The Electric Vehicle Routing and Overnight Charging Scheduling Problem on a Multigraph

Daniel Yamín¹ Guy Desaulniers² Jorge E. Mendoza³

¹Centro para la Optimización y Probabilidad Aplicada (COPA), Departamento de Ingeniería Industrial, Universidad de los Andes, Bogotá, Colombia.

²Polytechnique Montréal and GERAD, Montreal, Quebec, Canada.

³HEC Montréal, Montreal, Quebec, Canada.

2023 Column Generation Workshop May 17, 2023

- Problem Statement
- **2** BPC Algorithm
- 3 Computational Results
- 4 Conclusion

臣

Problem Statement

BPC Algorithm

3 Computational Results

4 Conclusion

Yamín, Desaulniers, and Mendoza (2022)

< 4³ ► <

E

The mE-VRSPTW

The Multigraph-based Electric Vehicle Routing and Overnight Charging Scheduling Problem with Time Windows (mE-VRSPTW)

< ∃ >

The mE-VRSPTW

The Multigraph-based Electric Vehicle Routing and Overnight Charging Scheduling Problem with Time Windows (mE-VRSPTW)

Given

- Unlimited number of identical EVs with a given load capacity Q and energy capacity E, housed in a single depot
- Limited number B of identical chargers located at the depot
- Set of customers C with known demands q_i
- A time window $[\underline{t}_i, \overline{t}_i]$ for each customer $i \in C$
- The road network
- Travel and service times, as well as energy consumptions

Find vehicle routes and their preceding overnight charging schedule such that

- All customer demands are met
- Each customer is visited by a single vehicle
- Charging station capacity is not exceeded
- Each route starts and ends at the depot
- Each route is load-, time-, and energy-feasible
- Each route is scheduled for one continuous recharge in a single charger
- Total cost (distance) is minimized

Figure 1: Routing and charging scheduling time horizons.

- $\mathcal{T} = \{1, \dots, \underline{T}, \dots, \widetilde{T} 1\}$: discrete charging timesteps
- \tilde{T} : latest departure time from the depot
- $[\underline{T}, \overline{T}]$: depot's time window
- Every vehicle initially (at time 1) has zero energy

Recharging Function

Figure 2: Piecewise-linear recharging function (Montoya et al., 2017).

- **Piecewise-linear function** *f* with a set $\mathcal{P} = \{1, \ldots, P\}$ of pieces
- Energy levels: $0 = \phi_0 < \phi_1 < ... < \phi_P = E$
- Recharging rates (energy per timestep): θ₁ > θ₂ > ... > θ_P > 0

Charging Schedule

Figure 3: Infeasible charging schedule. Adapted from Lam et al. (2022).

- Non-preemptively and in a single charger
- Sufficient energy when departing from the depot

< ∃ >

Notation

Vertex set $\mathcal{V} = \{0\} \cup \mathcal{C}$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

3

Notation

Vertex set $\mathcal{V} = \{0\} \cup \mathcal{C}$

Arc multiset $\mathcal{A} \subseteq \bigcup_{(i,j) \in \mathcal{V}^2} \mathcal{A}_{(i,j)}$

- Alternative ways to travel: $\mathcal{A}_{(i,j)} = \{(i,j)^k \mid k = 1, \dots, |\mathcal{A}_{(i,j)}|\}$
- Driving distance c_{(i,j)k}
- Travel time $t_{(i,j)^k}$ (including service time at vertex *i* if any)
- Energy consumption e_{(i,j)k}

・ 同 ト ・ ヨ ト ・ ヨ ト …

Notation

Vertex set $\mathcal{V} = \{0\} \cup \mathcal{C}$

Arc multiset $\mathcal{A} \subseteq \bigcup_{(i,j) \in \mathcal{V}^2} \mathcal{A}_{(i,j)}$

- Alternative ways to travel: $\mathcal{A}_{(i,j)} = \{(i,j)^k \mid k = 1, \dots, |\mathcal{A}_{(i,j)}|\}$
- Driving distance $c_{(i,j)^k}$
- Travel time $t_{(i,j)^k}$ (including service time at vertex *i* if any)
- Energy consumption e_{(i,j)k}

Multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{A})$

• Trade-off: consumed energy and the traveled distance

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Illustrative Example

- Q = 10, E = 5, and B = 1
- $q_i = 5, i \in C$

Yamín, Desaulniers, and Mendoza (2022)

< ∃⇒

Э

< (17) × <

Set-Partitioning Formulation

$$\begin{array}{ll} \min & \sum_{r \in \mathcal{R}} c_r \lambda_r & (1a) \\ \text{s.t.} & \sum_{r \in \mathcal{R}} a_i^r \lambda_r = 1 & \forall i \in \mathcal{C}, & (1b) \\ & \sum_{r \in \mathcal{R}} b_t^r \lambda_r \leq B & \forall t \in \mathcal{T}, & (1c) \\ & \lambda_r \in \{0,1\} & \forall r \in \mathcal{R}. & (1d) \end{array}$$

Image: A matrix and a matrix

E

Set-Partitioning Formulation

$$\min \quad \sum_{r \in \mathcal{R}} c_r \lambda_r \tag{1a}$$

s.t.
$$\sum_{r \in \mathcal{R}} a_i^r \lambda_r = 1$$
 $\forall i \in \mathcal{C},$ (1b)

$$\sum_{r \in \mathcal{R}} b_t^r \lambda_r \leq B \qquad \qquad orall t \in \mathcal{T},$$
 (1c)
 $\lambda_r \in \{0,1\} \qquad \qquad orall r \in \mathcal{R}.$ (1d)

- (1a): minimize total travel cost
- (1b): each customer is visited by one EV
- (1c): meet charging station capacity each period

Set-Partitioning Formulation

$$\min \sum_{r \in \mathcal{R}} c_r \lambda_r \tag{1a}$$

s.t.
$$\sum_{r \in \mathcal{R}} a_i^r \lambda_r = 1$$
 $\forall i \in \mathcal{C},$ (1b)

$$\sum_{r \in \mathcal{R}} b_t^r \lambda_r \le B \qquad \qquad \forall t \in \mathcal{T}, \qquad (1c)$$
$$\lambda_r \in \{0, 1\} \qquad \qquad \forall r \in \mathcal{R}. \qquad (1d)$$

- (1a): minimize total travel cost
- (1b): each customer is visited by one EV
- (1c): meet charging station capacity each period
- $\alpha_i \in \mathbb{R}$: dual of (1b) for customer $i \in \mathcal{C}$
- $eta_t \leq \mathsf{0}$: dual of (1c) for timestep $t \in \mathcal{T}$

Yamín, Desaulniers, and Mendoza (2022)

Problem Statement

2 BPC Algorithm

3 Computational Results

4 Conclusion

Yamín, Desaulniers, and Mendoza (2022)

< 17 < <

E

Pricing Problem Multigraph (V_P)

イロト イポト イヨト イヨト

E

Pricing Problem Multigraph (V_P)

• $\mathcal{V}_{\mathsf{P}} = \{s\} \cup \mathcal{T} \cup \{\underline{0}\} \cup \mathcal{C} \cup \{\overline{0}\}$

Yamín, Desaulniers, and Mendoza (2022)

< ロト < 同ト < ヨト < ヨト

臣

Pricing Problem Multigraph (A)

• $\mathcal{V}_{\mathsf{P}} = \{s\} \cup \mathcal{T} \cup \{\underline{0}\} \cup \mathcal{C} \cup \{\overline{0}\}$

• $\mathcal{A}_{\mathsf{P}} = \mathcal{A}$

Yamín, Desaulniers, and Mendoza (2022)

< ロト < 同ト < ヨト < ヨト

Pricing Problem Multigraph (A_1)

- $\mathcal{V}_{\mathsf{P}} = \{s\} \cup \mathcal{T} \cup \{\underline{0}\} \cup \mathcal{C} \cup \{\overline{0}\}$
- $\mathcal{A}_{\mathsf{P}} = \mathcal{A} \cup \mathcal{A}_1$

Yamín, Desaulniers, and Mendoza (2022)

Pricing Problem Multigraph (A_2)

- $\mathcal{V}_{\mathsf{P}} = \{s\} \cup \mathcal{T} \cup \{\underline{0}\} \cup \mathcal{C} \cup \{\overline{0}\}$
- $\mathcal{A}_{\mathsf{P}} = \mathcal{A} \cup \mathcal{A}_1 \cup \mathcal{A}_2$

(4 何) トイヨト イヨト

Pricing Problem Multigraph (A_3)

- $\mathcal{V}_{\mathsf{P}} = \{s\} \cup \mathcal{T} \cup \{\underline{0}\} \cup \mathcal{C} \cup \{\overline{0}\}$
- $\mathcal{A}_{\mathsf{P}} = \mathcal{A} \cup \mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3$

(4 何) トイヨト イヨト

Illustrative Example

- Q = 10, E = 5, and B = 1
- $q_i = 5, i \in C$

Yamín, Desaulniers, and Mendoza (2022)

< ∃⇒

Э

< (17) × <

Pricing Problem Multigraph

Figure 6: Illustrative pricing problem multigraph.

Pricing Problem Multigraph (\mathcal{G}_{P})

Multigraph $\mathcal{G}_{\mathsf{P}} = (\mathcal{V}_{\mathsf{P}}, \mathcal{A}_{\mathsf{P}})$

Vertex set $\mathcal{V}_{\mathsf{P}} = \{s\} \cup \mathcal{T} \cup \{\underline{0}\} \cup \mathcal{C} \cup \{\overline{0}\}$

Arc sets $\mathcal{A}_{\mathsf{P}} = \mathcal{A} \cup \mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3$

• Modified arc cost: for all $(i,j)^k \in \mathcal{A}_{\mathsf{P}}$

$$r_{(i,j)^k} = \begin{cases} c_{(i,j)^k} - \alpha_i, & (i,j)^k \in \mathcal{A}, \\ -\beta_i, & (i,j)^k \in \mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3, \end{cases}$$
(2)

where $\alpha_{\underline{0}} = 0$ and $\beta_s = 0$ for notation conciseness

20 / 37

ng-SPPRC

A path from s to $\overline{0}$ passing through $\underline{0}$ defines a route (and its charging schedule)

We solve the ng-SPPRC as the PP (Baldacci et al., 2011)

ng-SPPRC

A path from s to $\overline{0}$ passing through $\underline{0}$ defines a route (and its charging schedule)

We solve the *ng*-SPPRC as the PP (Baldacci et al., 2011)

Backward labeling algorithm

- Starts at $\overline{0}$ at time \overline{T}
- Latest departure time from the depot (favoring more recharging time)
- Charging time required to perform the route

The Labeling Algorithm

A label ℓ_i encodes a **subpath** from $i \in \mathcal{V}_P$ to $\overline{0}$:

- Cumulative reduced cost $r(\ell_i) \in \mathbb{R}$
- Remaining load capacity $q(\ell_i) \in \mathbb{Z}_+$
- Latest time for starting service $t(\ell_i) \in [\underline{T}, \overline{T}]$
- Remaining energy capacity $e(\ell_i) \in \mathbb{Z}_+$
- Number of timesteps required to charge $b(\ell_i) \in \mathbb{Z}_+$

22 / 37

A label ℓ_i encodes a **subpath** from $i \in \mathcal{V}_P$ to $\overline{0}$:

- Cumulative reduced cost $r(\ell_i) \in \mathbb{R}$
- Remaining load capacity $q(\ell_i) \in \mathbb{Z}_+$
- Latest time for starting service $t(\ell_i) \in [\underline{T}, \overline{T}]$
- Remaining energy capacity $e(\ell_i) \in \mathbb{Z}_+$
- Number of timesteps required to charge $b(\ell_i) \in \mathbb{Z}_+$
- A resource $\mathbb{I}_c^u(\ell_i) \in \{0,1\}$ indicating whether customer $c \in C$ is **unreachable**
- A resource I^{ng}_c(ℓ_i) ∈ {0,1} indicating whether visiting customer c ∈ C violates the ng-path cycling restrictions

3

22 / 37

A (1) < A (2) < A (2) </p>

Definition

In a **customer vertex** $i \in C$, a label ℓ_i **dominates** another label ℓ'_i if the following conditions hold:

 $r(\ell_i) \le r(\ell'_i),\tag{3a}$

$$q(\ell_i) \ge q(\ell'_i),$$
 (3b)

$$t(\ell_i) \ge t(\ell'_i),$$
 (3c)

$$e(\ell_i) \ge e(\ell'_i),\tag{3d}$$

 $\max\{\mathbb{I}_{c}^{u}(\ell_{i}),\mathbb{I}_{c}^{ng}(\ell_{i})\} \leq \max\{\mathbb{I}_{c}^{u}(\ell_{i}'),\mathbb{I}_{c}^{ng}(\ell_{i}')\} \quad \forall c \in \mathcal{C}.$ (3e)

Э

< 回 ト < 三 ト < 三 ト

Definition

In a charging time vertex $i \in \mathcal{T}$, a label ℓ_i dominates another label ℓ'_i if the following conditions hold:

$$egin{aligned} r(\ell_i) &\leq r(\ell_i'), \ b(\ell_i) &\leq b(\ell_i'). \end{aligned}$$

Yamín, Desaulniers, and Mendoza (2022)

24 / 37

• Rounded capacity inequality (at the root node):

$$\sum_{r \in \mathcal{R}} \lambda_r \ge \left\lceil \sum_{i \in \mathcal{C}} q_i / Q \right\rceil$$

- 4 🗇 🕨

臣

• Rounded capacity inequality (at the root node):

$$\sum_{r \in \mathcal{R}} \lambda_r \ge \left\lceil \sum_{i \in \mathcal{C}} q_i / Q \right\rceil$$

MP is (dynamically) strengthened with subset-row cuts (SRCs) defined over S ⊆ C, |S| = 3 (Jepsen et al., 2008):

$$\sum_{r \in \mathcal{R}} \left\lfloor \frac{1}{2} \sum_{i \in S} a_i^r \right\rfloor \lambda_r \le 1$$

Yamín, Desaulniers, and Mendoza (2022)

Hierarchical branching:

- Number of vehicles used
- 2 Arc-flow variables
- Onsecutive flow through the depot source vertex

26 / 37

Hierarchical branching:

- Number of vehicles used
- 2 Arc-flow variables
- Onsecutive flow through the depot source vertex

Branching on arc-flow variables $x_{(i,j)^k}, (i,j)^k \in \mathcal{A}$:

• The branching is performed **locally**:

$$x_{(i,j)^k} = 0$$
 and $x_{(i,j)^k} = 1$

- We remove routes in \mathcal{R}' that do not respect the imposed decisions
- We remove arcs in \mathcal{A}_{P} to forbid generating routes that do not respect the imposed decisions

Branching on arc-flow variables $x_{(i,j)^1}$, $(i,j)^1 \in A_1 \cup A_3$:

• The branching is performed **globally**:

$$x_{(i,j)^1} \leq \lfloor \widetilde{B} \rfloor$$
 and $x_{(i,j)^1} \geq \lceil \widetilde{B} \rceil$

• The corresponding **dual variable** is subtracted in $r_{(i,j)^1}$

Branching on arc-flow variables $x_{(i,j)^1}$, $(i,j)^1 \in A_1 \cup A_3$:

• The branching is performed **globally**:

$$x_{(i,j)^1} \leq \lfloor \widetilde{B} \rfloor$$
 and $x_{(i,j)^1} \geq \lceil \widetilde{B} \rceil$

• The corresponding **dual variable** is subtracted in $r_{(i,j)^1}$

Remarks

- Flow through arcs in A, A_1 , and A_3 is already an integer (flow conservation)
- Branching on arcs in A₃: dual variable may penalize or reward the labels' reduced cost, depending on their charging start time
- Labels need to be extended even after they have completed their charge

< 17 >

Current branching decisions:

- Guarantee integer arc flows
- But not necessarily guarantee integer path flows
- <u>Hint:</u> routes visiting the same customer arcs but with different charging schedules

When none of the above decisions can be imposed, there exist two arcs, $(\underline{0}, j)^k \in \mathcal{A}$ and $(t, \underline{0})^1 \in \mathcal{A}_1$, such that their **consecutive flow** $m_{(\underline{0}, j)^k, (t, \underline{0})^1}$ is fractional

$$m_{(\underline{0},j)^{k},(t,\underline{0})^{1}} = \sum_{r \in \mathcal{R}} a_{(\underline{0},j)^{k}}^{r} \cdot b_{t}^{r} \cdot (1 - b_{t+1}^{r}) \cdot \lambda_{r}$$
(5)

29 / 37

< 回 ト < 三 ト < 三 ト

When none of the above decisions can be imposed, there exist two arcs, $(\underline{0}, j)^k \in \mathcal{A}$ and $(t, \underline{0})^1 \in \mathcal{A}_1$, such that their **consecutive flow** $m_{(\underline{0}, j)^k, (t, \underline{0})^1}$ is fractional

$$m_{(\underline{0},j)^{k},(t,\underline{0})^{1}} = \sum_{r \in \mathcal{R}} a_{(\underline{0},j)^{k}}^{r} \cdot b_{t}^{r} \cdot (1 - b_{t+1}^{r}) \cdot \lambda_{r}$$
(5)

Branching on the **consecutive flow** through the depot source vertex $\underline{0}$:

• The branching is performed locally (Desaulniers, 2010):

$$m_{(\underline{0},j)^k,(t,\underline{0})^1} = 0$$
 and $m_{(\underline{0},j)^k,(t,\underline{0})^1} = 1$

- We remove routes in \mathcal{R}' that do not respect the imposed decisions
- The labeling algorithm is modified

29/37

When none of the above decisions can be imposed, there exist two arcs, $(\underline{0}, j)^k \in \mathcal{A}$ and $(t, \underline{0})^1 \in \mathcal{A}_1$, such that their **consecutive flow** $m_{(\underline{0}, j)^k, (t, \underline{0})^1}$ is fractional

$$m_{(\underline{0},j)^{k},(t,\underline{0})^{1}} = \sum_{r \in \mathcal{R}} a_{(\underline{0},j)^{k}}^{r} \cdot b_{t}^{r} \cdot (1 - b_{t+1}^{r}) \cdot \lambda_{r}$$
(5)

Branching on the **consecutive flow** through the depot source vertex $\underline{0}$:

• The branching is performed locally (Desaulniers, 2010):

$$m_{(\underline{0},j)^k,(t,\underline{0})^1} = 0$$
 and $m_{(\underline{0},j)^k,(t,\underline{0})^1} = 1$

- We remove routes in \mathcal{R}' that do not respect the imposed decisions
- The labeling algorithm is modified

It was unnecessary for our computational experiments

Problem Statement

2 BPC Algorithm

3 Computational Results

A Conclusion

Yamín, Desaulniers, and Mendoza (2022)

< 17 ▶

臣

Computational Results

- Java OR library (jORLib) and the Java graph theory library (JGraphT)
- **ILOG CPLEX solver** (version 22.1) for solving the RMPs
- Standard PC with an Intel Core i7-8665U CPU @ 1.90GHz with 16GB of RAM allocated to the memory heap size
- Two-hour computational time limit

- **112 instances** based on the well-known VRPTW benchmark of Solomon (1987)
- **Peugeot iOns**: *E* = 16 kilowatt-hours (kWh)
- Minutes as the time unit of discretization and kilometers as the distance unit
- EVs travel at a fixed speed of 60 km/h
- Min-cost (and min-time) alternative $(i,j)^1 \in A$: $c_{(i,j)^1}$ is the *Euclidean distance* and $e_{(i,j)^1} = c_{(i,j)^1} \cdot 0.175$ kWh/km
- Min-energy alternative (i, j)² ∈ A: c_{(i,j)²} is equal to the Manhattan distance and e_{(i,j)²} = c_{(i,j)²} · 0.125 kWh/km
- (**Hopefully**) Available soon at www.vrp-rep.org (Mendoza et al., 2014)

Yamín, Desaulniers, and Mendoza (2022)

Instance	с	Δυσ #	Avg. # of altern. B	LB	Cuts	Nodes	Time			Vohislos		Time in	Chargers	Time at
		of altern.					Total (s)	Master (%)	Pricing (%)	used	UB	use (%)	in use (%)	capacity (%)
R1		1.64	3	487.4	13.3	3.2	1.73	12.17	71.89	6.0	488.3	94.92	72.96	49.60
C1	25	1.61	1	198.2	10.6	1.7	11.01	3.47	92.30	3.2	198.6	75.27	75.27	75.27
RC1		1.53	3	445.4	59.0	2.5	4.44	11.81	78.34	5.0	446.6	100.00	75.08	47.40
R2		1.66	1	431.6	10.4	6.3	2.87	8.77	63.80	4.8	431.6	74.31	74.31	74.31
C2	25	1.62	1	272.5	43.1	1.5	57.50	2.78	94.21	3.0	272.5	37.93	37.93	37.93
RC2		1.53	1	419.4	39.8	7.3	4.20	16.35	63.42	4.6	419.4	87.19	87.19	87.19
R1		1.63	6	853.2	92.6	21.0	201.26	7.40	87.68	10.0	857.6	100.00	72.87	40.43
C1	50	1.68	2	370.3	21.2	1.4	53.03	3.65	93.53	5.2	371.0	92.08	76.85	61.62
RC1		1.48	4	798.3	108.5	2.3	559.96	2.67	96.42	7.6	800.1	99.59	74.48	54.10
R2		1.65	2	753.9	78.4	15.5	129.21	14.33	76.85	8.1	755.0	86.79	70.75	54.70
C2	50	1.68	1	482.5	80.5	2.0	221.91	6.67	91.08	5.4	482.5	34.21	34.21	34.21
RC2		1.49	2	699.9	33.8	2.5	26.10	8.93	84.14	6.4	699.9	87.72	66.90	46.09

Table 1: Summary of the BPC algorithm's performance.

< 47 ▶

臣

Instance	с	Avg. # of altern.	в	LB	Cuts	Nodes	Time			Vehicles		Time in	Chargers	Time at
							Total (s)	Master (%)	Pricing (%)	used UB	UB	use (%)	in use (%)	capacity (%)
R1		1.64	3	487.4	13.3	3.2	1.73	12.17	71.89	6.0	488.3	94.92	72.96	49.60
C1	25	1.61	1	198.2	10.6	1.7	11.01	3.47	92.30	3.2	198.6	75.27	75.27	75.27
RC1		1.53	3	445.4	59.0	2.5	4.44	11.81	78.34	5.0	446.6	100.00	75.08	47.40
R2		1.66	1	431.6	10.4	6.3	2.87	8.77	63.80	4.8	431.6	74.31	74.31	74.31
C2	25	1.62	1	272.5	43.1	1.5	57.50	2.78	94.21	3.0	272.5	37.93	37.93	37.93
RC2		1.53	1	419.4	39.8	7.3	4.20	16.35	63.42	4.6	419.4	87.19	87.19	87.19
R1		1.63	6	853.2	92.6	21.0	201.26	7.40	87.68	10.0	857.6	100.00	72.87	40.43
C1	50	1.68	2	370.3	21.2	1.4	53.03	3.65	93.53	5.2	371.0	92.08	76.85	61.62
RC1		1.48	4	798.3	108.5	2.3	559.96	2.67	96.42	7.6	800.1	99.59	74.48	54.10
R2		1.65	2	753.9	78.4	15.5	129.21	14.33	76.85	8.1	755.0	86.79	70.75	54.70
C2	50	1.68	1	482.5	80.5	2.0	221.91	6.67	91.08	5.4	482.5	34.21	34.21	34.21
RC2		1.49	2	699.9	33.8	2.5	26.10	8.93	84.14	6.4	699.9	87.72	66.90	46.09

Table 1: Summary of the BPC algorithm's performance.

- Maximum integrality gap 1.86%!
- Relatively small BB trees (yet, enforcing integrality can be harder than in other VRPs)
- Tight charging schedules
- Solves 50-customer instances

Impact of Charging Scheduling on Computational Time

Figure 7: Impact of charging scheduling on computational time.

-

Impact of Charging Scheduling on Computational Time

Figure 7: Impact of charging scheduling on computational time.

- Highly variable running times
- C chargers almost 3 times faster than B chargers
- *B*+1 chargers over **1.5 times faster** than *B* chargers

Impact of Multigraph Representation on Optimal Cost

Figure 8: Impact of multigraph representation on optimal cost.

∃ >

Impact of Multigraph Representation on Optimal Cost

Figure 8: Impact of multigraph representation on optimal cost.

- Avg savings: 12.96% (min-energy) and 2.87% (min-cost)
- 2.26 and 1.73 times faster on min-energy and min-cost

Problem Statement

2 BPC Algorithm

Computational Results

A Conclusion

< 47 ▶

臣

36 / 37

An E-VRP with piecewise-linear recharging and limited chargers

- EVs are charged at the depot
- Trade-off between conflicting resources

An E-VRP with piecewise-linear recharging and limited chargers

- EVs are charged at the depot
- Trade-off between conflicting resources
- BPC algorithm that implements state-of-the-art techniques
 - MP: capacity constraints of the depot's chargers
 - PP: non-preemptive charge of the EVs
 - ng-path relaxation, SRCs, and a specialized labeling algorithm
 - Problem-specific dominance and branching rules

An E-VRP with piecewise-linear recharging and limited chargers

- EVs are charged at the depot
- Trade-off between conflicting resources
- BPC algorithm that implements state-of-the-art techniques
 - MP: capacity constraints of the depot's chargers
 - PP: non-preemptive charge of the EVs
 - ng-path relaxation, SRCs, and a specialized labeling algorithm
 - Problem-specific dominance and branching rules
- From a computational perspective
 - Solves to optimality instances with 50 customers
 - Impact of charging scheduling on computational time and multigraph representation on optimal cost

An E-VRP with piecewise-linear recharging and limited chargers

- EVs are charged at the depot
- Trade-off between conflicting resources
- BPC algorithm that implements state-of-the-art techniques
 - MP: capacity constraints of the depot's chargers
 - PP: non-preemptive charge of the EVs
 - ng-path relaxation, SRCs, and a specialized labeling algorithm
 - Problem-specific dominance and branching rules
- From a computational perspective
 - Solves to optimality instances with 50 customers
 - Impact of charging scheduling on computational time and multigraph representation on optimal cost

Thank you! Questions?

Baldacci, R., Mingozzi, A., & Roberti, R. (2011). New route relaxation and pricing strategies for the vehicle routing problem. *Operations Research*, *59*(5), 1269–1283.

- Desaulniers, G. (2010). Branch-and-price-and-cut for the split-delivery vehicle routing problem with time windows. *Operations Research*, *58*(1), 179–192.
- Jepsen, M., Petersen, B., Spoorendonk, S., & Pisinger, D. (2008). Subset-row inequalities applied to the vehicle-routing problem with time windows. *Operations Research*, *56*(2), 497–511.
- Lam, E., Desaulniers, G., & Stuckey, P. J. (2022). Branch-and-cut-and-price for the Electric Vehicle Routing Problem with Time Windows, Piecewise-Linear Recharging and Capacitated Recharging Stations. *Computers & Operations Research*, 145, 105870.

References II

- Mendoza, J. E., Guéret, C., Hoskins, M., Lobit, H., Pillac, V., Vidal, T., & Vigo, D. (2014). VRP-REP: A vehicle routing community repository, in 'third meeting of the euro working group on vehicle routing and logistics optimization (VeRoLog). Oslo (Norway), 56, 77.
- Montoya, A., Guéret, C., Mendoza, J. E., & Villegas, J. G. (2017). The electric vehicle routing problem with nonlinear charging function. *Transportation Research Part B: Methodological, 103,* 87–110.
- Morganti, E., & Browne, M. (2018). Technical and operational obstacles to the adoption of electric vans in France and the UK: An operator perspective. *Transport Policy*, *63*, 90–97.
- Pelletier, S., Jabali, O., Laporte, G., & Veneroni, M. (2017). Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models. *Transportation Research Part B: Methodological*, 103, 158–187.

(4 回 ト 4 ヨ ト 4 ヨ ト

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. *Operations Research*, *35*(2), 254–265.

Why Study This Problem?

Goods distribution in urban city centers: internal combustion engine vehicles (ICEVs) to commercial EVs (Pelletier et al., 2017)

EVs alleviate some of the **unsustainable practices of present-day logistics**, but still have significant disadvantages over ICEVs

Researchers have investigated two broad approaches

- 1 Plan recharging stops along a route
- 2 Designing routes that can be completed with a full battery load

Operators prefer charging the fleet at **their facilities and overnight** (Morganti and Browne, 2018)

ng-path Relaxation

Figure 9: ng-path relaxation.

- Each customer *i* ∈ C has a neighborhood N_i ⊆ C containing the Δ ∈ Z₊ closest customers to *i* (in terms of distance, time, or energy) and customer *i* itself.
- A ng-path allows a cycle starting and ending at vertex j ∈ C if and only if there exists a vertex i ∈ C in the cycle for which j ∉ N_i.
- Therefore, such a cycle is prohibited if and only if *j* ∈ N_i for every vertex *i* ∈ C it contains.

Yamín, Desaulniers, and Mendoza (2022)

Label Extension

Algorithm 1: Label extension.

_	•	
	Input: ℓ_j , label representing a subpath starting at vertex j ; $(i, j)^k \in A_P$, arc along which the extension is	8
	performed.	
	Output: ℓ_i , label representing a subpath starting at vertex i .	
	/* check whether the extension is feasible	*/
1	if $i \in C \land (I_i^u(\ell_j) = 1 \lor I_i^{ng}(\ell_j) = 1)$ then exit	
2	$ {\rm if} \ i \in \mathcal{T} \wedge j = \underline{0} \wedge \left(i < b(\ell_j) \lor i \ge t(\ell_j) \right) \ {\rm then} \ {\rm exit} \\$	
3	if $i = s \wedge b(\ell_j) > 0$ then exit	
	/* update the resource consumptions	*/
4	$r(\ell_i) \leftarrow r(\ell_j) + r_{(i,j)^k}$	
5	$q(\ell_i) \leftarrow q(\ell_j) - q_i$	
6	$t(\ell_i) \leftarrow \min\{t(\ell_j) - t_{(i,j)^k}, \overline{t}_i\}$	
7	$e(\ell_i) \leftarrow e(\ell_j) - e_{(i,j)^k}$	
8	if $i \in \mathcal{T}$ then $b(\ell_i) \leftarrow b(\ell_j) - 1$	
9	else $b(\ell_i) \leftarrow \left[f^{-1} (E - e(\ell_i)) \right]$	
	/* check whether the extension is actually feasible	*/
10	$ \text{if } t(\ell_i) < \underline{t}_i \lor e(\ell_i) < 0 \lor b(\ell_i) \ge t(\ell_i) \lor b(\ell_i) < 0 \ \text{then exit} \\$	
	/* mark customers that are unreachable by resource or cycling constraints	*/
11	if $i \in \mathcal{C}$ then	
12	for $c \in C$ do	+/
	$T_{W}(\ell)$, $T_{W}(\ell)$	-/
13	$\frac{\mathbf{I}_{c}(\mathbf{c}_{i}) \leftarrow \mathbf{I}_{c}(\mathbf{c}_{j})}{\mathbf{i} \mathbf{f}_{c}(\mathbf{c}_{i}) - 0_{c}(\mathbf{c}_{i}) - 0_{c}(\mathbf{c}_{i}) - 0_{c}(\mathbf{c}_{i}) + 0_{c}(\mathbf{c}_{i}) + 0_{c}(\mathbf{c}_{i}) - 0_{c}(\mathbf{c}_{i}) + \mathbf$	
14	$ \ e^{\frac{i}{2}t} \wedge \ _{c}(\varepsilon_{i}) = 0 \wedge (q(\varepsilon_{i}) - q_{c} < 0 \lor t(\varepsilon_{i}) - \underline{\ell}_{(c,i)} < \underline{\ell}_{c} \lor e(\varepsilon_{i}) - \underline{\ell}_{(c,i)} < 0) \text{ then } $ $ \ \ _{u}^{u}(\ell_{i}) \leftarrow 1 $	
	/* ng-path cycling restrictions	*/
16	if $c = i \lor (\mathbb{I}^{ng}(\ell_i) = 1 \land c \in N_i)$ then $\mathbb{I}^{ng}(\ell_i) \leftarrow 1$	
17	else $\mathbb{I}_{n}^{ng}(\ell_i) \leftarrow 0$	
18	return t_i	

Yamín, Desaulniers, and Mendoza (2022)

May 17, 2023

イロト イボト イヨト イヨト

3