A branch-and-price method for the pickup and delivery problem with truck driver scheduling

Magnus Stålhane, Ole Johannes Lindseth, Simen Sørum
Norwegian Univerisity of Science and Technology

Outline

- Motivation
- Problem definition
- Solution Methodology
- Computational Results
- Summary

Haste AS

- Start up company
- Portal for planning freight orders
- Market place for transporters and shippers
- Targeting Norwegian/ Scandinavian market

Haste AS

- Main goal: Developed a Heuristic
- ALNS
- Need to benchmark this
- Exact CG method

Problem definition

Problem definition

0

- A set of transportation requests with given:
- pickup and delivery locations
- weight/Volume
- Revenue (if transported)

Problem definition

0

- A set of vehicles with:
- Individual starting location (no depot)
- Open ended
- All vehicles are identical

- Time windows at pickup and delivery

Problem definition

- Pickup and Delivery Problem with time windows (PDPTW)
- No depot
- Open ended
- Only optional requests

Relevant literature on PDPTW- CG stuff only

- Dumas et al (1991) - First BP alg.
- Røpke and Cordeau (2009) - First BPC alg.
- Baldacci et al. (2011) - Route enumerations
- Gschwind et al (2018) - Bi-directional
- Homsi et al (2020) - Ship routing and scheduling

Problem definition

- Pickup and Delivery Problem with time windows (PDPTW)
- No depot
- Open ended
- Only optional requests

Problem definition

Problem definition

Problem definition

- Pickup and Delivery Problem with time windows (PDPTW)
- No depot
- Open ended
- Only optional requests
- Breaks

Problem definition

- Pickup and Delivery Problem with time windows (PDPTW)
- No depot
- Open ended
- Only optional requests
- Breaks
- Rests

European Hours of Service regulations

	Break $-\mathbf{4 5} \mathrm{min}$	Rest -11 hrs	Weekly rest
Drive	4.5 hrs	9 hrs	56 hrs
Work	6.0 hrs	13 hrs	60 hrs

Relevant literature - CG stuff only

- VRP with Truck driver scheduling
- Goel and Irnich (2017) - First BP alg.
- Tilk and Goel (2020) - Bi-directional

Solution method

Master problem

$$
\max z=\sum_{v \in \in V \in \sum_{v}} \sum_{v o r} P_{v r r}
$$

$$
\sum_{v \in \in \in \in \in \mathcal{R}_{v}} A_{i v i} A_{v r} \leq 1,
$$

$$
i \in N^{P}
$$

$$
\sum_{r \in \mathcal{R}_{v}} \lambda_{v r}=1
$$

$$
v \in \mathcal{V}
$$

$$
\lambda_{v r} \in\{0,1\},
$$

$$
\forall v \in \mathcal{V}, r \in \mathcal{R}_{v}
$$

Subproblem

- Resource constrained shortest path problem
- Combination of:
- Røpke and Cordeau (2009)
- Goel and Irnich (2017)
- With some modifications

One subproblem pr vehicle

- Vehicle 1:
- Vehicle 2:
- Vehicle n :

One subproblem pr vehicle

- Vehicle 1:
- Vehicle 2:
- Vehicle n :

One subproblem pr vehicle

- Vehicle 1:
- Vehicle 2 :
- Vehicle n :

One subproblem pr vehicle

- Vehicle 1:
- Vehicle n :

Resources needed for the PDPTW

- Based on Røpke and Cordeau (2009)

Resource	Resource Description	Resource Window
\bar{p}	Accumulated reduced cost after visiting node i	$[-\infty, \infty]$
l^{W}	Load of the vehicle after visiting node i in terms of weight	$\left[0, W^{C}\right]$
l^{V}	Load of the vehicle after visiting node i in terms of volume	$\left[0, V^{C}\right]$
$t^{t i m e}$	Time elapsed since start of route	$\left[\underline{T_{i}}, \overline{T_{i}}\right]$
\mathcal{U}	Set of unreachable nodes on the route	$\mathcal{U} \subseteq N^{P}$
\mathcal{O}	Set of requests started but not completed on this route	$\mathcal{O} \subseteq N^{P}$

Resources needed for TDS

- Based on Goel and Irnich (2017)

Resource	Resource Description
$t^{\text {dist }}$	Remaining driving time to the next node, j
$t^{\text {drive } \mid R}$	Accumulated driving time since the end of the last rest
$t^{\text {elapsed } \mid R}$	Time elapsed since the end of the last rest
$t^{\text {lates } \mid R}$	Latest time for when a rest must end
$t^{\text {drive } \mid B}$	Accumulated driving time since the last break or rest
$t^{\text {elapsed } \mid B}$	Time elapsed since the end of the last break or rest
$t^{\text {latest } \mid B}$	Latest time for when a break must end
$t^{\text {drive } \mid W}$	Total accumulated weekly driving time
$t^{\text {elapsed } \mid W}$	Time elapsed since the end of the last weekly rest
$t^{\text {latest } \mid W}$	Latest time for when a weekly rest must end

Resource Window
$[0,0]$
$\left[0, T^{\text {drive } \mid R}\right]$
$\left[0, T^{\text {elapsed } \mid R}\right]$
$[0, \infty]$
$\left[0, T^{\text {drive } \mid B}\right]$
$\left[0, T^{\text {elapsed } \mid B}\right]$
$[0, \infty]$
$\left[0, T^{\text {drive } \mid W}\right]$
$\left[0, T^{\text {elapsed } \mid W}\right]$
$[0, \infty]$

Network modification for the TDS

Figure 1: Auxiliary Network proposed by Goel and Irnich (2017). The network describes the possible extensions of a label by traversing the arc (i, j).

Resource extension functions

Improvements

- Combining existing methods work, but can we improve?
- Lots of resources, and nodes gives lots of labels
- What can we do:
- Relax the subproblem
- Discard labels earlier
- Strengthen dominance

Relaxing the subproblem

- Solve labeling alg. without «break»-resources
- Only affects feasibility, not optimality.
- Three cases:
- Finds no routes - > RMP is optimal
- Finds at least one feasible route with positive reduced cost -> new CG iteration
- Finds at least one route, but none are feasible -> solve full SP

Discarding Labels

$$
j+n
$$

$$
\begin{gathered}
L=\left(i, L^{-}, T\right) \\
O(L)=\{j, k, l\}
\end{gathered}
$$

$2 n+1$

Discarding Labels

$$
j+n
$$

What is the latest time we can leave i, given that we have to visit all these nodes?

Discarding Labels

0

$$
\begin{gathered}
L=\left(i, L^{-}, T\right) \\
O(L)=\{j, k, l\}
\end{gathered}
$$

Determine $t_{i}^{\text {Late }}(W)$, where $W \subset N^{P}$

Discarding Labels

This can be solved as a backward labeling, given one additional resource to ensure all nodes are visited

Discarding Labels

This can be solved as a backward labeling, given one additional resource to ensure all nodes are visited If $t^{\text {Time }}(L)>t_{i}^{\text {Late }}(O(L))$ we may discard L

Increasing the unreachable set

NTNU

Increasing the unreachable set

Increasing the unreachable set

Increasing the unreachable set

Determine $t_{i}^{\text {Late }}(l, W)$, where $l \in N^{P}, W \subset N^{P}$
This can be solved as a backward labeling, ensuring all nodes are visited and presedence for $l, l+n$
$U(L)=U(L) \cup\left\{l \in N^{P} \mid t^{\text {Time }}(L)>t_{i}^{\text {Late }}(l, O(L))\right\}$

Preprocessing of $t^{\text {Late }}$

- $\forall i \in N, W \subset N^{P},|W| \leq 3$, calculate $t_{i}^{\text {Late }}(W)$
- $\forall i \in N, l \in N^{P}, W \subset N^{P},|W| \leq 2$, calculate $t_{i}^{\text {Late }}(l, W)$
- In both cases we omit the break resources

Preprocessing of $t^{\text {Late }}$

- $\forall i \in N, W \subset N^{P},|W| \leq 3, \quad$ calculate $t_{i}^{\text {Late }}(W)$
- $\forall i \in N, l \in N^{P}, W \subset N^{P},|W| \leq 2$, calculate $t_{i}^{\text {Late }}(l, W)$
- In both cases we omit the break resources
- Note that if

$$
\begin{aligned}
& \text { - } \exists W \subseteq O(L), t^{\text {Time }}(L)>t_{i}^{\text {Late }}(W) \text {, we can discard } \mathrm{L} \\
& -U(L)=U(L) \cup\left\{l \in N^{P} \mid \exists W \subseteq O(L), t^{\text {Time }}(L)>t_{i}^{\text {Late }}(l, W)\right\}
\end{aligned}
$$

Computational Results

Test instances

- 132 locations from central and southern Norway
- Distances and times based on Google Maps
- Probability of drawing each location proportional to population
- Planning horizon of 144 hours
- Three time windows widths: 12-24, 24-48, 48-144 hours
- Two cargo sizes: 1-10, 10-20 (capacity of vehicle 30)
- \# requests $=10,15,20,25,50,75,100,150,200$
- \# Vehicles $=\left\lfloor\frac{\# \text { requests }}{4}\right\rfloor,\left\lfloor\frac{\# \text { requests }}{5}\right],\left\lfloor\frac{\# \text { requests }}{6}\right\rfloor$
- Four instances of each setting gives 648 instances total

Effect of the preprocessing

Table 3: The number of instances with a given number of requests where the BP method can find an optimal solution (\# opt.) and a dual bound (\# DB), and the average computing time (Avg. time) used, with and without the preprocessing techniques from Section 4.5.

	Without preprocess			With preprocess		
\# requests	\# opt.	\# DB	Avg. time	\# opt.	\# DB	Avg. time
$\mathbf{1 0}$	63	63	1218.79	66	68	631.99
$\mathbf{1 5}$	46	47	3063.39	60	60	1217.78
$\mathbf{2 0}$	28	29	4575.96	58	60	1679.74
$\mathbf{2 5}$	23	24	4989.11	58	60	1801.29
$\mathbf{5 0}$	6	6	6873.35	31	37	4357.43
Total	166	169	4144.12	273	285	1937.64

Effect of preprocessing

Table 4: The number of instances with a given time window width where the BP method can find an optimal solution (\# opt.) and a dual bound (\# DB), and the average computing time (Avg. time) used, with and without the preprocessing techniques from Section 4.5 .

	Without preprocess			With preprocess		
Time Windows	\# opt.	\# DB	Avg. time	\# opt.	\# DB	Avg. time
$12-24$	81	81	2695.85	120	120	40.23
$24-48$	61	63	3775.15	103	109	1236.03
$48-144$	24	25	5961.36	50	56	4536.68

Effect of preprocessing on PDPTW

- Tested on the instances propoced by Røpke and Cordeau (2009)

	without preprocess	with preprocess
AA	637.7	591.9
BB	841.1	785.4
CC	3047.8	3038.9
DD	3124.0	3040.7

Summary

- Presented new problem (and acronym) to the research community - PDPTDS
- Preprocesing of time windows based on the open set can reduce computational time significantly
- Does this carry over to the bi-directional case?
- Instances, results and preprint of paper found:
- http://axiomresearchproject.com/publications

