 0, . . . , c and each i = 1, . . . , n, we also define the a Boolean variable B(r, i) to

take the value 1 if item i is packed in the set of items that provides a profit f(r). The implication of

these new definition to our algorithm is that, one now needs to iteratively decrease the value of r instead

of increasing it as in Algorithm 3. In fact, the value of f(r) at any given stage k, for k = 1, . . . , n+ |E|
depends on the values of f(r) and f(r − wk) from the previous stage, but does not depend on the

value of f(r′) from the previous stage, for any r′ > r. The reduced-memory version of our heuristic

algorithm then performs as described in Algorithm 4 below.

Algorithm 4 : Reduced memory Dynamic programming

1: Initialise f(r) to 0 for r = 0, . . . , c.
2: Initialise B(r, i) to 0 for all r = 0, . . . , c and i = 1, . . . , n.
3: for k = 1, . . . , n do
4: for r = c to 0 (going down in steps of 1) do
5: if r ≥ wk then
6: Let β be the profit of S(k − 1, r − wk) ∪ {k}.
7: if β > f(r) then
8: Set f(r) := β,
9: Set B(r, k) := 1.

10: end if
11: end if
12: end for
13: end for
14: for e = 1, . . . , |E| do
15: for r = c to 0 (going down in steps of 1) do
16: if r ≥ we then
17: Let β(e) be the profit of S(e− 1, r − we) ∪ {e}.
18: if β(e) > f(r) then
19: Set f(r) := β(e),
20: Set B(r, i) := 1 and B(r, j) := 1,
21: where e = (i, j).
22: end if
23: end if
24: end for
25: end for
26: Let r∗ = arg max0≤r≤c f(r).
27: Compute the final set of items S(k∗, r∗).
28: (This can be done in O(n) time using the B(r∗, i) values.)
29: Output S(k∗, r∗) and the associated profit f(r∗).

Les Cahiers du GERAD G–2021–27 8

It should be noted that this idea of reducing the memory requirement by dropping the k index in

the calculation f(k, r) for k = 1, . . . , n + |E|, and r = 0, . . . , c is an adaptation of the one presented

in [13]. Furthermore, the modified algorithm now still runs in O(n3c) time, but only requires O(nc)

of memory storage. This makes the algorithm capable of solving large scale instances.

4.2 A modified ‘fill-up-and-exchange’ local search

The traditional ‘fill-up-and-exchange’ local search procedure has for long been used in heuristic algo-

rithms for the linear KP. It was first introduced in the context of the QKP by Gallo et al. [15]. This

local search procedure is often used to improved the solution to a knapsack-like problem obtained by

a heuristic method. Its first part consists of filling up the residual knapsack space with any item that

is not included in the packing of the heuristic solution. Then, the second part consists of looking for

possible swap between a packed item and an unpacked one, if this allows an improvement of the profit

value.

In this paper, we implement a slightly modified version of this procedure by adapting it to the

lifted space variables. More precisely, the ‘fill-up’ phase is extended to the consideration of edges, in

the sense that, we also look for the possibility of filling-up the residual capacity of the knapsack with

pairs of items. In the ‘exchange’ phase, we consider the following swapping options:

• a packed item with a unpacked one,

• a packed item with an unpacked edge,

• a packed edge with an unpacked item.

Note, that one of the reasons why we do not consider the option of swapping a packed edge with an un-

packed one is that it will take the overall complexity of the algorithm beyond the O(n3c) running time.

Our computational results show that this modified ‘fill-up-and-exchange’ procedure has a significant

impact on the final results obtained by the overall proposed algorithm.

5 Computational experiments and results

In this section, we present our computational results. We coded all our routines in the C programming

language and compiled them with gcc 4.6 . All the results were obtained by running our code on a

single cluster node of the super computer of Compute Canada1 with processor at 2.26 GHz and 24

GB of RAM. We will first describe the test instances that were used and then present and analyze the

obtained results

5.1 Description of the test instances

Most of the existing literature on QKP heuristic algorithms only report results for “standard” QKP

instances that are obtained using the scheme first introduced by Gallo et al. [15]. These instances

are generated as follows. For a given value of n, each weight wi is an integer uniformly distributed

between 1 and 100. The knapsack capacity c is an integer uniformly distributed between 50 and∑
i∈N wi. Finally, for a given choice of density parameter ∆%, each profit term qij is set to zero

with probability (100 − ∆)%, and set to an integer uniformly distributed between 1 and 100 with

probability ∆%.

To test our algorithm, we created a total of 680 instances, which corresponds to 10 random instances

for each combination of n ∈
{

50, 100, 150, . . . , 850
}

and ∆ ∈
{

25%, 50%, 75%, 100%
}

.

An asymptotic study of the QKP [25, 30] has shown that such standard instances may sometimes

be relatively easy for modern heuristic algorithms. Therefore, we also consider several other families

of instances, as described in the following subsections.

1www.computecanada.ca

Les Cahiers du GERAD G–2021–27 9

5.1.1 Dispersion problem instances

The dispersion problem consists of locating q facilities at n possible locations, while maximizing the

sum of the pairwise distances between facilities. The QKP formulation of this problem is as follows [25]:

max
n∑

i=1

n∑
j=1

dijxixj

s.t.
n∑

i=1

xi = q

x ∈ {0, 1}n,

where dij is the distance between locations i and j. Several variants of this problem, which differ by

the distribution of the dij , are proposed in [25]:

• GEO (Geometrical problems): the n locations are randomly located in a 100× 100 square, and

dij is the Euclidean distance between locations i and j.

• WGEO (Weighted geometrical problems): the locations are again randomly located in a square,

but each location i is assigned a weight αi in the interval [5, . . . , 10]. The distance dij is then

αiαj times the Euclidean distance between locations i and j.

• EXPO (Exponential problems): for each pair {i, j} of locations, dij is randomly drawn from a

negative exponential distribution with mean 50.

• RAN (Random problems): for each pair {i, j}, dij is uniformly distributed in [1, . . . , 100].

For all these instances, dii = 0 for i = 1, . . . , n, and the number of facilities q is randomly chosen in

[2, . . . , n− 2].

Pisinger et al. [25] also presented a knapsack-like version of the four above-mentioned problem

types. These are obtained by generating a weight wi (randomly in [1, . . . , 100]) for each location i,

setting q to b1
2

n∑
i=1

wic, and changing the knapsack constraint accordingly. These instances will be

denoted KP − {EXPO,GEO,WGEO,RAN}. We generated ten instances for each combination of

problem type and n ∈ {25, 50, 100, 200, 400}, for a total of 400 instances.

5.1.2 Densest subgraph instances

The densest subgraph problem was also formulated as a QKP by Pisinger et al. [25]. Given a graph

G = (V,E), this problem amounts to finding a set of nodes U ⊆ V of cardinality q for which the

induced subgraph contains the most possible edges. Variants of this problem are obtained by varying

the density of G. We experimented with the following settings:

• DSUB25: Here dij = 1 with probability 25%, dij = 0 otherwise.

• DSUB50: Here dij = 1 with probability 50%, dij = 0 otherwise.

• DSUB75: Here dij = 1 with probability 75%, dij = 0 otherwise.

• DSUB90: Here dij = 1 with probability 90%, dij = 0 otherwise.

Again, dii = 0, i = 1, . . . , n and the number of nodes q is randomly chosen in [2, . . . , n− 2].

We generated ten instances for each combination of problem type and n ∈ {25, 50, 100, 200, 400},
for a total of 200 instances.

5.1.3 Hidden-clique instances

The final set of test instances used in this paper is the so-called “hidden clique” (HC) instances. These

instances were recently introduced in the context of the QKP by Schauer [30], who showed that they

are extremely challenging for existing QKP heuristic algorithms. In fact, this class of problems on its

own make up a completely different field of research [1, 2]. For a given n, one generates a random

Les Cahiers du GERAD G–2021–27 10

(so-called Erdős-Rényi) graph, in which each edge is present with probability 1/2. One then “hides” a

clique in it, by selecting a random set of bnc nodes, and adding edges, where necessary, so that those

nodes form a clique. The knapsack capacity is then set to bnc. The weight of each vertex is 1, its linear

profit is 0 and the quadratic profit is 1 whenever an edge is present in the graph, and 0 otherwise. The

optimal solution value is then almost surely
1

2
bnc
(
bnc − 1

)
. We generated 10 HC instances for each

value of n ∈ {20, 40, 60, . . . , 400}, making 200 in total.

5.2 Results for the standard instances

Our first set of experiment is carried out on standard QKP instances. The results for this experiment

are reported in Table 1. In the experiment, we were interested in three particular aspects. Firstly,

we wanted to know how good is our Lifted DP algorithm alone (‘Lifted DP’), i.e., without the local

search component. Secondly, we wanted to know the contribution of our local search procedure to

the overall performance of the algorithm (‘Lifted DP + FE’). Finally, we wanted to see how our new

Lifted DP algorithm compares with the DP heuristic algorithm of Djeumou-Fomeni and Letchford [13]

(‘FL2014’), which is well known in the literature of the QKP as one of the state-of-the-art deterministic

heuristic algorithms.

The first two columns of Table 1 show, respectively, the density of the profit matrix and the size of

the problem defined in term of the number of items. The following three columns show the average,

out of of 10 instances, of the percentage gap of the ‘Lifted DP’, the number of instances (out of 10)

for which the algorithm found an optimal solution and the average CPU time taken by the algorithm,

respectively. It should be noted that the optimality gap is calculated as:(
Optimal value−Heuristic value

Optimal value

)
× 100.

In order to obtain an optimal solution for each of these instances, we used the cut-and-branch algorithm

of Djeumou-Fomeni et al. [12]. The next three columns report the same metrics as the latter three, but

for our overall proposed algorithm ‘Lifted DP + FE’. In the last column of this table, we report the

average percentage gap obtained with the DP heuristic algorithm of [13] for the same instances. We

should point out that the running time of the latter algorithm is not reported because, theoretically

it is much faster than the proposed algorithm by a factor of n, (O(n3c) vs O(n2c)).

The results in Table 1 show that when the Lifted DP algorithm, described in Algorithm 1 is

used alone, it is able to find an optimal solution to about 90% of the 680 problem instances. This

percentage goes up to more than 97% of the 680 instances when the Lifted DP algorithm is combined

with our modified ‘fill-up-and-exchange’ local search procedure. It can also be noticed that for the

instances for which our algorithm could not find an optimal solution, the relative percentage gap is

consistently below 0.01%. A comparison with the algorithm of Djeumou-Fomeni and Letchford [13]

(‘FL2014’) shows that our proposed algorithm is dominant in terms of optimality gap, especially for

the low density instances. While the algorithm Djeumou-Fomeni and Letchford [13] shows some less-

interesting results for low density instances. When it comes to the CPU time, it can be seen that our

proposed algorithm is a bit time consuming, as it can take up to one hour to solve some of the large

instances. This is conceptually expected given that our algorithm runs in O(n3c) times compares to

the O(n2c) times for the DP heuristic of [13].

5.3 Results for the dispersion and densest subgraph instances

In the next set of our experiments, we apply our proposed algorithm to the 600 instances of the

dispersion and densest subgraph problems. The results for these experiments are reported in Table 2,

in which the metrics reported are the same as the ones in Table 1. We should also point out here that

the optimal solutions used to calculate the optimality gaps were also obtained using the cut-and-branch

algorithm of [12].

Les Cahiers du GERAD G–2021–27 11

Table 1: Results for the standard QKP instances

Instance Lifted DP Lifted DP + FE FL2014

Density size n Gap (%) # Opt./10 Time (s) Gap (%) # Opt./10 Time (s) Gap (%)

50 0.084 9 0.107 0.000 10 0.108 0.110
100 0.000 10 1.590 0.000 10 1.603 0.080
150 0.000 10 7.816 0.000 10 7.876 0.070
200 0.005 6 29.674 0.005 6 29.842 0.020
250 0.000 10 65.568 0.000 10 65.963 0.010
300 0.005 9 125.104 0.005 9 126.190 0.060
350 0.002 8 208.101 0.000 10 210.442 0.050
400 0.000 10 527.510 0.000 10 531.026 0.010

∆ = 25% 450 0.000 10 679.941 0.000 10 684.713 0.000
500 0.000 9 908.312 0.000 10 916.343 0.000
550 0.008 9 1,408.717 0.000 10 1,421.072 0.000
600 0.000 9 2,331.683 0.000 9 2,349.155 0.000
650 0.001 9 3,383.180 0.000 10 3,414.175 0.000
700 0.000 10 1,404.734 0.000 10 1,436.883 0.000
750 0.000 10 2,936.410 0.000 10 2,985.113 0.010
800 0.001 8 1,918.941 0.000 10 1,993.617 0.050
850 0.000 8 2,811.013 0.000 10 3,003.241 0.030

50 0.000 10 0.205 0.000 10 0.206 0.290
100 0.002 9 2.447 0.002 9 2.475 0.020
150 0.009 7 13.410 0.009 7 13.529 0.010
200 0.031 9 26.368 0.000 10 26.714 0.010
250 0.000 9 118.965 0.000 9 119.872 0.020
300 0.000 10 258.679 0.000 10 260.463 0.000
350 0.000 10 513.177 0.000 10 516.820 0.000
400 0.000 10 1,190.313 0.000 10 1,195.872 0.000

∆ = 50% 450 0.000 9 1,301.650 0.000 9 1,310.107 0.000
500 0.000 10 1,239.945 0.000 10 1,248.338 0.000
550 0.000 10 1,476.207 0.000 10 1,489.364 0.020
600 0.000 9 2,401.845 0.000 10 2,419.569 0.000
650 0.000 10 3,290.070 0.000 10 3,313.781 0.000
700 0.000 9 3,499.408 0.000 10 3,541.074 0.000
750 0.000 10 3,282.415 0.000 10 3,338.002 0.000
800 0.000 10 3,438.049 0.000 10 3,507.950 0.000
850 0.001 8 3,866.585 0.000 10 3,957.478 0.010

50 0.000 10 0.139 0.000 10 0.140 0.000
100 0.004 9 2.157 0.004 9 2.173 0.000
150 0.001 9 8.220 0.000 10 8.310 0.010
200 0.001 9 31.344 0.001 9 31.583 0.010
250 0.002 9 54.055 0.000 10 54.737 0.000
300 0.000 10 173.169 0.000 10 174.484 0.000
350 0.000 10 206.817 0.000 10 209.471 0.000
400 0.000 10 585.993 0.000 10 590.070 0.000

∆ = 75% 450 0.000 10 1,040.464 0.000 10 1,047.979 0.000
500 0.000 10 1,848.305 0.000 10 1,857.684 0.000
550 0.000 8 1,564.884 0.000 9 1,583.896 0.000
600 0.000 10 3,547.376 0.000 10 3,567.487 0.000
650 0.000 10 2,386.271 0.000 10 2,411.889 0.000
700 0.000 10 2,364.701 0.000 10 2,400.335 0.000
750 0.000 10 3,628.308 0.000 10 3,682.535 0.010
800 0.000 10 3,298.709 0.000 10 3,367.395 0.000
850 0.000 8 2,911.023 0.000 10 3,013.531 0.000

50 0.009 9 0.092 0.009 9 0.093 0.000
100 0.000 10 1.430 0.000 10 1.440 0.010
150 0.000 10 7.841 0.000 10 7.892 0.000
200 0.000 9 27.588 0.000 9 27.821 0.000
250 0.000 10 43.790 0.000 10 44.232 0.000
300 0.001 8 149.715 0.001 8 150.494 0.000
350 0.001 8 274.513 0.000 8 276.266 0.000
400 0.000 9 258.210 0.000 9 260.903 0.020

∆ = 100% 450 0.000 10 848.278 0.000 10 854.149 0.000
500 0.000 10 1,328.395 0.000 10 1,336.192 0.000
550 0.000 9 1,382.499 0.000 9 1,393.449 0.000
600 0.000 10 1,790.055 0.000 10 1,806.159 0.000
650 0.000 10 2,188.107 0.000 10 2,213.680 0.000
700 0.000 10 1,890.779 0.000 10 1,920.263 0.000
750 0.000 10 1,952.128 0.000 10 2,091.559 0.000
800 0.000 10 1,290.924 0.000 10 1,331.200 0.000
850 0.000 10 1,900.788 0.000 10 1,954.333 0.000

Les Cahiers du GERAD G–2021–27 12

Table 2: Results for the dispersion problem and densest sub-graph problem instances

Instance Lifted DP Lifted DP + FE FL2014

Type n Gap (%) # Opt./10 Time (s) Gap (%) # Opt./10 Time (s) Gap (%)

25 2.173 7 0.004 0.119 9 0.004 1.07
50 0.328 9 0.092 0.000 10 0.100 0.09

DSUB25 100 2.498 5 1.018 0.074 8 1.170 9.96
200 0.702 3 9.633 0.282 7 11.836 8.54
400 0.341 1 294.201 0.005 7 366.096 0.00

25 1.014 8 0.005 0.100 9 0.006 0.56
50 0.912 6 0.049 0.118 8 0.057 0.86

DSUB50 100 1.740 4 0.555 0.098 7 0.674 7.94
200 0.209 5 10.239 0.001 9 12.532 9.70
400 0.268 2 289.670 0.026 8 354.344 0.19

25 0.636 8 0.003 0.000 10 0.004 1.09
50 0.342 7 0.043 0.032 8 0.050 0.34

DSUB75 100 0.520 5 0.508 0.017 7 0.610 3.67
200 0.307 2 10.548 0.002 8 13.256 4.93
400 0.196 2 225.213 0.001 9 285.040 1.59

25 0.122 9 0.006 0.000 10 0.006 0.00
50 0.117 8 0.084 0.034 9 0.091 0.15

DSUB90 100 0.336 5 0.794 0.054 7 0.930 2.70
200 0.071 7 11.695 0.010 8 13.227 1.89
400 0.053 5 258.968 0.000 10 312.130 0.00

25 0.222 9 0.004 0.000 10 0.005 0.17
50 0.374 5 0.060 0.144 8 0.070 0.43

EXPO 100 0.504 2 0.865 0.223 5 0.993 3.76
200 0.590 3 17.125 0.012 8 19.613 8.45
400 0.095 1 336.780 0.000 8 432.479 0.00

25 0.012 9 0.003 0.000 10 0.003 0.14
50 0.000 10 0.042 0.000 10 0.047 0.00

GEO 100 0.001 9 0.838 0.000 10 0.930 0.42
200 0.000 10 14.834 0.000 10 16.193 2.22
400 0.000 10 259.289 0.000 10 279.633 5.48

25 0.000 10 0.020 0.000 10 0.020 0.00
50 0.000 10 0.281 0.000 10 0.288 0.02

WGEO 100 0.000 10 4.357 0.000 10 4.458 0.00
200 0.000 10 70.711 0.000 10 72.352 0.00
400 0.000 10 1,310.435 0.000 10 1,339.523 0.00

25 0.343 8 0.005 0.000 10 0.006 0.50
50 0.388 3 0.087 0.131 6 0.099 0.42

RAN 100 0.325 3 0.804 0.136 7 1.039 8.21
200 0.181 4 23.466 0.005 9 27.335 4.88
400 0.336 1 286.266 0.050 8 357.078 13.92

25 0.000 10 0.129 0.000 10 0.129 0.00
50 0.000 10 2.498 0.000 10 2.504 0.00

KP-EXPO 100 0.000 10 39.272 0.000 10 39.373 0.00
200 0.000 10 139.071 0.000 10 139.396 0.00
400 0.000 10 1,474.347 0.000 10 1,477.855 0.00

25 0.000 10 0.141 0.000 10 0.141 0.00
50 0.000 10 2.416 0.000 10 2.423 0.00

KP-GEO 100 0.000 10 39.276 0.000 10 39.380 0.00
200 0.000 10 135.379 0.000 10 135.706 0.00
400 0.000 10 1,525.159 0.000 10 1,528.664 0.00

25 0.000 10 0.154 0.000 10 0.154 0.00
50 0.000 10 2.615 0.000 10 2.623 0.00

KP-WGEO 100 0.000 10 45.139 0.000 10 45.257 0.00
200 0.000 10 153.943 0.000 10 154.311 0.00
400 0.000 10 1,644.290 0.000 10 1,648.221 0.00

25 0.000 10 0.139 0.000 10 0.140 0.00
50 0.000 10 2.470 0.000 10 2.477 0.00

KP-RAN 100 0.000 10 40.377 0.000 10 40.480 0.00
200 0.000 10 174.943 0.000 10 174.612 0.00
400 0.000 10 1,848.668 0.000 10 1,876.927 0.00

Les Cahiers du GERAD G–2021–27 13

The results in Column ‘FL2014’ of Table 2 reveal that the DP heuristic algorithm of Djeumou-

Fomeni and Letchford [13] performs very badly for most of these instances, especially for the “plain”

dispersion and densest subgraph instances, where the optimality gap can go up to 13%. This can

be seen as a confirmation of the challenging property of these instances as pointed out in [25, 30].

However, when it comes to our proposed Lifted DP heuristic, combined with the modified local search

procedure, the results in Column ‘Lifted DP + FE’ show that it can find an optimal solution to nearly

92% of all the 600 instances tested. Moreover, for the instances for which optimal solutions could not

be found, our algorithm produces feasible solutions that are within 0.1% of optimality. It can also be

noted that the computational times needed by our algorithm to solve these instances are relatively

low, except for some of the Knapsack-like instances. Indeed, given that our algorithm runs in O(n3c)

times, the values of c for these instances are relatively large compared to their values for the other

‘plain” dispersion and densest subgraph instances, where c < n. Interestingly, for these Knapsack-like

instances, both our proposed algorithm and the DP heuristic of [13] could find optimal solutions for

all the instances tested. This can be explained by the fact that the knapsack nature of these instances

make them much closer to the standard QKP instances.

5.4 Results for the Hidden clique instances

Finally, we consider the 200 Hidden clique (HC) instances. For these instances the optimal solution

are known in advance when they are generated. Therefore an exact solution algorithm is not required

in this set of experiments. We first solved the instances using our proposed Lifted DP heuristic with

the modified ‘fill-up-and-exchange’ procedure (‘Lifted DP + FE’) and then re-solve the same instances

using the DP heuristic of [13] (FL 2014). The results are reported in Figure 1, in which we have

plotted the optimal solution values for all the instances, as well as the solution values for both of the

above-mentioned heuristics. On the x−axis, we have the sizes of the instances n, while the y−axis

gives the objective function values.

Figure 1: Results for planted clique instances

It can be seen in Figure 1 that for instances with up to 160 items, the heuristic solution values
from both algorithms are pretty close to the optimal solution values. While, for instances with 180

items and more there is a significant gap between the optimal solution value and heuristic ones. These

Les Cahiers du GERAD G–2021–27 14

gaps can go up to about 10%. In comparison with one another, there does not appear to be any

significant difference in performance for both heuristic algorithms. Their poor performances on these

test instances further strengthen the fact fact that Hidden Clique instances seen as QKP are really

hard instances for QKP algorithm. However, the fact that this class of problems on its own make up

a completely different field of research [1, 2] should not be ignored. Particularly, because most QKP

algorithms are designed to solve QKPs.

6 Conclusion

The QKP is an important combinatorial optimization problems with many applications, but for which

existing solution algorithms are very limited in their capabilities. Our contribution in this paper

has been to propose a novel heuristic algorithm for this strongly NP−hard problem. Our algorithm

consists of an adaptation of dynamic programming approach combined with an adaptation of the ‘fill-

up-and-exchange’ local search procedure, with the particularity that both are implemented in the space

of the lifted QKP variables. This algorithm runs in O(n3c) times and uses O(nc) memory space. The

advantage of moving up in the space of lifted variables is that one can more efficiently capture some of

the quadratic attributes of the problem and obtain much better quality solutions than with existing

heuristic solutions. We have conducted a thorough computational experiment with a total of 1480

QKP instances, including both the standard and known-challenging QKP instances. The results show

that our algorithm can find an optimal solution to more than 97% of the standard QKP instances. It

can also find an optimal solution to more than 80% of the challenging QKP instances. For most of

the instances for which optimality could not be found, our algorithm has been able to produce feasible

solutions within 0.1% (on average) of optimality. It has been clear in our experiments that our adapted

version of the ‘fill-up-and-exchange’ local search procedure contributed significantly to the quality of

our solutions.

Elsewhere, we have also presented some comparisons between our proposed algorithm and one of

the known state-of-the-art deterministic heuristic algorithm for the QKP [13]. The results have shown

that our proposed algorithm is largely superior in terms of the quality of the obtained solutions. This

superiority is even more significant on some of the challenging QKP instances, namely, the dispersion

and densest subgraph instances. However, it remains that the latter algorithm is faster than ours by

a factor of n. Furthermore, the class of Hidden Clique problems, taken as QKP still proves to be

challenging to our proposed algorithm.

In sum, our newly proposed Lifted DP heuristic algorithm with the modified ‘fill-up-and-exchange’

local search procedure appears to be an important milestone in the direction of devising efficient

solution for the QKP. Thus naturally positioning itself as a good candidate heuristic to be incorporated

in exact solution methods. As direction for future research, we believe that it would be interesting to

see how this algorithm could impact in an exact solution framework for the QKP, such as a Branch-

and-Cut framework.

References
[1] N. Alon, M. Krivelevich & B. Sudakov (1998), Finding a large hidden clique in a random graph. Random

Structures and Algorithms, 13, 457–466.

[2] N. Alon, S. Arora, R. Manokaran, D. Moshkovitz & O. Weinstein (2011), Inapproximabilty of dens-
est k-subgraph from average case hardness. Technical report, Computer Science Department, Princeton
University, Princeton, NJ, (2011)

[3] E. Balas & E. Zemel (1980) An algorithm for large zero-one knapsack problems. Operations Research,
28, 1130–1154.

[4] R.E. Bellman (1957) Dynamic Programming. Princeton, NJ: Princeton University Press.

[5] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige & A. Vijayaraghavan (2010) Detecting high log-densities:
an O(n1/4) approximation for densest k-subgraph. In L.J. Schulman (ed.) Proceedings of the 42nd ACM
Symposium on Theory of Computing, pp. 201–210. ACM Press.

Les Cahiers du GERAD G–2021–27 15

[6] A. Billionet & F. Calmels (1996) Linear programming for the quadratic knapsack problem. European
Journal of Operational Research, 92, 310–325.

[7] A. Billionet & E. Soutif (2004) Using a Mixed Integer Programming Tool for Solving the 0–1 Quadratic
Knapsack Problem. INFORMS Journal on Computing, 16, 188–197.

[8] A. Billionet & E. Soutif (2004) An exact method based on Lagrangian decompositionfor the 0–1 quadratic
knapsack problem. European Journal of Operational Research, 157, 565–575.

[9] A. Caprara, D. Pisinger & P. Toth (1998) Exact solution of the quadratic knapsack problem. INFORMS
Journal on Computing, 11, 125–137.

[10] P. Chaillou, P. Hansen & Y. Mahieu (1983) Best network flow bound for the quadratic knapsack problem.
Presented at the International Workshop on Network Flow Optimization (NETFLOW), Pisa, Italy, March
1983.

[11] Yuning Chen & Jin-Kao Hao (2017), An iterated “hyperplane exploration” approach for the quadratic
knapsack problem. Computers & Operations Research, 77, 226–239.

[12] F. Djeumou Fomeni, K. Kaparis & A. N. Letchford (2020), A cut-and-branch algorithm for the quadratic
knapsack problem. Discrete Optimzation, published online (March 2020).

[13] F. Djeumou Fomeni & A. N. Letchford (2014), A dynamic programming heuristic for the quadratic
knapsack problem. INFORMS Journal on Computing, 26(1), 173–183.

[14] M. Fampa, D. Lubke, F. Wang & H. Wolkowicz (2020), Parametric convex quadratic relaxation of the
quadratic knapsack. European Journal of Operational Research, 281, 36–49.

[15] G. Gallo, P.L. Hammer & B. Simeone (1980) Quadratic knapsack problems. Mathematical Programming
Studies, 12, 132–149.

[16] F. Glover & G. Kochenberger (2002) Solving quadratic knapsack problems by reformulation and tabu
search, single constraint case. In: P.M. Pardalos, A. Migdalas & R.E. Burkard (Eds.) Combinatorial and
Global Optimization, vol. 14. Singapore: World Scientific.

[17] F. Glover & E. Woolsey (1974) Converting the 0–1 polynomial programming problem to a 0–1 linear
program. Operations Research, 22, 180–182.

[18] C. Helmberg, F. Rendl & R. Weismantel (2000) A semidefinite programming approach to the quadratic
knapsack problem. Journal of Combinatorial Optimization, 4, 197–215.

[19] R.M. Karp (1972) Reducibility among combinatorial problems. In R.E. Miller & J.W. Thatcher (eds.)
Complexity of Computer Computations, pp. 85–103. New York: Plenum.

[20] H. Kellerer, U. Pferschy & D. Pisinger (2004) Knapsack Problems. Berlin: Springer.

[21] H. Kellerer & V.A. Strusevich (2010) Fully polynomial approximation schemes for a symmetric quadratic
knapsack problem and its scheduling applications. Algorithmica, 57, 769–795.

[22] S. Khot (2006) Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM
Journal of Computing, 36, 1025–1071.

[23] S. Martello & P. Toth (1990) Knapsack Problems: Algorithms and Computer Implementations. Chich-
ester: Wiley.

[24] D. Pisinger (2007) The quadratic knapsack problem — a survey. Discrete and Applied Mathematics, 155,
623–648.

[25] D. Pisinger, A.B. Rasmussen & R. Sandvik (2007) Solution of large quadratic knapsack problems through
aggressive reduction. INFORMS Journal on Computing, 19, 280–290.

[26] Ulrich Pferschy & Joachim Schauer (2016) Approximation of the Quadratic Knapsack Problem. INFORMS
Journal on Computing, 28, 308–318.

[27] C. Patvardhan, Sulabh Bansal & A. Srivastav (2016), Parallel improved quantum inspired evolutionary
algorithm to solve large size Quadratic Knapsack Problems. Swarm and Evolutionary Computation, 26,
175–190.

[28] D.J. Rader (1997) Lifting results for the quadratic 0–1 knapsack polytope. RUTCOR Research Report
17–97, Rutgers University.

[29] D.J. Rader Jr. & G.J. Woeginger (2002) The quadratic 0–1 knapsack problem with series-parallel support.
Operations Research Letters, 30, 159–166.

[30] J. Schauer (2016) On the rectangular knapsack problem: approximation of a specific quadratic knapsack
problem. European Journal of Operational Research, 255, 357–363.

[31] Britta Schulze, Michael Stiglmayr, Lúıs Paquete, Carlos M. Fonseca, David Willems & Stefan Ruzika
(2020) Asymptotic behavior of the quadratic knapsack problem. Mathematical Methods of Operations
Research, 92, 107–132.

Les Cahiers du GERAD G–2021–27 16

[32] Richard Taylor (2016) Approximation of the Quadratic Knapsack Problem. Operations Research Letters,
44, 495–497.

[33] Z. Gu, G.L. Nemhauser & M.W.P. Savelsbergh (2000) Sequence-independent lifting in mixed integer
programming. Journal of Combinatorial Optimization, 4, 109–129.

	Introduction
	Literature review
	The classical dynamic programming approach to the KP
	The DP heuristic approach to the QKP
	Other existing heuristics for the QKP
	Exact solution methods for the QKP

	Lifted DP heuristic for the QKP
	Memory reduction and local search
	Reducing the memory requirement of the algorithm
	A modified `fill-up-and-exchange' local search

	Computational experiments and results
	Description of the test instances
	Dispersion problem instances
	Densest subgraph instances
	Hidden-clique instances

	Results for the standard instances
	Results for the dispersion and densest subgraph instances
	Results for the Hidden clique instances

	Conclusion

