Service facility location optimization during a pandemic

> Okan Arslan Department of Decision Sciences HEC Montreal and CIRRELT

> > **GERAD** Seminar

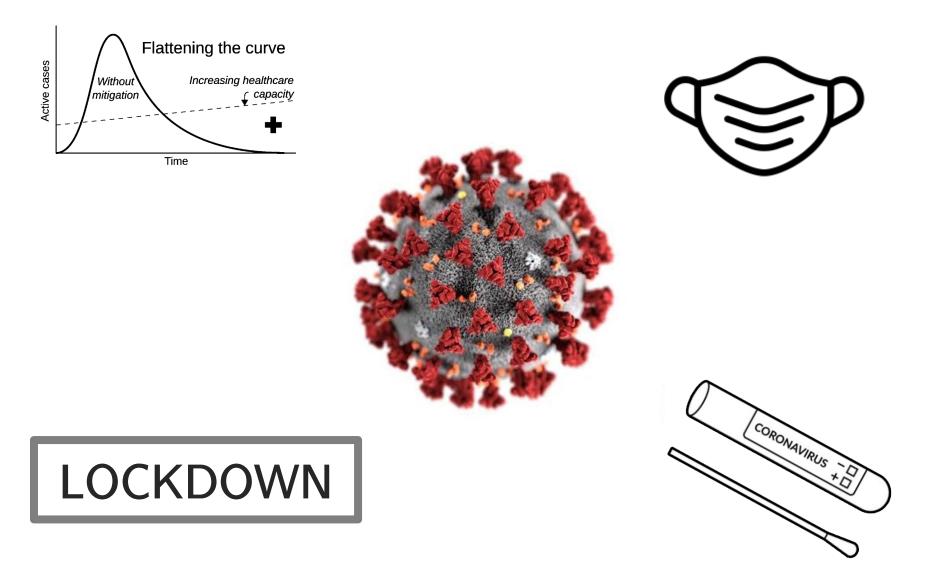
May 19, 2021

About

- Transportation science and location science,
- Design and management of *large-scale networks*,
- Disruptive technologies in transportation.
 - Refueling\charging stations, WIM systems, telecom networks, refugee camp network
 - Attended home delivery, public transportation of goods

 Combinatorial optimization, polyhedral analysis, decomposition techniques, Benders decomposition, column generation, branch-and-cut, branch-and-price and Lagrangian relaxation.

Disruptions and transportation

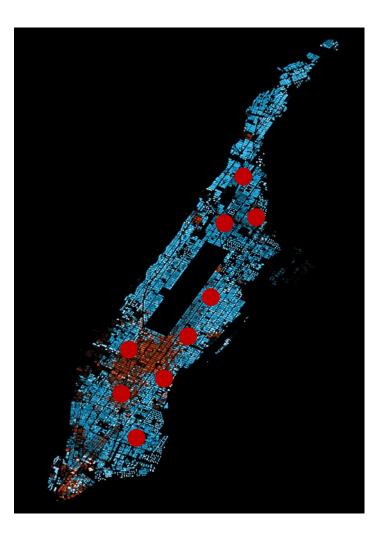


• Disruptions and transportation

- Disruptive technologies in transportation
- Disruptions in transportation

Service facility location optimization during a pandemic

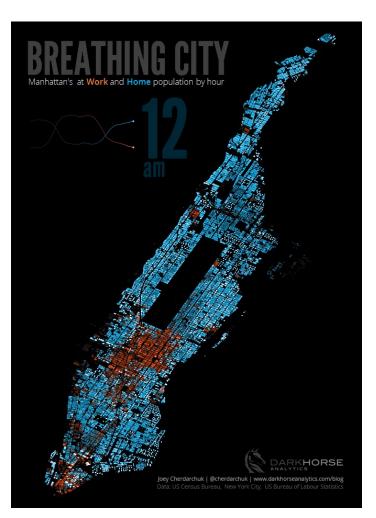
Sources: en.wikipedia.org/wiki/Flattening_the_curve, flylax.com/travelsafely, scwtoday.com/675/features/scwest-pandemic-edition/


Service facility location optimization during a pandemic

3/36

May 2021

Service facility location optimization during a pandemic


- Service can be provided
 - at a facility
 - at a customer's location.

Sources: darkhorseanalytics.com/blog/breathing-city/

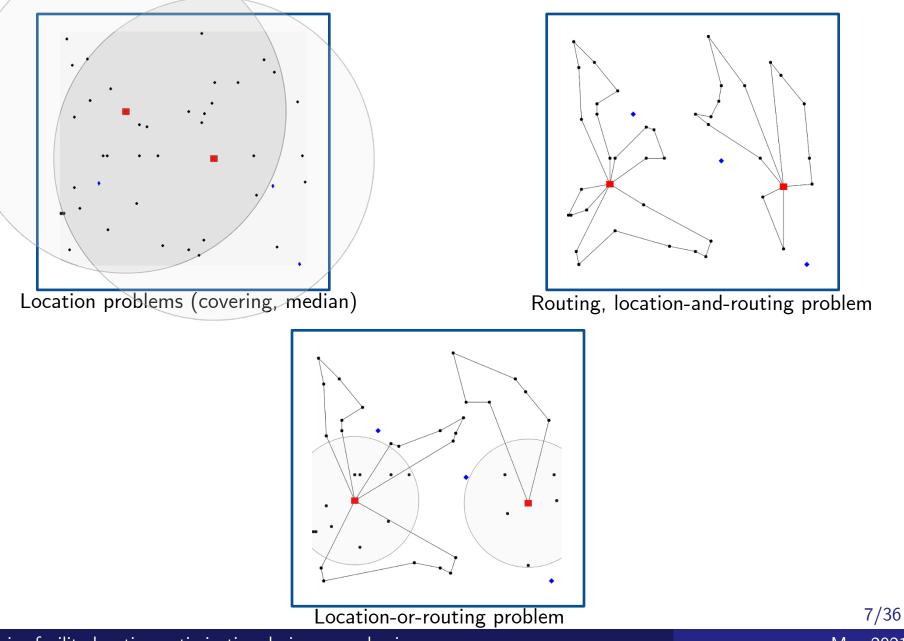
Service facility location optimization during a pandemic

- Service can be provided
 - at a facility or
 - at a customer's location.
- The demand can be
 - stationary
 - or mobile.

Sources: darkhorseanalytics.com/blog/breathing-city/

Service facility location optimization during a pandemic Outline

- - Arslan, O. (2021). The location-orrouting problem. *Transportation Research Part B: Methodological, 147,* 1-21.
 - Branch-and-price algorithm.
 - Maximum availability service facility location problem
 - Ali Muffak, MSc student.
 - CIRRELT report.
 - Benders decomposition algorithm.


• The demand can be

at a customer's location.

stationary

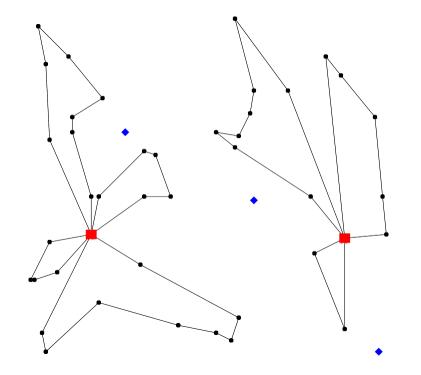
at a facility or

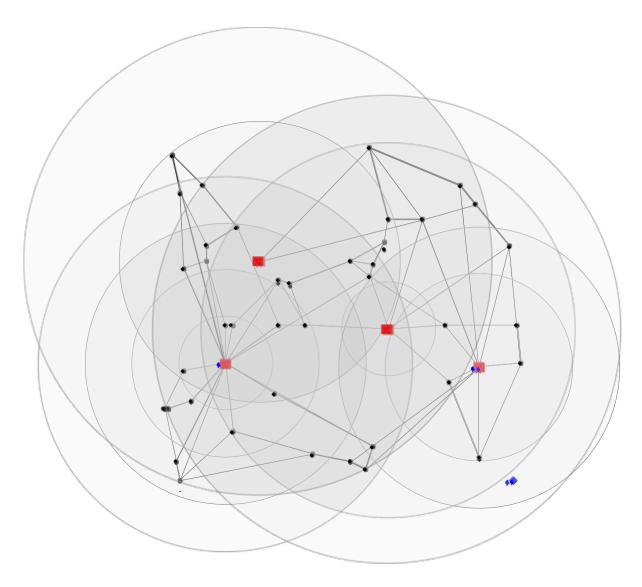
• or mobile.

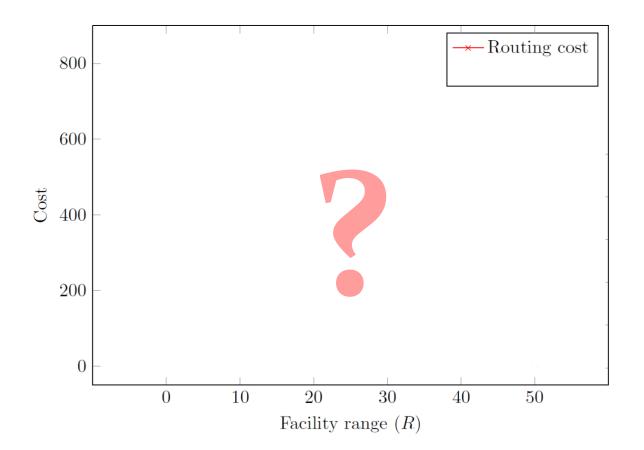
Service facility location optimization during a pandemic

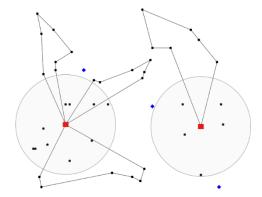
May 2021

- Medical testing center location and vehicle routing
- Shopping mall/retail store location and shuttle routing
- School location and bus routing
- Urban delivery center location with drone operations


Sources: montreal.ctvnews.ca/mobile/here-s-where-montreal-s-mobile-covid-19-testing-sites-will-be-parked-for-their-last-3-days-1.4987934 www.victoriabuzz.com/2016/10/new-tsawwassen-mills-shopping-mall-eyesvancouver-island-customers-opens-wedneday/ https://commons.wikimedia.org/wiki/File:School_bus_Montreal_2011.jpg


Service facility location optimization during a pandemic





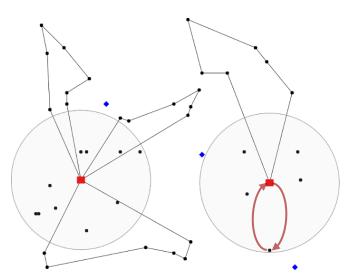
How does the cost change in range?

Service facility location optimization during a pandemic

Problem definition

- Location-or-routing problem (LoRP) is defined as
 - selecting a set of facilities to open and
 - determining a set of vehicle routes,
 - start at an open facility,
 - visit a subset of customers and
 - return to the same facility,
 - respecting the vehicle capacity and
 - maximum length constraints,

- such that every customer is covered either by a facility or by a vehicle route and
- the total cost of opening facilities, routing vehicles and covering the customers by facilities is minimized.


A set covering formulation

$$\begin{array}{ll} \text{minimize} & w_F \sum_{i \in I} f_i x_i + w_R \sum_{p \in \mathcal{P}} d_p y_p + w_A \sum_{j \in J} \sum_{i \in I_j} d_{ij} z_{ij} \\ \text{subject to} & \sum_{i \in I_j} z_{ij} + \sum_{p \in \mathcal{P}_j} y_p = 1 & j \in J \\ & \sum_{j \in J_i} q_j z_{ij} + \sum_{p \in \mathcal{P}_i} q_p y_p \leq C_i x_i & i \in I \\ & z_{ij} \leq x_i & i \in I, j \in J_i \\ & x_i, y_p, z_{ij} \geq 0 \text{ and integer} & i \in I, j \in J_i, p \in \mathcal{P}, \end{array}$$

Service facility location optimization during a pandemic

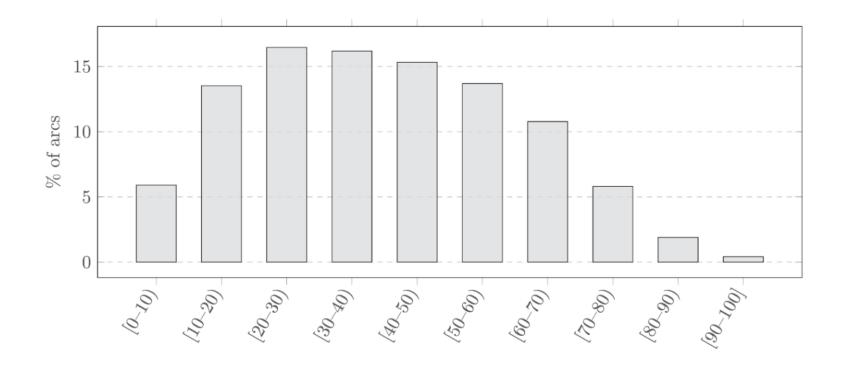
Special cases

- If the coverage range $r_i = 0$ for all $i \in I$, LoRP then transforms into an LRP.
- If the maximum route length of vehicles T = 0 and there is no cost for covering customers by facilities, LoRP then transforms into a set covering problem.
- LoRP is a special case of mixed LRP (heterogeneous LRP).

14/36

Location-or-routing as a problem class

$$\begin{array}{ll} \text{minimize} \quad \underline{w_F} \sum_{i \in I} f_i x_i + \underline{w_R} \sum_{p \in \mathcal{P}} d_p y_p + \underline{w_A} \sum_{j \in J} \sum_{i \in I_j} d_{ij} z_{ij} \\ \text{subject to} \quad \sum_{i \in I_j} z_{ij} + \sum_{p \in \mathcal{P}_j} y_p = 1 \\ \sum_{j \in J_i} q_j z_{ij} + \sum_{p \in \mathcal{P}_i} q_p y_p \leq \underline{C_i x_i} \\ z_{ij} \leq x_i \\ x_i, y_p, z_{ij} \geq 0 \text{ and integer} \end{array} \qquad \begin{array}{ll} i \in I, j \in J_i \\ i \in I, j \in J_i, p \in \mathcal{P}, \end{array}$$


- Uncapacitated location-or-routing problem (ULoRP)
- Set covering location-or-routing problem (SCLoRP)
- Hard-cost minimizing location-or-routing problem (HMLoRP)
- P-median minimizing location-or-routing problem (pMLoRP)
- P-center minimizing location-or-routing problem (pCLoRP)
- Maximum covering location-or-routing problem (MCLoRP)

Solution method

- Branch-and-price algorithm.
- The pricing problem is a resource constrained shortest path problem (with two resources, time and load).
- We adopt the pulse algorithm developed by Lozano et al. (2016) for solving the pricing problem.
- We implement a four-stage hierarchical branching.
 - x_i location variables
 - v_i artificial variables (# vehicles)
 - r_{ij}^k implicit flow variables
 - z_{ij} assignment variables
- Upper bound heuristic.

Computational results

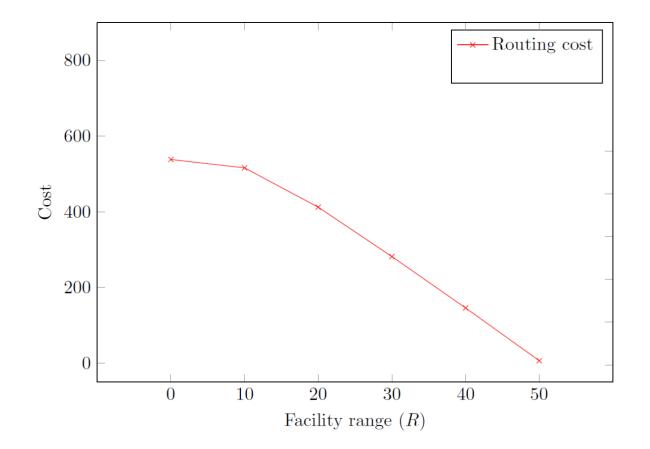
• We use the networks of Akca et al. (2009) and Prodhon (2006).

Computational results

• We solve HMLoRP and pMLoRP (p = 1, ..., max # facilities).

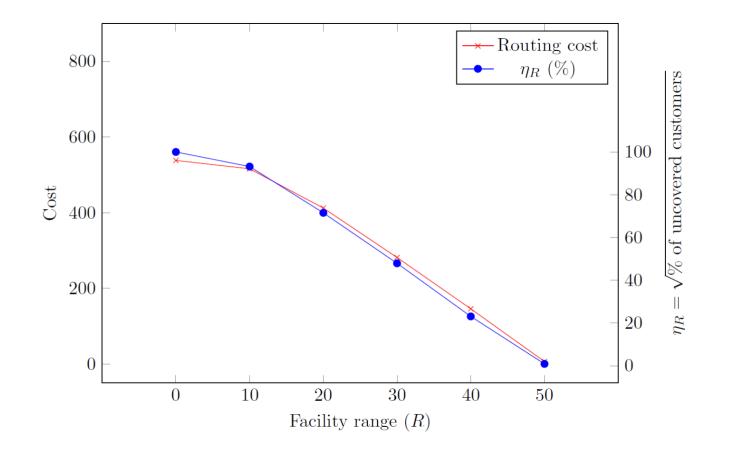
Dataset	# nodes	# instances	Solution status (% of instances)			
			Optimal	Infeasible	Feasible	Unknown
Prodhon-20-5	20	864	75.7%	24.3%	0.0%	0.0%
Akca-30-5	30	1296	80.8%	19.0%	0.2%	0.0%
Akca-40-5	40	1296	71.7%	26.9%	1.5%	0.0%
Prodhon-50-5	50	1728	46.3%	27.8%	19.6%	6.4%
Prodhon-100-5	100	1296	29.6%	34.3%	12.0%	24.1%
Prodhon-100-10	100	2376	44.3%	10.6%	19.7%	25.5%
Prodhon-200-10	200	2376	33.7%	11.1%	7.1%	48.1%
		11,232	50.4	20.0	10.3	19.3

Computational results


• Impacts of facility coverage (R) and max.veh.route dist. (T).

Solution times (s) for different T and R

Maximum route length (T)	Facility range (R)					
	0	10	20	30	40	50
100	4984.9	4976.5	3565.8	1237.1	219.0	19.6
125	5896.1	5855.2	4765.8	2153.0	983.9	400.8
150	6857.5	6688.1	5638.6	2903.1	1743.5	1047.5
Average	5912.8	5839.9	4656.7	2097.7	982.1	489.3


Computational results

• Impacts of facility coverage (R) on the cost.

Computational results

• Impacts of facility coverage (R) on the cost.

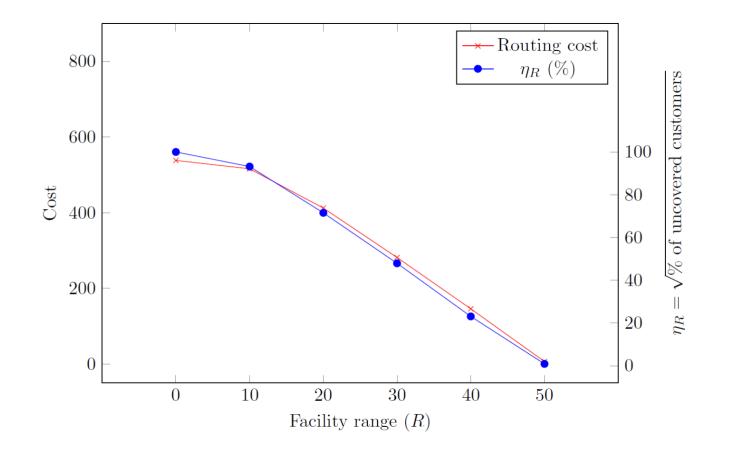
Asymptotic analysis

- Continuum approximation models (Beardwood et al., 1959; Daganzo, 1984a; 1984b).
- Given *n* points that are uniformly and independently distributed in an (fairly compact) area of size *A*, we have

$$\frac{L^*}{\sqrt{n}} \to \beta \sqrt{A} \text{ as } n \to \infty$$

where L^* is the optimal length in TSP and β is a constant term. • An approximation for L^* is $\beta \sqrt{nA}$.

• The expected number of customers within a radius of R is


$$\left(\frac{\pi R^2}{A}\right)n.$$

• The cost changes linearly in \sqrt{n} , which changes linearly in R.

22/36

Computational results

• Impacts of facility coverage (R) on the cost.

Service facility location optimization during a pandemic Outline

- - Arslan, O. (2021). The location-orrouting problem. *Transportation Research Part B: Methodological, 147*, 1-21.
 - Branch and price algorithm.

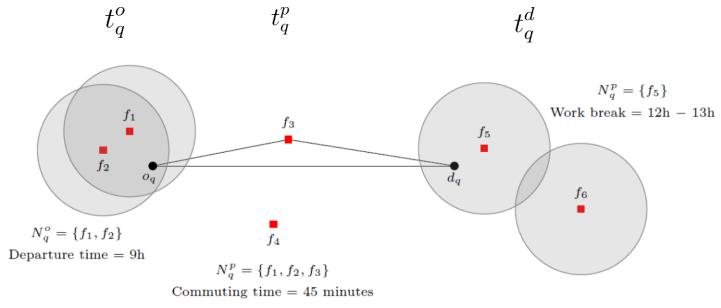
Questions?

at a facility or

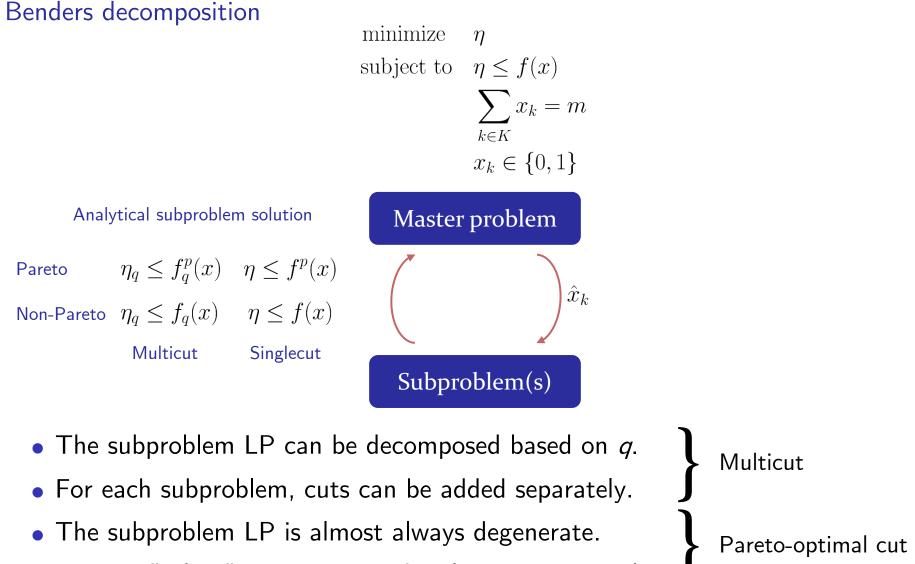
• at a customer's location.

- Testing and vaccination center
 - Walk-in
 - Median location problem
 Covering location problem
 - Drive-thru
 - Flow capturing location problem
 - Structurally, it is the same as covering location problem

Source: Eduardo Contreras/Eduardo Contreras/The San Diego Union-Tribune / https://www.sandiegouniontribune.com/news/health/story/2020-04-15/county-shuts-down-pop-up-testing-center https://bc.skipthewaitingroom.com/Content/Pictures/ClinicPictures/promoted-clinic-image.jpg


Service facility location optimization during a pandemic

• The keyword is the "availability"


- Capturing the demand for multiple times?
- Time dimension?
- Applications in
 - Testing and vaccination medical centers,
 - Government offices,
 - Polling/voting stations.

Facility work hours = 7h - 16h

• **Definition**. The problem is defined as selecting a subset of the facilities to open such that the total availability provided to the demand is maximized and the maximum contribution of each demand is at most *t*_{max}.

• We can "select" a cut among the alternative opt.sol.s.

28/36 May 2021

Benders decomposition – Computational results

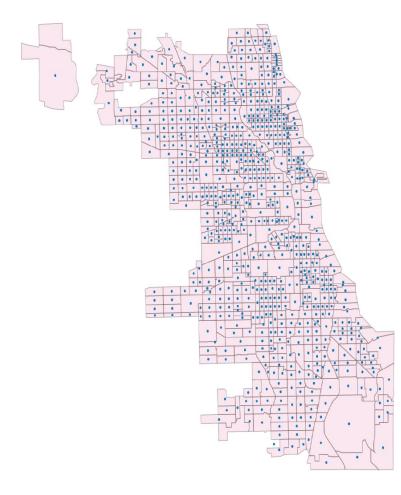
n	m	CPLEX	BD-Single	BD-Single
			(Subp. solved	(Subp. solved
			using LP)	analytically)
	5	4.4	1.0	0.2
100	10	7.7	1.0	0.2
	15	10.6	1.3	0.3
	5	65.5	13.8	1.7
200	10	95.9	12.3	1.6
	15	116.7	14.0	1.8
	5	337.0	55.3	5.2
300	10	477.3	66.0	5.9
	15	621.7	66.2	5.2
	5	949.7	170.0	12.5
400	10	1138.9	190.0	13.4
	15	1649.7	202.1	12.4

• The analytical solution is dominating.

Benders decomposition – Computational results

					Reduction in # cuts		
					%98	%47	
n	m	CPLEX	BD-Single	BD-Multi	BD-single-pareto	BD-multi-pareto	
	5	337.0	15.8	514.1	43.0	265.8	
	10	477.3	29.3	568.7	77.9	310.9	
	15	621.7	31.4	568.9	66.8	358.8	
	20	739.2	162.9	675.6	108.7	546.9	
300	30	1043.7	800.9	653.0	139.8	596.9	
	40	1171.6	TL	754.6	286.2	650.6	
	50	987.6	TL	709.1	240.8	602.4	
	75	1003.5	TL	882.5	468.5	760.0	
	100	840.9	TL	806.2	445.4	663.9	

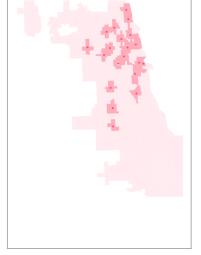
- The Pareto solution is dominating.
- TL: time limit (1h).

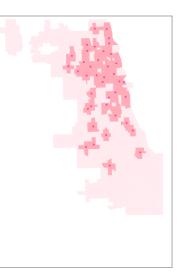

Benders decomposition – Computational results

m	n	Cplex	BD-multi-pareto	BD-single-pareto
	5	\mathbf{TL}	\mathbf{M}	1387.7
	10	\mathbf{TL}	\mathbf{M}	1388.2
	15	\mathbf{TL}	\mathbf{M}	1915.0
	20	\mathbf{TL}	\mathbf{M}	2463.6
1000	30	\mathbf{TL}	\mathbf{M}	2460.0
	40	\mathbf{TL}	\mathbf{M}	2420.0
	50	\mathbf{TL}	\mathbf{M}	3451.6
	75	\mathbf{TL}	${f M}$	\mathbf{TL}
	100	\mathbf{TL}	\mathbf{M}	\mathbf{TL}

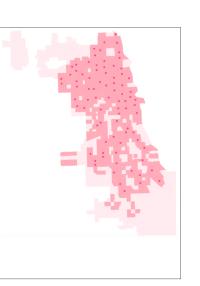
• TL: time limit (1h), M: memory

Service facility location optimization during a pandemic

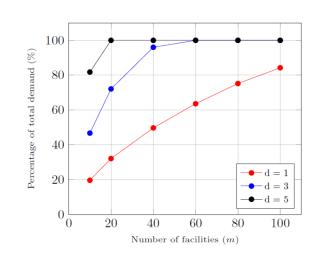

Maximum availability service facility location problem Chicago case study


Population (million)	# Nodes	# OD pairs
2.701	797	35501
	Dist	ance (km)
Node Density $(\#/\text{km}^2)$	²) minimu	m maximum
1.353	0.19	62.1

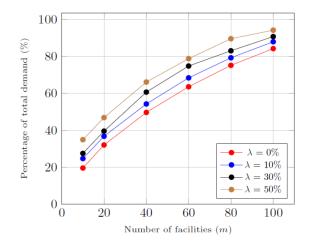
32/36


Chicago case study

(a) Facilities = 20, Coverage = 32.08%



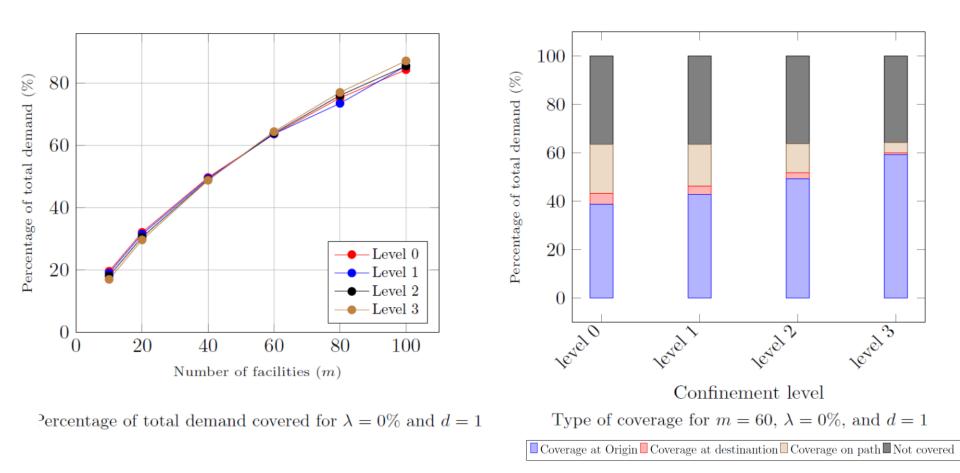
(b) Facilities = 40, Coverage = 49.70%



(c) Facilities = 60, Coverage = 63.59%

(d) Facilities = 80, Coverage = 75.19%

Percentage of total demand covered for Level 0 and $\lambda=0$



Percentage of total demand covered for Level 0 and d = 1

May 2021

33/36

Maximum availability service facility location problem Chicago case study

34/36 May 2021

Maximum availability service facility location problem Chicago case study

		Actua	l confi	nement	t level
		0	1	2	3
/el	0	0.0	3.1	5.7	8.1
tion lev	1	1.7	0.0	2.9	4.8
Optimization level	2	2.8	2.1	0.0	2.7
Оp	3	4.2	2.9	1.1	0.0

Service facility location optimization during a pandemic Future research topics

- Vaccine logistics,
- The uncertainty,
- Social inequity:
 - Pandemics does not impact people uniformly. The social inequalities in the society create hotspots for the virus to thrive.
- Symptomatic testing:
 - From the onset of the COVID-19 pandemic until June 2020, mainly the symptomatic patients were tested. However asymptomatic patients also exist, and their prevalence can be as high as 88% in certain groups.

• Reactive decision-making.

Service facility location optimization during a pandemic

> Okan Arslan Department of Decision Sciences HEC Montreal and CIRRELT

> > **GERAD** Seminar

May 19, 2021