Back to activities
“Meet a GERAD researcher!” seminar

Tight-and-cheap conic relaxation for the AC optimal power flow problem


Apr 24, 2018   03:30 PM — 04:30 PM

Christian Bingane Polytechnique Montréal, Canada

The classical alternating current optimal power flow problem is highly nonconvex and generally hard to solve. Convex relaxations, in particular semidefinite, second-order cone, convex quadratic, and linear relaxations, have recently attracted significant interest. The semidefinite relaxation is the strongest among them and is exact for many cases. However, the computational efficiency for solving large-scale semidefinite optimization is lower than for second-order cone optimization. We propose a conic relaxation obtained by combining semidefinite optimization with the reformulation-linearization technique, commonly known as RLT. The proposed relaxation is stronger than the second-order cone relaxation and nearly as tight as the standard semidefinite relaxation. Computational experiments using standard test cases with up to 6515 buses show that the time to solve the new conic relaxation is up to one order of magnitude lower than for the standard semidefinite relaxation.

Free entrance.
Welcome to everyone!


Room 4488
André-Aisenstadt Building
Université de Montréal Campus
2920, chemin de la Tour
Montréal QC H3T 1J4

Research Axis

Research application