

A branch-and-price method for the pickup and delivery problem with truck driver scheduling

Magnus Stålhane, Ole Johannes Lindseth, Simen Sørum

Norwegian Universiity of Science and Technology

Outline

- Motivation
- Problem definition
- Solution Methodology
- Computational Results
- Summary

Haste AS

- Start up company
- Portal for planning freight orders
- Market place for transporters and shippers
- Targeting Norwegian/ Scandinavian market

Haste AS

- Main goal: Developed a Heuristic
 - ALNS
- Need to benchmark this
 - Exact CG method

Problem definition

- A set of transportation requests with given:
 - pickup and delivery locations
 - weight/Volume

NTNU

- Revenue (if transported)

Problem definition \square \mathbf{O} 0 \square

• A set of vehicles with:

- Individual starting location (no depot)
- Open ended
- All vehicles are identical

• Time windows at pickup and delivery

NTNU

Problem definition

- Pickup and Delivery Problem with time windows (PDPTW)

- No depot
- Open ended
- Only optional requests

10 NTNU

Relevant literature on PDPTW– CG stuff only

- Dumas et al (1991) First BP alg.
- Røpke and Cordeau (2009) First BPC alg.
- Baldacci et al. (2011) Route enumerations
- Gschwind et al (2018) Bi-directional
- Homsi et al (2020) Ship routing and scheduling

Problem definition

- Pickup and Delivery Problem with time windows (PDPTW)

- No depot
- Open ended
- Only optional requests

• Pickup and Delivery Problem with time windows (PDPTW)

- No depot
- Open ended
- Only optional requests

• Pickup and Delivery Problem with time windows (PDPTW)

- No depot
- Open ended
- Only optional requests

 Pickup and Delivery Problem with time windows (PDPTW)

NTNU

- No depot
- Open ended
- Only optional requests
- Breaks

 Pickup and Delivery Problem with time windows (PDPTW)

NTNU

- No depot
- Open ended
- Only optional requests
- Breaks
- Rests

European Hours of Service regulations

	Break - 45 min	Rest - 11 hrs	Weekly rest
Drive	4.5 hrs	9 hrs	56 hrs
Work	6.0 hrs	13 hrs	60 hrs

Relevant literature – CG stuff only

- VRP with Truck driver scheduling
 - Goel and Irnich (2017) First BP alg.
 - Tilk and Goel (2020) Bi-directional

Solution method

Master problem

$$\max \quad z = \sum_{v \in \mathcal{V}} \sum_{r \in \mathcal{R}_v} P_{vr} \lambda_{vr},$$

$$\sum_{v \in \mathcal{V}} \sum_{r \in \mathcal{R}_v} A_{ivr} \lambda_{vr} \le 1,$$

 $\sum_{r \in \mathcal{R}_v} \lambda_{vr} = 1,$

 $\lambda_{vr} \in \{0,1\},$

$$i \in N^P,$$

 $v \in \mathcal{V},$
 $\forall v \in \mathcal{V}, r \in \mathcal{R}_v.$

Subproblem

- Resource constrained shortest path problem
- Combination of:
 - Røpke and Cordeau (2009)
 - Goel and Irnich (2017)
 - With some modifications

• Vehicle 1:

• Vehicle 2:

• Vehicle n:

• Vehicle 1:

• Vehicle 2:

• Vehicle n:

Vehicle 1: 2n+1 0 Vehicle 2: -1 2n+1 0 Vehicle n: 0 2n+1) 23

Vehicle 1: 0 Vehicle 2: 0 -1 2n+1 Vehicle n: 0

Resources needed for the PDPTW

• Based on Røpke and Cordeau (2009)

Resource	Resource Description	Resource Window
\overline{p}	Accumulated reduced cost after visiting node i	$[-\infty,\infty]$
l^W	Load of the vehicle after visiting node i in terms of weight	$[0, W^C]$
l^V	Load of the vehicle after visiting node i in terms of volume	$[0, V^C]$
t^{time}	Time elapsed since start of route	$[\underline{T_i}, \overline{T_i}]$
\mathcal{U}	Set of unreachable nodes on the route	$\mathcal{U} \subseteq N^P$
\mathcal{O}	Set of requests started but not completed on this route	$\mathcal{O} \subseteq N^P$

Resources needed for TDS

• Based on Goel and Irnich (2017)

Resource	Resource Description	Resource Window
t^{dist}	Remaining driving time to the next node, j	[0, 0]
$t^{drive R}$	Accumulated driving time since the end of the last rest	$[0, T^{drive R}]$
$t^{elapsed R}$	Time elapsed since the end of the last rest	$[0, T^{elapsed R}]$
$t^{latest R}$	Latest time for when a rest must end	$[0,\infty]$
$t^{drive B}$	Accumulated driving time since the last break or rest	$[0, T^{drive B}]$
$t^{elapsed B}$	Time elapsed since the end of the last break or rest	$[0, T^{elapsed B}]$
$t^{latest B}$	Latest time for when a break must end	$[0,\infty]$
$t^{drive W}$	Total accumulated weekly driving time	$[0, T^{drive W}]$
$t^{elapsed W}$	Time elapsed since the end of the last weekly rest	$[0, T^{elapsed W}]$
$t^{latest W}$	Latest time for when a weekly rest must end	$[0,\infty]$

Network modification for the TDS

Figure 1: Auxiliary Network proposed by Goel and Irnich (2017). The network describes the possible extensions of a label by traversing the arc (i, j).

Resource extension functions

Besource	Resource Extension Function						
itesource	f^{drive}	f^{break}	f^{rest}	f^{visit}			
$\overline{p}(L')$				$\overline{p}(L) + \overline{C}_{ij}$			
$l^W(L')$				$l^W(L) + D^W_j$			
$l^V(L')$				$l^V(L) + D_j^V$			
$t^{time}(L')$	$t^{time}(L) + \Delta$	$t^{time}(L) + T^{break}$	$t^{time}(L) + T^{rest}$	$max\{t^{time}(L), \underline{T}_{j}\} + S_{j}$			
$t^{dist}(L')$	$t^{dist}(L) - \Delta$						
$t^{drive R}(L')$	$t^{drive R}(L) + \Delta$		0				
elansed B(T)	elansed B(T) + A	elansed B(I) + Threak	0	$max\{t^{elapsed R}(L), \underline{T}_j -$			
$t^{\text{surpress}(L')}$	$t^{\text{composed}(n)}(L) + \Delta$	$t^{\text{composed}(L)}(L) + 1^{\text{composed}(L)}$	0	$t^{latest R}(L)\} + S_i$			
latest R(I)				$min\{t^{latest R}(L), \overline{T}_{j}+$			
$t^{iavest \mid R}(L')$			∞	$S_i - t^{elapsed R}(L)$			
$t^{drive B}(L')$	$t^{drive B}(L) + \Delta$	0	0				
				$max\{t^{elapsed B}(L), \underline{T}_{i} -$			
$t^{etapsea B}(L')$	$t^{eiapsea B}(L) + \Delta$	0	0	$t^{latest B}(L)$ + S:			
	$min\{t^{latest B}(L), t^{latest R}(L)+$			$min\{t^{latest B}(L), \overline{T}_i+$			
$t^{latest B}(L')$	$_{t}elapsed R(I) = _{t}elapsed B(I) = \Lambda$	∞	∞	$S_{t} = t^{elapsed} B(I) $			
drive W(L')	$\begin{bmatrix} \iota & I & (L) - \iota & I & (L) - \Delta \\ & f drive W(L) + \Lambda \end{bmatrix}$			$S_j = i i (L)$			
$_{twork W(L')}^{t}$	$twork W(L) + \Delta$			$t^{work} W(L) + S$			
$\mathcal{U}(L')$	c $(L) + \Delta$			$\mathcal{U}(L) \cup \{i\} \cup \mathcal{U}_{i,j}$			
				$\left(\mathcal{O}(I) \cup \{j\} \cup \{j\}\right) = if i \in \mathcal{P}$			
$\mathcal{O}(L')$				$\mathcal{O}(L) \setminus \{i = N^P\}$ if $i \in \mathcal{D}$			
				$ \left(\mathcal{O}(L) \setminus \{j = N \} \right) n j \in \mathcal{D}$			

Improvements

- Combining existing methods work, but can we improve?
- Lots of resources, and nodes gives lots of labels
- What can we do:
 - Relax the subproblem
 - Discard labels earlier
 - Strengthen dominance

Relaxing the subproblem

- Solve labeling alg. without «break»-resources
 - Only affects feasibility, not optimality.
- Three cases:
 - Finds no routes > RMP is optimal
 - Finds at least one feasible route with positive reduced cost -> new CG iteration
 - Finds at least one route, but none are feasible -> solve full SP

Discarding Labels

What is the latest time we can leave *i*, given that we have to visit all these nodes?

This can be solved as a backward labeling, given one additional resource to ensure all nodes are visited

This can be solved as a backward labeling, given one additional resource to ensure all nodes are visited If $t^{Time}(L) > t_i^{Late}(O(L))$ we may discard L

NTNU

Increasing the unreachable set

Determine $t_i^{Late}(l, W)$, where $l \in N^P$, $W \subset N^P$

This can be solved as a backward labeling, ensuring all nodes are visited and presedence for l, l + n $U(L) = U(L) \cup \{l \in N^P | t^{Time}(L) > t_i^{Late}(l, O(L))\}$

NTNU

Preprocessing of t^{Late}

- $\forall i \in N, W \subset N^P, |W| \leq 3$, calculate $t_i^{Late}(W)$
- $\forall i \in N, l \in N^P, W \subset N^P, |W| \le 2$, calculate $t_i^{Late}(l, W)$
- In both cases we omit the break resources

NTNU

Preprocessing of t^{Late}

- $\forall i \in N, W \subset N^P$, $|W| \le 3$, calculate $t_i^{Late}(W)$
- $\forall i \in N, l \in N^P, W \subset N^P, |W| \le 2$, calculate $t_i^{Late}(l, W)$
- In both cases we omit the break resources
- Note that if
 - ∃ $W \subseteq O(L), t^{Time}(L) > t_i^{Late}(W)$, we can discard L
 - $U(L) = U(L) \cup \{l \in N^P | \exists W \subseteq O(L), t^{Time}(L) > t_i^{Late}(l, W)\}$

Computational Results

- 132 locations from central and southern Norway
- Distances and times based on Google Maps
- Probability of drawing each location proportional to population
- Planning horizon of 144 hours
- Three time windows widths: 12-24, 24-48, 48-144 hours
- Two cargo sizes: 1-10, 10-20 (capacity of vehicle 30)
- # requests = 10, 15, 20, 25, 50, 75, 100, 150, 200
- # Vehicles = $\left\lfloor \frac{\# requests}{4} \right\rfloor$, $\left\lfloor \frac{\# requests}{5} \right\rfloor$, $\left\lfloor \frac{\# requests}{6} \right\rfloor$
- Four instances of each setting gives 648 instances total

Effect of the preprocessing

Table 3: The number of instances with a given number of requests where the BP method can find an optimal solution (# opt.) and a dual bound (# DB), and the average computing time (Avg. time) used, with and without the preprocessing techniques from Section 4.5.

	Without preprocess			I I	With preprocess		
$\# \ \mathbf{requests}$	# opt.	$\# \mathbf{DB}$	Avg. time	# opt.	$\# \mathbf{DB}$	Avg. time	
10	63	63	1218.79	66	68	631.99	
15	46	47	3063.39	60	60	1217.78	
20	28	29	4575.96	58	60	1679.74	
25	23	24	4989.11	58	60	1801.29	
50	6	6	6873.35	31	37	4357.43	
Total	166	169	4144.12	273	285	1937.64	

Effect of preprocessing

Table 4: The number of instances with a given time window width where the BP method can find an optimal solution (# opt.) and a dual bound (# DB), and the average computing time (Avg. time) used, with and without the preprocessing techniques from Section 4.5.

	Without preprocess			V	Vith prepr	ocess
Time Windows	# opt.	$\# \mathbf{DB}$	Avg. time	# opt.	$\# \mathbf{DB}$	Avg. time
12-24	81	81	2695.85	120	120	40.23
24-48	61	63	3775.15	103	109	1236.03
48-144	24	25	5961.36	50	56	4536.68

Effect of preprocessing on PDPTW

 Tested on the instances proposed by Røpke and Cordeau (2009)

	without preprocess	with preprocess
AA	637.7	591.9
BB	841.1	785.4
CC	3047.8	3038.9
DD	3124.0	3040.7

Summary

- Presented new problem (and acronym) to the research community
 PDPTDS
- Preprocesing of time windows based on the open set can reduce computational time significantly
- Does this carry over to the bi-directional case?
- Instances, results and preprint of paper found:
 - http://axiomresearchproject.com/publications