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Prerequites
Basic notions in numerical analysis: gradient, hessian, vector space.
Basic notions in optimization: solution, objective function, constraints, or convexity.

Objectives
At the end of this tutorial, you will be able to:

Describe what a solution in multiobjective optimization is; and its main properties.
List some general multiobjective resolution methods.

Presentation (2/36) Multiobjective Optimization Mars 8th, 2021 2 / 36



An illustration

How to choose a car ? (drawn from [Ehrgott, 2005])

Your dilemna
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An illustration

How to choose a car ? (drawn from [Ehrgott, 2005])

Your dilemna

Your criteria
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An illustration

How to choose a car ? (drawn from [Ehrgott, 2005])

A market study (drawn from [Ehrgott, 2005])

Brand VW Opel Ford Toyota
Price ($) 16200 14900 14000 15200
Consumption (l/100 km) 7.2 7.0 7.5 8.2
Power (kW) 66.0 62.0 55.0 71.0

Conclusion
No choice is optimal : life is about making compromises ...
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An illustration

Applications

Various applications of multiobjective optimization
Machine learning [Alexandropoulos et al., 2019, Jin, 2006]
Chemical engineering [Sharma and Rangaiah, 2013]
Bioinformatics and computational biology [Handl et al., 2007]
Discrete optimization [Ehrgott, 2005]
Economics [Tapia and Coello, 2007]
And so on ...
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An illustration

Last remarks before to start

Pros
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An illustration

Last remarks before to start

Cons

Hard, hard, hard... More difficult to solve than
single-objective optimization problems !
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An illustration

1 Multiobjective optimization : Core concepts

2 Scalarization methods

3 Descent-order methods

4 Heuristics and derivative free optimization algorithms

5 Conclusion
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Multiobjective optimization : Core concepts

The general problem

The problem

minimize f (x) = [f1(x), f2(x), . . . , fm(x)]>
x ∈ Ω

where:
f : Ω→ Rm is the objective function, composed of m ≥ 2 objective functions
f1, f2, . . . , fm for i = 1, 2, . . . ,m.
Ω ⊆ Rn is the feasible decision space.
f (Ω) is designed as the feasible objective space.
Rn is designed as the decision space, Rm as the objective space.
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Multiobjective optimization : Core concepts

Order relations : definitions

Pareto dominance

Given two decision vectors x1 and x2,
x1 weakly dominates x2 (denoted as x1 � x2) if and only if fi (x1) ≤ fi (x2) for all
i = 1, 2, . . . ,m.
ex : when f (x1) = [2, 1]> and f (x2) = [2, 2]>, x1 � x2.
x1 dominates x2 (denoted as x1 ≺ x2) if and only if fi (x1) ≤ fi (x2) for all
i = 1, 2, . . . ,m and there exists index j ∈ {1, 2, . . . ,m} such that fj (x1) < fj (x2).
ex : for f (x1) = [1, 0]> and f (x2) = [1, 1]>, x1 ≺ x2.
x1 strictly dominates x2 (denoted as x1 ≺≺ x2) if and only if fi (x1) < fi (x2) for all
i = 1, 2, . . . ,m.
ex : when f (x1) = [1, 0]> and f (x2) = [5, 6]>, x1 ≺≺ x2.
x1 and x2 are incomparable (denoted as x1 ‖ x2) if and only if x1 does not weakly
dominate x2 nor x2 does not weakly dominate x2.
ex : when f (x1) = [−1, 3]> and f (x2) = [7,−2]>, x1 ‖ x2.
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Multiobjective optimization : Core concepts

Dominance, dominated and indifferent zones

f1

f2

•
f (x)

Figure: Principal search zones for a biobjective minimization problem in the objective space.
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Figure: Principal search zones for a biobjective minimization problem in the objective space.
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Multiobjective optimization : Core concepts

Dominance, dominated and indifferent zones
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•
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Figure: Principal search zones for a biobjective minimization problem in the objective space.
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Multiobjective optimization : Core concepts

Dominance, dominated and indifferent zones

f1

f2

•
f (x)

Dominance zone

Dominated zoneIndifference zone

Indifference zone

Figure: Principal search zones for a biobjective minimization problem in the objective space.

Presentation (9/36) Multiobjective Optimization Mars 8th, 2021 9 / 36



Multiobjective optimization : Core concepts

Pareto front and Pareto set

Definition
The decision vector x∗ ∈ Ω is said to be Pareto-optimal if there does not exist any other
decision vector x ∈ Ω such that x ≺ x∗.
The set of all Pareto optimal solutions is called the Pareto set denoted as XP and its
image by the objective function is called the Pareto front denoted as YP .
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Multiobjective optimization : Core concepts

Pareto front and Pareto set

An illustration,

f1

f2

f (Ω)
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Multiobjective optimization : Core concepts

Pareto front and Pareto set

An illustration,

f1

f2

YP f (Ω)

Figure: Objective space and convex Pareto front for a biobjective minimization problem.
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Multiobjective optimization : Core concepts

Pareto front and Pareto set

Another illustration,

f1

f2

f (Ω)
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Multiobjective optimization : Core concepts

Pareto front and Pareto set

Another illustration,

f1

f2

YP f (Ω)

Figure: Objective space and non convex Pareto front for a biobjective minimization problem.
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Multiobjective optimization : Core concepts

Pareto front and Pareto set

And a last one !

f1

f2

f (Ω)
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Multiobjective optimization : Core concepts

Pareto front and Pareto set

And a last one !

f1

f2

YP

f (Ω)

Figure: Objective space and piecewise-continuous Pareto front for a biobjective minimization problem
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Multiobjective optimization : Core concepts

Bounds on the Pareto front

Definition

The ideal objective vector y I is defined as

y I =
[

min
x∈Ω

f1(x),min
x∈Ω

f2(x), . . . ,min
x∈Ω

fm(x)
]>

Definition

The nadir objective vector yN is defined as

yN =
[

max
x∈XP

f1(x), max
x∈XP

f2(x), . . . , max
x∈XP

fm(x)
]>

Definition

The utopian objective vector yU is defined as

yU =
[
y I
1 − ε1, y I

2 − ε2, . . . , y I
m − εm

]>
where εi > 0 for i = 1, 2, . . . ,m.
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Multiobjective optimization : Core concepts

Bounds on the Pareto front

An illustration

f1

f2

YP

•
y I

•yN

•yU

f (Ω)

Figure: Objective space, ideal, utopian and nadir objective vector for a biobjective minimization problem.
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Multiobjective optimization : Core concepts

Limits

Figure: An exemple of a Pareto front approximation [Burachik et al., 2017].
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Scalarization methods

Scalarization methods: the main idea

Rely on single-objective optimization methods.
Convert the multiobjective optimization problem (MOP) into a succession of
parameterized single-objective subproblems (SOPj ).

Goal

Solve (SOPj) ⇒ One non dominated point.
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Scalarization methods

The Weighted-sum scalarization method [Miettinen, 1999]

Principle
Given a set of positive weights wi for i = 1, 2, . . . ,m such that

m∑
i=1

wi = 1,

solve the subproblem

minimize
m∑

i=1

wi fi (x)

x ∈ Ω

Pros
Intuitive to understand and easy to interpret.
The global solution of this problem is weakly Pareto optimal.
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Scalarization methods

The Weighted-sum scalarization method [Miettinen, 1999]

Cons

f1

f2

f (Ω)

Figure: The weighted sum approach may generate only a subset of the Pareto front.
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Scalarization methods

The ε-constraint method [Chankong and Haimes, 1983]

Principle
Solve the following subproblem

minimize fl (x)
x ∈ Ω(ε)

where
Ω(ε) = {x ∈ Ω : fj (x) ≤ εj , j = 1, 2, . . . ,m, j 6= l}

Presentation (15/36) Multiobjective Optimization Mars 8th, 2021 15 / 36



Scalarization methods

The ε-constraint method [Chankong and Haimes, 1983]

Functioning

f1

f2

ε1•
f (s1)

ε2•
f (s2)

ε3•
f (s3)

ε4•
f (s4)

f (Ω)

Figure: Generation of non dominated points using the ε constraint method.
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Scalarization methods

The ε-constraint method [Chankong and Haimes, 1983]

Pros
Easy to understand.
Easy to interpret.

Cons
Numerical issues.
Difficulties to solve the single-objective optimization subproblem.
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Scalarization methods

The Normal Boundary Intersection (NBI) method [Das and Dennis, 1998]

Principle
Solve the following subproblem

maximize t
s.t f (x) = Φw + tn

x ∈ Ω, t ∈ R

where:
w is a vector of weights: wi ≥ 0 and

∑m
i=1 wi = 1.

n is an unit vector orthogonal to the CHIM simplex (Convex Hull of Individual
Minima) pointing to the origin.
Φ the m ×m matrix whose columns are f (x j,?)− y I with

x j,? ∈ arg min
x∈Ω

fj (x).

Presentation (16/36) Multiobjective Optimization Mars 8th, 2021 16 / 36



Scalarization methods

The Normal Boundary Intersection (NBI) method [Das and Dennis, 1998]

Illustration

f1

f2

f (Ω)

Figure: Generation of non dominated points using the NBI method.
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Scalarization methods

The Normal Boundary Intersection (NBI) method [Das and Dennis, 1998]
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Scalarization methods

The Normal Boundary Intersection (NBI) method [Das and Dennis, 1998]
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Scalarization methods

The Normal Boundary Intersection (NBI) method [Das and Dennis, 1998]

A limitation of NBI

f1

f2

f3

f (x1,∗)

f (x3,∗)

f (x2,∗)

Figure: The NBI method can miss some parts of the Pareto front (inspired by [Das and Dennis, 1998]).
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Scalarization methods

The Normal Boundary Intersection (NBI) method [Das and Dennis, 1998]

Pros
Generate a good distribution of Pareto objective vectors
Adaptive for many types of problems.

Cons
The equality constraints can complexify the resolution of the subproblem.
The method can generate dominated points.
Can miss some part of the Pareto front for more than 2
objectives [Das and Dennis, 1998].

Other Variant
Normal Constraint Method [Messac and Mattson, 2004]
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Scalarization methods

Weighted Tchebycheff methods [Miettinen, 1999]

Weighted Tchebycheff method

Given a set of weights wi for i = 1, 2, . . . ,m with
∑m

i=1 wi = 1, solve the subproblem

minimize max
1≤i≤m

wi |fi (x)− ri |

x ∈ Ω

where r ∈ Rm is a reference objective vector. Generally, r ∈ {y I , yU}.
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Scalarization methods

Weighted Tchebycheff methods [Miettinen, 1999]

Weighted Tchebycheff augmented methods

Given a set of weights wi for i = 1, 2, . . . ,m with
∑m

i=1 wi = 1, solve the subproblem

minimize
[

max
1≤i≤m

wi (fi (x)− ri )
]

+ ρ
∑m

i=1 fi (x)− ri

x ∈ Ω

where
r ∈ Rm is a reference objective vector. Generally, r ∈ {y I , yU}.
ρ > 0 is an external parameter.

Another variant is

minimize max
1≤i≤m

wi

[
fi (x)− ri + ρ

m∑
i=1

fi (x)− ri

]
x ∈ Ω
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Scalarization methods

Weighted Tchebycheff methods [Miettinen, 1999]

Pros
Can capture non convex parts of the Pareto front.

Cons
Choice of the weights
Require a reformulation.
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Scalarization methods

The goal programming scalarization method

Pascoletti and Serafini scalarization [Pascoletti and Serafini, 1984]
Solve the following subproblem

minimize t
s.t. f (x) ≤ a + tr

(x , t) ∈ Ω× R

with r ∈ Rm and a ∈ Rm.

Interpretation

f1

f2

•a

•tr

r

Presentation (18/36) Multiobjective Optimization Mars 8th, 2021 18 / 36



Scalarization methods

The goal programming scalarization method

Illustration (inspired by [Ghosh and Chakraborty, 2015, Khorram et al., 2014])

f1

f2

f (Ω)

Figure: Generation of non dominated points using the Pascoletti and Serafini approach.
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Scalarization methods
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Scalarization methods

To go further

Some general references on scalarization
methods [Miettinen, 1999, Wiecek et al., 2016].
How to deal with m ≥ 3 objectives ? Some
works [Mueller-Gritschneder et al., 2009, Burachik et al., 2017] explore this path.
Recently, methods using a combination of scalarization approaches and branch and
bound techniques have been
proposed [Eichfelder et al., 2021, Niebling and Eichfelder, 2019].
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Descent-order methods

A reminder

The problem

min
x∈Rn

f (x)

where f : Rn → R is a scalar-valued function and continuously differentiable.
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Descent-order methods

A reminder

The problem

min
x∈Rn

f (x)

where f : Rn → R is a scalar-valued function and continuously differentiable.

A simple minimization optimization algorithm

Initialization : choose a starting point x0 ∈ Rn.
Main loop : for k = 0, 1, . . .

1 If xk satisfies a stopping condition, then stop.
2 Otherwise, choose a descent direction dk .
3 Choose a step length αk > 0.
4 Set xk+1 := xk + αkdk .
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Descent-order methods

A reminder

The problem

min
x∈Rn

f (x)

where f : Rn → R is a scalar-valued function and continuously differentiable.

Some interesting descent directions
The steepest descent direction

dk = −∇f (x k ).

The Newton direction
dk = −[∇2f (x k )]−1∇f (x k ).

The Quasi-Nexton direction

dk = −(Bk )−1∇f (x k )

where Bk ∈ Rn positive symmetric.
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Descent-order methods

A reminder

Question
Can we define descent directions for multiobjective optimization problems ?
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Descent-order methods

Steepest descent direction for unconstrained multiobjective optimization

The problem

min
x∈Rn

f (x)

where f : Rn → Rm is continuously differentiable.
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Descent-order methods

Steepest descent direction for unconstrained multiobjective optimization

The problem

min
x∈Rn

f (x)

where f : Rn → Rm is continuously differentiable.

Theorem
If x∗ ∈ Rn is Pareto optimal, then there does not exist any direction d ∈ Rn such that for
all indexes i = 1, 2, . . . ,m,

∇fi (x)T d < 0.

Idea
Study

max
i=1,2,...,m

∇fi (x)T d .
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Descent-order methods

Steepest descent direction for unconstrained multiobjective optimization

The problem

min
x∈Rn

f (x)

where f : Rn → Rm is continuously differentiable.

Steepest gradient descent for unconstrained multiobjective
optimization [Fliege and Svaiter, 2000]

d(x) ∈ arg min
d∈Rn

max
i=1,2,...,m

∇fi (x)T d + 1
2‖d‖

2
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Descent-order methods

Steepest descent direction for unconstrained multiobjective optimization

The problem

min
x∈Rn

f (x)

where f : Rn → Rm is continuously differentiable.

Steepest gradient descent for unconstrained multiobjective
optimization [Fliege and Svaiter, 2000]

d(x) ∈ arg min
d∈Rn

max
i=1,2,...,m

∇fi (x)T d + 1
2‖d‖

2

Remarks
The problem can be reformulated as a smooth one:

minimize t + 1
2‖d‖

2

s.t. ∇fi (x)>d ≤ t, i = 1, 2, . . . ,m
t ∈ R, x ∈ Rn

If m = 1, one gets dk = −∇f (x k ).
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Descent-order methods

Other descent directions for unconstrained multiobjective optimization

Assumption

f : Rn → Rm is C2, i.e. twice differentiable on Rn.

Newton direction for unconstrained multiobjective optimization [Fliege et al., 2009]

d(x) ∈ arg min
d∈Rn

max
i=1,2,...,m

∇fi (x)>d + 1
2d>∇2fi (x)d .

Newton direction for unconstrained multiobjective optimization [Fliege et al., 2009]

d(x) ∈ arg min
d∈Rn

max
i=1,2,...,m

∇fi (x)>d + 1
2d>∇2fi (x)d .

Quasi-Newton direction for unconstrained multiobjective
optimization [Morovati et al., 2017, Qu et al., 2011]

d(x) ∈ arg min
d∈Rn

max
i=1,2,...,m

∇fi (x)>d + 1
2d>Bk,i d

where Bk,i ∈ Rn×n for i = 1, 2, . . . ,m is symmetric.
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Descent-order methods

Advantages and inconveniences

Pros
Do not require external parameters.
Intuitive to understand.

Cons
The subproblem can be difficult to solve.
Generate only one non dominated point given a starting point.
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Heuristics and derivative free optimization algorithms

Heuristics

Principles
Start from an initial population of points.
Interaction between them defined by some parameters.
Mutation and selection along iterations, supposedly toward some Pareto points.
For more information, see [Deb and Miettinen, 2008].

Classical methods
Evolutionary algorithms: NSGA-II [Deb et al., 2000],
MOEA-D [Zhang and Li, 2007], ...
Particule-swarm optimization [Poli et al., 2007]: ant, wolf, butterfly, ...
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Heuristics and derivative free optimization algorithms

Heuristics

Some software
jMetal [Durillo and Nebro, 2011, Nebro et al., 2015]:
https://github.com/jMetal/jMetal.
Pagmo2 [Biscani and Izzo, 2020]: https://github.com/esa/pagmo2.
Pymoo [Blank and Deb, 2020]: https://pymoo.org/.
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Heuristics and derivative free optimization algorithms

Heuristics

Pros
Really versatile (can deal with integer variables, ...).
Tunable.

Cons
Tunable.
Not really efficient.
Are really bad to deal with constraints.
Difficult to scale with a huge number of variables.
The population size parameter limits the number of potential solutions.
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Heuristics and derivative free optimization algorithms

Exact black-box/derivative-free optimization methods

Algorithms
Direct Multi Search (DMS) [Custódio et al., 2011].
Multiobjective Implicit Filtering Optimization (MOIF) [Cocchi et al., 2018].
Derivative-Free Multiobjective Optimization (DFMO) [Liuzzi et al., 2016].

Advantages
Very similar to heuristics

1 Start from an initial population of points.
2 Update the population towards iterations.

Do not make any restrictions on the size of the population.
Deterministic convergence analysis.
Efficient.
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Conclusion

Conclusion

At the end of this tutorial, you are now able to:
Describe what a solution in multiobjective optimization is; the principal properties of
a Pareto front.
List some general multiobjective resolution methods.
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Conclusion

Conclusion

What I did not mention
The construction of efficient data structures for Pareto fronts [Bentley et al., 1993,
Chen et al., 2012, De et al., 2017, Jaszkiewicz and Lust, 2018]:
see https://alandefreitas.github.io/pareto/ for an implementation.
The evaluation of the performance of multiobjective optimization
algorithms [Audet et al., 2021, Li and Yao, 2019].
Discrete multiobjective optimization
( [Ehrgott, 2005, Holzmann and Smith, 2018, Kirlik and Sayın, 2014] for example).
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Conclusion

Conclusion

Multiobjective optimization algorithms
are a tool to better model engineering problems.
are more difficult to solve than single-objective optimization problems.
traditionally are dealt using single-objective optimization methods and scalarization
techniques.

But
difficult to implement;
there are a limited number of bullet-proof available algorithms;
hence the predominance of heuristics.
To follow...
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Conclusion

Thank you for your attention !
Do you have any questions ?
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