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The mE-VRSPTW

The Multigraph-based Electric Vehicle Routing and Overnight Charging
Scheduling Problem with Time Windows (mE-VRSPTW)

Given
• Unlimited number of identical EVs with a given load capacity Q and

energy capacity E , housed in a single depot
• Limited number B of identical chargers located at the depot
• Set of customers C with known demands qi
• A time window [t i , t i ] for each customer i ∈ C
• The road network
• Travel and service times, as well as energy consumptions
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The mE-VRSPTW

Find vehicle routes and their preceding overnight charging schedule such
that

• All customer demands are met
• Each customer is visited by a single vehicle
• Charging station capacity is not exceeded
• Each route starts and ends at the depot
• Each route is load-, time-, and energy-feasible
• Each route is scheduled for one continuous recharge in a single charger
• Total cost (distance) is minimized
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Time Horizon
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Figure 1: Routing and charging scheduling time horizons.

• T = {1, . . . , T , . . . , T̃ − 1}: discrete charging timesteps
• T̃ : latest departure time from the depot
• [T , T ]: depot’s time window
• Every vehicle initially (at time 1) has zero energy
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Recharging Function
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Figure 2: Piecewise-linear recharging function (Montoya et al., 2017).

• Piecewise-linear function f with a set P = {1, . . . , P} of pieces
• Energy levels: 0 = ϕ0 < ϕ1 < . . . < ϕP = E
• Recharging rates (energy per timestep): θ1 > θ2 > . . . > θP > 0
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Charging Schedule
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Figure 3: Infeasible charging schedule. Adapted from Lam et al. (2022).

• Non-preemptively and in a single charger
• Sufficient energy when departing from the depot
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Notation

Vertex set V = {0} ∪ C

Arc multiset A ⊆
⋃

(i ,j)∈V2 A(i ,j)

• Alternative ways to travel: A(i ,j) = {(i , j)k | k = 1, . . . , |A(i ,j)|}
• Driving distance c(i ,j)k

• Travel time t(i ,j)k (including service time at vertex i if any)
• Energy consumption e(i ,j)k

Multigraph G = (V, A)
• Trade-off: consumed energy and the traveled distance
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Illustrative Example
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(b) Charging scheduling.

• Q = 10, E = 5, and B = 1
• qi = 5, i ∈ C
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Set-Partitioning Formulation

min
∑
r∈R

cr λr (1a)

s.t.
∑
r∈R

ar
i λr = 1 ∀i ∈ C, (1b)

∑
r∈R

br
t λr ≤ B ∀t ∈ T , (1c)

λr ∈ {0, 1} ∀r ∈ R. (1d)

• (1a): minimize total travel cost
• (1b): each customer is visited by one EV
• (1c): meet charging station capacity each period
• αi ∈ R : dual of (1b) for customer i ∈ C
• βt ≤ 0 : dual of (1c) for timestep t ∈ T
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Pricing Problem Multigraph (VP)
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• VP = {s} ∪ T ∪ {0} ∪ C ∪ {0}
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Pricing Problem Multigraph (A)
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• VP = {s} ∪ T ∪ {0} ∪ C ∪ {0}
• AP = A

Yamín, Desaulniers, and Mendoza (2022) Column Generation Workshop May 17, 2023 14 / 37



Pricing Problem Multigraph (A1)
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Pricing Problem Multigraph (A2)
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Pricing Problem Multigraph (A3)
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Illustrative Example
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(b) Charging scheduling.

• Q = 10, E = 5, and B = 1
• qi = 5, i ∈ C
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Pricing Problem Multigraph
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Figure 6: Illustrative pricing problem multigraph.
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Pricing Problem Multigraph (GP)

Multigraph GP = (VP, AP)

Vertex set VP = {s} ∪ T ∪ {0} ∪ C ∪ {0}

Arc sets AP = A ∪ A1 ∪ A2 ∪ A3
• Modified arc cost: for all (i , j)k ∈ AP

r(i ,j)k =
{

c(i ,j)k − αi , (i , j)k ∈ A,

−βi , (i , j)k ∈ A1 ∪ A2 ∪ A3,
(2)

where α0 = 0 and βs = 0 for notation conciseness
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ng-SPPRC

A path from s to 0 passing through 0 defines a route (and its charging
schedule)

We solve the ng-SPPRC as the PP (Baldacci et al., 2011)

Backward labeling algorithm
• Starts at 0 at time T
• Latest departure time from the depot (favoring more recharging time)
• Charging time required to perform the route
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The Labeling Algorithm

A label ℓi encodes a subpath from i ∈ VP to 0:
• Cumulative reduced cost r(ℓi) ∈ R
• Remaining load capacity q(ℓi) ∈ Z+
• Latest time for starting service t(ℓi) ∈ [T , T ]
• Remaining energy capacity e(ℓi) ∈ Z+
• Number of timesteps required to charge b(ℓi) ∈ Z+

• A resource Iu
c (ℓi) ∈ {0, 1} indicating whether customer c ∈ C is

unreachable
• A resource Ing

c (ℓi) ∈ {0, 1} indicating whether visiting customer c ∈ C
violates the ng-path cycling restrictions
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Dominance Rules

Definition
In a customer vertex i ∈ C, a label ℓi dominates another label ℓ′

i if the
following conditions hold:

r(ℓi) ≤ r(ℓ′
i), (3a)

q(ℓi) ≥ q(ℓ′
i), (3b)

t(ℓi) ≥ t(ℓ′
i), (3c)

e(ℓi) ≥ e(ℓ′
i), (3d)

max{Iu
c (ℓi), Ing

c (ℓi)} ≤ max{Iu
c (ℓ′

i), Ing
c (ℓ′

i)} ∀c ∈ C. (3e)
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Dominance Rules

Definition
In a charging time vertex i ∈ T , a label ℓi dominates another label ℓ′

i if
the following conditions hold:

r(ℓi) ≤ r(ℓ′
i), (4a)

b(ℓi) ≤ b(ℓ′
i). (4b)
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Valid Inequalities

• Rounded capacity inequality (at the root node):

∑
r∈R

λr ≥
⌈∑

i∈C
qi/Q

⌉

• MP is (dynamically) strengthened with subset-row cuts (SRCs)
defined over S ⊆ C, |S| = 3 (Jepsen et al., 2008):

∑
r∈R

1
2

∑
i∈S

ar
i

 λr ≤ 1
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Branching Rules

Hierarchical branching:
1 Number of vehicles used
2 Arc-flow variables
3 Consecutive flow through the depot source vertex

Branching on arc-flow variables x(i ,j)k , (i , j)k ∈ A:
• The branching is performed locally:

x(i ,j)k = 0 and x(i ,j)k = 1

• We remove routes in R′ that do not respect the imposed decisions
• We remove arcs in AP to forbid generating routes that do not

respect the imposed decisions
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Branching Rules

Branching on arc-flow variables x(i ,j)1 , (i , j)1 ∈ A1 ∪ A3:
• The branching is performed globally:

x(i ,j)1 ≤ ⌊B̃⌋ and x(i ,j)1 ≥ ⌈B̃⌉

• The corresponding dual variable is subtracted in r(i ,j)1

Remarks
• Flow through arcs in A, A1, and A3 is already an integer (flow

conservation)
• Branching on arcs in A3: dual variable may penalize or reward the

labels’ reduced cost, depending on their charging start time
• Labels need to be extended even after they have completed their

charge
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Branching Rules

Current branching decisions:
• Guarantee integer arc flows
• But not necessarily guarantee integer path flows
• Hint: routes visiting the same customer arcs but with different

charging schedules
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Branching Rules

When none of the above decisions can be imposed, there exist two arcs,
(0, j)k ∈ A and (t, 0)1 ∈ A1, such that their consecutive flow
m(0,j)k ,(t,0)1 is fractional

m(0,j)k ,(t,0)1 =
∑
r∈R

ar
(0,j)k · br

t · (1 − br
t+1) · λr (5)

Branching on the consecutive flow through the depot source vertex 0 :
• The branching is performed locally (Desaulniers, 2010):

m(0,j)k ,(t,0)1 = 0 and m(0,j)k ,(t,0)1 = 1

• We remove routes in R′ that do not respect the imposed decisions
• The labeling algorithm is modified

It was unnecessary for our computational experiments
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Computational Results

• Java OR library (jORLib) and the Java graph theory library
(JGraphT)

• ILOG CPLEX solver (version 22.1) for solving the RMPs
• Standard PC with an Intel Core i7-8665U CPU @ 1.90GHz with

16GB of RAM allocated to the memory heap size
• Two-hour computational time limit
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Test Instances

• 112 instances based on the well-known VRPTW benchmark of
Solomon (1987)

• Peugeot iOns: E = 16 kilowatt-hours (kWh)
• Minutes as the time unit of discretization and kilometers as the

distance unit
• EVs travel at a fixed speed of 60 km/h
• Min-cost (and min-time) alternative (i , j)1 ∈ A: c(i ,j)1 is the

Euclidean distance and e(i ,j)1 = c(i ,j)1 · 0.175 kWh/km
• Min-energy alternative (i , j)2 ∈ A: c(i ,j)2 is equal to the Manhattan

distance and e(i ,j)2 = c(i ,j)2 · 0.125 kWh/km
• (Hopefully) Available soon at www.vrp-rep.org (Mendoza et al.,

2014)
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Performance of the BPC Algorithm

Instance C Avg. #
of altern. B LB Cuts Nodes

Time Vehicles
used UB Time in

use (%)
Chargers

in use (%)
Time at

capacity (%)Total (s) Master (%) Pricing (%)

R1
25

1.64 3 487.4 13.3 3.2 1.73 12.17 71.89 6.0 488.3 94.92 72.96 49.60
C1 1.61 1 198.2 10.6 1.7 11.01 3.47 92.30 3.2 198.6 75.27 75.27 75.27
RC1 1.53 3 445.4 59.0 2.5 4.44 11.81 78.34 5.0 446.6 100.00 75.08 47.40
R2

25
1.66 1 431.6 10.4 6.3 2.87 8.77 63.80 4.8 431.6 74.31 74.31 74.31
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R1

50
1.63 6 853.2 92.6 21.0 201.26 7.40 87.68 10.0 857.6 100.00 72.87 40.43

C1 1.68 2 370.3 21.2 1.4 53.03 3.65 93.53 5.2 371.0 92.08 76.85 61.62
RC1 1.48 4 798.3 108.5 2.3 559.96 2.67 96.42 7.6 800.1 99.59 74.48 54.10
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C2 1.68 1 482.5 80.5 2.0 221.91 6.67 91.08 5.4 482.5 34.21 34.21 34.21
RC2 1.49 2 699.9 33.8 2.5 26.10 8.93 84.14 6.4 699.9 87.72 66.90 46.09

Table 1: Summary of the BPC algorithm’s performance.

• Maximum integrality gap 1.86%!
• Relatively small BB trees (yet, enforcing integrality can be harder

than in other VRPs)
• Tight charging schedules
• Solves 50-customer instances

Yamín, Desaulniers, and Mendoza (2022) Column Generation Workshop May 17, 2023 33 / 37



Performance of the BPC Algorithm

Instance C Avg. #
of altern. B LB Cuts Nodes

Time Vehicles
used UB Time in

use (%)
Chargers

in use (%)
Time at

capacity (%)Total (s) Master (%) Pricing (%)

R1
25

1.64 3 487.4 13.3 3.2 1.73 12.17 71.89 6.0 488.3 94.92 72.96 49.60
C1 1.61 1 198.2 10.6 1.7 11.01 3.47 92.30 3.2 198.6 75.27 75.27 75.27
RC1 1.53 3 445.4 59.0 2.5 4.44 11.81 78.34 5.0 446.6 100.00 75.08 47.40
R2

25
1.66 1 431.6 10.4 6.3 2.87 8.77 63.80 4.8 431.6 74.31 74.31 74.31

C2 1.62 1 272.5 43.1 1.5 57.50 2.78 94.21 3.0 272.5 37.93 37.93 37.93
RC2 1.53 1 419.4 39.8 7.3 4.20 16.35 63.42 4.6 419.4 87.19 87.19 87.19
R1

50
1.63 6 853.2 92.6 21.0 201.26 7.40 87.68 10.0 857.6 100.00 72.87 40.43

C1 1.68 2 370.3 21.2 1.4 53.03 3.65 93.53 5.2 371.0 92.08 76.85 61.62
RC1 1.48 4 798.3 108.5 2.3 559.96 2.67 96.42 7.6 800.1 99.59 74.48 54.10
R2

50
1.65 2 753.9 78.4 15.5 129.21 14.33 76.85 8.1 755.0 86.79 70.75 54.70

C2 1.68 1 482.5 80.5 2.0 221.91 6.67 91.08 5.4 482.5 34.21 34.21 34.21
RC2 1.49 2 699.9 33.8 2.5 26.10 8.93 84.14 6.4 699.9 87.72 66.90 46.09

Table 1: Summary of the BPC algorithm’s performance.

• Maximum integrality gap 1.86%!
• Relatively small BB trees (yet, enforcing integrality can be harder

than in other VRPs)
• Tight charging schedules
• Solves 50-customer instances

Yamín, Desaulniers, and Mendoza (2022) Column Generation Workshop May 17, 2023 33 / 37



Impact of Charging Scheduling on Computational Time
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Figure 7: Impact of charging scheduling on computational time.

• Highly variable running times
• C chargers almost 3 times faster than B chargers
• B + 1 chargers over 1.5 times faster than B chargers
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Impact of Multigraph Representation on Optimal Cost
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Figure 8: Impact of multigraph representation on optimal cost.

• Avg savings: 12.96% (min-energy) and 2.87% (min-cost)
• 2.26 and 1.73 times faster on min-energy and min-cost

Yamín, Desaulniers, and Mendoza (2022) Column Generation Workshop May 17, 2023 35 / 37



Impact of Multigraph Representation on Optimal Cost

R1 R2 C1 C2 RC1 RC2

200

400

600

800

Instances

O
pt

im
al

co
st

Min-energy Min-cost Multigraph

(a) 25-customer instances.

R1 R2 C1 C2 RC1 RC2

400

600

800

1,000

1,200

1,400

Instances

O
pt

im
al

co
st

Min-energy Min-cost Multigraph

(b) 50-customer instances.

Figure 8: Impact of multigraph representation on optimal cost.

• Avg savings: 12.96% (min-energy) and 2.87% (min-cost)
• 2.26 and 1.73 times faster on min-energy and min-cost

Yamín, Desaulniers, and Mendoza (2022) Column Generation Workshop May 17, 2023 35 / 37



Table of Contents

1 Problem Statement

2 BPC Algorithm

3 Computational Results

4 Conclusion

Yamín, Desaulniers, and Mendoza (2022) Column Generation Workshop May 17, 2023 36 / 37



Conclusion

An E-VRP with piecewise-linear recharging and limited chargers
• EVs are charged at the depot
• Trade-off between conflicting resources

BPC algorithm that implements state-of-the-art techniques
• MP: capacity constraints of the depot’s chargers
• PP: non-preemptive charge of the EVs
• ng-path relaxation, SRCs, and a specialized labeling algorithm
• Problem-specific dominance and branching rules

From a computational perspective
• Solves to optimality instances with 50 customers
• Impact of charging scheduling on computational time and multigraph

representation on optimal cost
Thank you! Questions?
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Why Study This Problem?

Goods distribution in urban city centers: internal combustion engine
vehicles (ICEVs) to commercial EVs (Pelletier et al., 2017)

EVs alleviate some of the unsustainable practices of present-day
logistics, but still have significant disadvantages over ICEVs

Researchers have investigated two broad approaches
1 Plan recharging stops along a route
2 Designing routes that can be completed with a full battery load

Operators prefer charging the fleet at their facilities and overnight
(Morganti and Browne, 2018)
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ng-path Relaxation
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Figure 9: ng-path relaxation.

• Each customer i ∈ C has a neighborhood Ni ⊆ C containing the
∆ ∈ Z+ closest customers to i (in terms of distance, time, or energy)
and customer i itself.

• A ng-path allows a cycle starting and ending at vertex j ∈ C if and
only if there exists a vertex i ∈ C in the cycle for which j /∈ Ni .

• Therefore, such a cycle is prohibited if and only if j ∈ Ni for every
vertex i ∈ C it contains.
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Label Extension
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