
Introduction Background IPColGen Results and conclusions

Integer programming column generation:

Accelerating branch-and-price for set covering,
packing, and partitioning problems

Stephen J. Maher and Elina Rönnberg

Column generation 2023

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

What?

I A Large Neighbourhood Search (LNS)
heuristic for extended formulations

I Implemented in GCG: A generic
branch-price-and-cut solver in SCIP

I Improves computational performance
of GCG for di�cult instances, i.e.
when root-node gap is large

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Why?

I LNS heuristics are vital
components in generic MIP solvers

I Challenging to extend them to
settings where columns are generated

I �Standard column generation only cares
about LP� → unexplored potential

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

How?

LNS of destroy-repair type

I Destroy method:
Remove columns from current solution

I Repair method:
Solve a sub-MIP using columns from
a specialised repair pricing scheme

Key contribution: The repair pricing scheme

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Outline

Introduction

Background

IPColGen

Results and conclusions

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Running example: Model for VRP

Problem formulation

Use these three vehicles
Visit all customers
Minimise total travel time

Feasible routes are constructed by solving a pricing problem

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Running example: Model for VRP

Compact formulation

Decision variables:

xqk =


1 if vehicle q
uses arc k ,

0 otherwise

Constraints:
Feasible routes for all vehicles
Vehicles cover all customers

Feasible routes are constructed by solving a pricing problem

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Running example: Model for VRP

Extended formulation

Decision variables:

λqj =


1 if vehicle q
uses route j ,

0 otherwise.

Constraints:
One route per vehicle
Vehicles cover all customers

Feasible routes are constructed by solving a pricing problem

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Running example: Model for VRP

Extended formulation

Decision variables:

λqj =


1 if vehicle q
uses route j ,

0 otherwise.

Constraints:
One route per vehicle
Vehicles cover all customers

Feasible routes are constructed by solving a pricing problem

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Branching for di�erent formulations

x2 ≥ 1: Force vehicle to use arc
x2 ≤ 0: Forbid vehicle to use arc

λ2 ≥ 1: Force use of route
λ2 ≤ 0: Forbid use of route &

never generate it again

Problem: No computationally e�cient way to prevent one
exact route/column/solution from being generated

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Branching for di�erent formulations

x2 ≥ 1: Force vehicle to use arc
x2 ≤ 0: Forbid vehicle to use arc

λ2 ≥ 1: Force use of route
λ2 ≤ 0: Forbid use of route

&
never generate it again

Problem: No computationally e�cient way to prevent one
exact route/column/solution from being generated

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Branching for di�erent formulations

x2 ≥ 1: Force vehicle to use arc
x2 ≤ 0: Forbid vehicle to use arc

λ2 ≥ 1: Force use of route
λ2 ≤ 0: Forbid use of route &

never generate it again

Problem: No computationally e�cient way to prevent one
exact route/column/solution from being generated

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Branching for di�erent formulations

x2 ≥ 1: Force vehicle to use arc
x2 ≤ 0: Forbid vehicle to use arc

λ2 ≥ 1: Force use of route
λ2 ≤ 0: Forbid use of route &

never generate it again

Problem: No computationally e�cient way to prevent one
exact route/column/solution from being generated

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Well-known challenge: Branching in branch-and-price

Instead of the �naïve� branching λ2 ≥ 1 and λ2 ≤ 0:

I Branch on variables of the corresponding compact formulation

I Translates to using or omitting one arc in the pricing problem

Common with customised branching schemes to achieve this

Same type of challenge appears when designing LNS
heuristics for branch-and-price, so let's return to LNS ...

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Well-known challenge: Branching in branch-and-price

Instead of the �naïve� branching λ2 ≥ 1 and λ2 ≤ 0:

I Branch on variables of the corresponding compact formulation

I Translates to using or omitting one arc in the pricing problem

Common with customised branching schemes to achieve this

Same type of challenge appears when designing LNS
heuristics for branch-and-price, so let's return to LNS ...

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Large Neighbourhood Search (LNS) heuristics

Important component in branch-and-bound-based MIP solvers
(diving, feasibility pump, local branching, ...)

I Solve an auxiliary problem to �nd an improved integer solution

I Also known as sub-MIPing

I Common: the auxiliary problem is formed by �xing variables

Fixing variables to 0 yield the same issues as in the 0-branch

This is where IPColGen attempts to contribute

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Large Neighbourhood Search (LNS) heuristics

Important component in branch-and-bound-based MIP solvers
(diving, feasibility pump, local branching, ...)

I Solve an auxiliary problem to �nd an improved integer solution

I Also known as sub-MIPing

I Common: the auxiliary problem is formed by �xing variables

Fixing variables to 0 yield the same issues as in the 0-branch

This is where IPColGen attempts to contribute

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Outline of IPColGen

An LNS heuristic

I Destroy method:
Remove columns from a current solution

I Repair method:

− Generate columns using a special repair pricing scheme
− Solve a repair problem = Sub-MIP

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Illustrations and VRP interpretations

Column = binary vector (aij)i∈I

Example: feasible solution

Decision variables:

λj =

{
1 if column j ∈ Jq of pricing problem q ∈ Q is used,
0 otherwise

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Illustrations and VRP interpretations

Column = binary vector (aij)i∈I Example: feasible solution

Decision variables:

λj =

{
1 if column j ∈ Jq of pricing problem q ∈ Q is used,
0 otherwise

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Illustrations and VRP interpretations

Column = binary vector (aij)i∈I Example: feasible solution

Decision variables:

λj =

{
1 if column j ∈ Jq of pricing problem q ∈ Q is used,
0 otherwise

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Notation

[MP] min
∑
j∈J

cjλj ,

s.t.
∑
j∈J

aijλj ≥ 1, i ∈ I c,

∑
j∈J

aijλj ≤ 1, i ∈ I p,

(λj)j∈J ∈ L ⊆ {0, 1}
|J |,

L = {λj ∈ {0, 1}, j ∈ J :
∑
j∈Jq

λj = |Kq|, q ∈ Q}.

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Notation

[MP] min
∑
j∈J

cjλj ,

s.t.
∑
j∈J

aijλj ≥ 1, i ∈ I c,

∑
j∈J

aijλj ≤ 1, i ∈ I p,

(λj)j∈J ∈ L ⊆ {0, 1}
|J |,

L = {λj ∈ {0, 1}, j ∈ J :
∑
j∈Jq

λj = |Kq|, q ∈ Q}.

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

LNS � Destroy method

Columns in RMP:
Jq, q ∈ Q

Current solution =
active columns:
J IPq , q ∈ Q

Destroy method =
Remove active columns

Let the set of remaining columns Ĵ be �xed:
What is the best possible way to repair the solution?

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

LNS � Destroy method

Columns in RMP:
Jq, q ∈ Q

Current solution =
active columns:
J IPq , q ∈ Q

Destroy method =
Remove active columns

Let the set of remaining columns Ĵ be �xed:
What is the best possible way to repair the solution?

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

LNS � Destroy method

Columns in RMP:
Jq, q ∈ Q

Current solution =
active columns:
J IPq , q ∈ Q

Destroy method =
Remove active columns

Let the set of remaining columns Ĵ be �xed:
What is the best possible way to repair the solution?

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

LNS � Destroy method

Columns in RMP:
Jq, q ∈ Q

Current solution =
active columns:
J IPq , q ∈ Q

Destroy method =
Remove active columns

Let the set of remaining columns Ĵ be �xed:
What is the best possible way to repair the solution?

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

LNS � �Ideal� repair method

Solve [REP] over the set JR = J (all possible columns)

[REP] min
∑
j∈JR

cjλj ,

s.t.
∑
j∈JR

aijλj ≥ 1−
∑
j∈Ĵ

aij , i ∈ I c,

∑
j∈JR

aijλj ≤ 1−
∑
j∈Ĵ

aij , i ∈ I p,

∑
j∈JRq

λj = |Kq| − |Ĵq|, q ∈ Q,

λj ∈ {0, 1}, j ∈ JR ∪ J.

NOT reasonable in practice!

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

LNS � �Ideal� repair method

Solve [REP] over the set JR = J (all possible columns)

[REP] min
∑
j∈JR

cjλj ,

s.t.
∑
j∈JR

aijλj ≥ 1−
∑
j∈Ĵ

aij , i ∈ I c,

∑
j∈JR

aijλj ≤ 1−
∑
j∈Ĵ

aij , i ∈ I p,

∑
j∈JRq

λj = |Kq| − |Ĵq|, q ∈ Q,

λj ∈ {0, 1}, j ∈ JR ∪ J.

NOT reasonable in practice!

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

LNS � �Ideal� repair method

Solve [REP] over the set JR = J (all possible columns)

[REP] min
∑
j∈JR

cjλj ,

s.t.
∑
j∈JR

aijλj ≥ 1−
∑
j∈Ĵ

aij , i ∈ I c,

∑
j∈JR

aijλj ≤ 1−
∑
j∈Ĵ

aij , i ∈ I p,

∑
j∈JRq

λj = |Kq| − |Ĵq|, q ∈ Q,

λj ∈ {0, 1}, j ∈ JR ∪ J.
NOT reasonable in practice!

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Properties of JR
∗
and desired properties of JR

→ Aim for these properties when generating JR

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Properties of JR
∗
and desired properties of JR

→ Aim for these properties when generating JR

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Properties of JR
∗
and desired properties of JR

→ Aim for these properties when generating JR

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Properties of JR
∗
and desired properties of JR

→ Aim for these properties when generating JR

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Properties of JR
∗
and desired properties of JR

→ Aim for these properties when generating JR

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Properties of JR
∗
and desired properties of JR

→ Aim for these properties when generating JR

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Desired properties translated to the pricing problem

I �Anything ok� ⇒ no change in the pricing problem

I �All = 0� ⇒ Big-M penalty on corresponding ai

I �Together ≥ 1 or ≤ 1� ⇒
In iteration l , aim at complying with

∑
j∈JR∗

∑
j ′∈L̂jl

aij ′

{
≥ 1

|JR∗ |
∑

j∈JR∗ |L̂jl |, i ∈ Î c0,

≤ 1

|JR∗ |
∑

j∈JR∗ |L̂jl |, i ∈ Î p0.

Just simple calculations and comparisons in each iteration �
adjust penalties on the corresponding ai :s dynamically

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Desired properties translated to the pricing problem

I �Anything ok� ⇒ no change in the pricing problem

I �All = 0� ⇒ Big-M penalty on corresponding ai

I �Together ≥ 1 or ≤ 1� ⇒
In iteration l , aim at complying with

∑
j∈JR∗

∑
j ′∈L̂jl

aij ′

{
≥ 1

|JR∗ |
∑

j∈JR∗ |L̂jl |, i ∈ Î c0,

≤ 1

|JR∗ |
∑

j∈JR∗ |L̂jl |, i ∈ Î p0.

Just simple calculations and comparisons in each iteration �
adjust penalties on the corresponding ai :s dynamically

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Desired properties translated to the pricing problem

I �Anything ok� ⇒ no change in the pricing problem

I �All = 0� ⇒ Big-M penalty on corresponding ai

I �Together ≥ 1 or ≤ 1� ⇒

In iteration l , aim at complying with

∑
j∈JR∗

∑
j ′∈L̂jl

aij ′

{
≥ 1

|JR∗ |
∑

j∈JR∗ |L̂jl |, i ∈ Î c0,

≤ 1

|JR∗ |
∑

j∈JR∗ |L̂jl |, i ∈ Î p0.

Just simple calculations and comparisons in each iteration �
adjust penalties on the corresponding ai :s dynamically

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Desired properties translated to the pricing problem

I �Anything ok� ⇒ no change in the pricing problem

I �All = 0� ⇒ Big-M penalty on corresponding ai

I �Together ≥ 1 or ≤ 1� ⇒
In iteration l , aim at complying with

∑
j∈JR∗

∑
j ′∈L̂jl

aij ′

{
≥ 1

|JR∗ |
∑

j∈JR∗ |L̂jl |, i ∈ Î c0,

≤ 1

|JR∗ |
∑

j∈JR∗ |L̂jl |, i ∈ Î p0.

Just simple calculations and comparisons in each iteration �
adjust penalties on the corresponding ai :s dynamically

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Desired properties translated to the pricing problem

I �Anything ok� ⇒ no change in the pricing problem

I �All = 0� ⇒ Big-M penalty on corresponding ai

I �Together ≥ 1 or ≤ 1� ⇒
In iteration l , aim at complying with

∑
j∈JR∗

∑
j ′∈L̂jl

aij ′

{
≥ 1

|JR∗ |
∑

j∈JR∗ |L̂jl |, i ∈ Î c0,

≤ 1

|JR∗ |
∑

j∈JR∗ |L̂jl |, i ∈ Î p0.

Just simple calculations and comparisons in each iteration �
adjust penalties on the corresponding ai :s dynamically

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Repair pricing

Pricing problem q in iteration l

[REP-CGql] min c −
∑
i∈I c

γ

ūiai +
∑
i∈Ip

γ

ūiai

+

+
∑
i∈Îp1

Mai −
∑
i∈Î c0

βilai +
∑
i∈Îp0

βilai

s.t. (c , a) ∈ Aq.

I Static Big-M penalties and dynamic penalties βil

I Adjust the reduced costs with the parameter γ ∈ [0, 1]
Y. Zhao, T. Larsson, E. Rönnberg.
An integer programming column generation principle for heuristic search methods.

International Transactions in Operational Research, 27:665�695, 2020.

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Repair pricing

Pricing problem q in iteration l

[REP-CGql] min c −
∑
i∈I c

γ

ūiai +
∑
i∈Ip

γ

ūiai +

+
∑
i∈Îp1

Mai −
∑
i∈Î c0

βilai +
∑
i∈Îp0

βilai

s.t. (c , a) ∈ Aq.

I Static Big-M penalties and dynamic penalties βil

I Adjust the reduced costs with the parameter γ ∈ [0, 1]
Y. Zhao, T. Larsson, E. Rönnberg.
An integer programming column generation principle for heuristic search methods.

International Transactions in Operational Research, 27:665�695, 2020.

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Repair pricing

Pricing problem q in iteration l

[REP-CGql] min c −
∑
i∈I c

γūiai +
∑
i∈Ip

γūiai +

+
∑
i∈Îp1

Mai −
∑
i∈Î c0

βilai +
∑
i∈Îp0

βilai

s.t. (c , a) ∈ Aq.

I Static Big-M penalties and dynamic penalties βil

I Adjust the reduced costs with the parameter γ ∈ [0, 1]
Y. Zhao, T. Larsson, E. Rönnberg.
An integer programming column generation principle for heuristic search methods.

International Transactions in Operational Research, 27:665�695, 2020.

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Implementation in GCG module of SCIP

IPColGen is implemented as part of the B&P&C scheme in GCG

I Apply in root node

when

− when tailing-o� for the LP-relaxation begins

− optimality gap is large (= expected to be of most use)

I Apply for a subset of the nodes in the B&P tree
(too expensive to use in all nodes)

Evaluated when used in addition to all other heuristics in
GCG/SCIP to compare to its state of the art

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Implementation in GCG module of SCIP

IPColGen is implemented as part of the B&P&C scheme in GCG

I Apply in root node when

− when tailing-o� for the LP-relaxation begins

− optimality gap is large (= expected to be of most use)

I Apply for a subset of the nodes in the B&P tree
(too expensive to use in all nodes)

Evaluated when used in addition to all other heuristics in
GCG/SCIP to compare to its state of the art

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Implementation in GCG module of SCIP

IPColGen is implemented as part of the B&P&C scheme in GCG

I Apply in root node when

− when tailing-o� for the LP-relaxation begins
− optimality gap is large (= expected to be of most use)

I Apply for a subset of the nodes in the B&P tree
(too expensive to use in all nodes)

Evaluated when used in addition to all other heuristics in
GCG/SCIP to compare to its state of the art

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Implementation in GCG module of SCIP

IPColGen is implemented as part of the B&P&C scheme in GCG

I Apply in root node when

− when tailing-o� for the LP-relaxation begins
− optimality gap is large (= expected to be of most use)

I Apply for a subset of the nodes in the B&P tree
(too expensive to use in all nodes)

Evaluated when used in addition to all other heuristics in
GCG/SCIP to compare to its state of the art

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Implementation in GCG module of SCIP

IPColGen is implemented as part of the B&P&C scheme in GCG

I Apply in root node when

− when tailing-o� for the LP-relaxation begins
− optimality gap is large (= expected to be of most use)

I Apply for a subset of the nodes in the B&P tree
(too expensive to use in all nodes)

Evaluated when used in addition to all other heuristics in
GCG/SCIP to compare to its state of the art

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Evaluation measures

I All results as a function of �rst call gap

I Primal integral

− Common way to measure
progress of heuristics

− Each point in time: integral over
primal gap as function of time

I Primal / optimality gap after 3,600s

I Diverse test set:
Shifted geometric mean

I Display ratio with/without IPColGen

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Evaluation measures

I All results as a function of �rst call gap

I Primal integral

− Common way to measure
progress of heuristics

− Each point in time: integral over
primal gap as function of time

I Primal / optimality gap after 3,600s

I Diverse test set:
Shifted geometric mean

I Display ratio with/without IPColGen

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Evaluation measures

I All results as a function of �rst call gap

I Primal integral

− Common way to measure
progress of heuristics

− Each point in time: integral over
primal gap as function of time

I Primal / optimality gap after 3,600s

I Diverse test set:
Shifted geometric mean

I Display ratio with/without IPColGen

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Evaluation measures

I All results as a function of �rst call gap

I Primal integral

− Common way to measure
progress of heuristics

− Each point in time: integral over
primal gap as function of time

I Primal / optimality gap after 3,600s

I Diverse test set:
Shifted geometric mean

I Display ratio with/without IPColGen

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Instances with known block diagonal structures

Results for about 700 instances

I Bin packing

I Capacitated p-median

I Generalised assignment

I Vertex coloring

I Optimal interval scheduling

Instance characteristics

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
First call gap

200

300

400

500

600

700

Nu
m

be
r o

f i
ns

ta
nc

es

Show results for some parameter settings γ and β

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Instances with known block diagonal structures

Results for about 700 instances

I Bin packing

I Capacitated p-median

I Generalised assignment

I Vertex coloring

I Optimal interval scheduling

Instance characteristics

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
First call gap

200

300

400

500

600

700

Nu
m

be
r o

f i
ns

ta
nc

es

Show results for some parameter settings γ and β

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Instances with known block diagonal structures

Results for about 700 instances

I Bin packing

I Capacitated p-median

I Generalised assignment

I Vertex coloring

I Optimal interval scheduling

Instance characteristics

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
First call gap

200

300

400

500

600

700

Nu
m

be
r o

f i
ns

ta
nc

es

Show results for some parameter settings γ and β

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Results: Instances with known block diagonal structures

Final optimality gap

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
First call gap

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Ra
tio

 a
vg

 (I
PC

ol
Ge

n
/ d

ef
au

lt)

: 0.9 0: 0.1
: 0.9 0: 0.5
: 0.9 0: 1

Primal integral

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
First call gap

0.850
0.875
0.900
0.925
0.950
0.975
1.000
1.025
1.050

Ra
tio

 a
vg

 (I
PC

ol
Ge

n
/ d

ef
au

lt)

: 0.9 0: 0.1
: 0.9 0: 0.5
: 0.9 0: 1

I better primal solutions + better �nal gap for all instances

I better primal integral only for instances with large initial gap

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Results: Instances with known block diagonal structures

Final optimality gap

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
First call gap

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Ra
tio

 a
vg

 (I
PC

ol
Ge

n
/ d

ef
au

lt)

: 0.9 0: 0.1
: 0.9 0: 0.5
: 0.9 0: 1

Primal integral

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
First call gap

0.850
0.875
0.900
0.925
0.950
0.975
1.000
1.025
1.050

Ra
tio

 a
vg

 (I
PC

ol
Ge

n
/ d

ef
au

lt)

: 0.9 0: 0.1
: 0.9 0: 0.5
: 0.9 0: 1

I better primal solutions + better �nal gap for all instances

I better primal integral only for instances with large initial gap

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Results: Instances with known block diagonal structures

Final optimality gap

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
First call gap

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Ra
tio

 a
vg

 (I
PC

ol
Ge

n
/ d

ef
au

lt)

: 0.9 0: 0.1
: 0.9 0: 0.5
: 0.9 0: 1

Primal integral

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
First call gap

0.850
0.875
0.900
0.925
0.950
0.975
1.000
1.025
1.050

Ra
tio

 a
vg

 (I
PC

ol
Ge

n
/ d

ef
au

lt)

: 0.9 0: 0.1
: 0.9 0: 0.5
: 0.9 0: 1

I better primal solutions + better �nal gap for all instances

I better primal integral only for instances with large initial gap

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Instances from MIPLIB 2017

Results for about 160 instances
with known solution and tags

I Decomposition

I Set covering

I Set packing

I Set partitioning

Instance characteristics

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
First call gap

20

40

60

80

100

120

140

160

Nu
m

be
r o

f i
ns

ta
nc

es

Automatic structure detection & D-W decomposition in GCG

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Instances from MIPLIB 2017

Results for about 160 instances
with known solution and tags

I Decomposition

I Set covering

I Set packing

I Set partitioning

Instance characteristics

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
First call gap

20

40

60

80

100

120

140

160

Nu
m

be
r o

f i
ns

ta
nc

es

Automatic structure detection & D-W decomposition in GCG

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Results: Instances from MIPLIB 2017

Final primal gap

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
First call gap

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Ra
tio

 a
vg

 (I
PC

ol
Ge

n
/ d

ef
au

lt)

: 0.25 0: 0.1

Primal integral

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
First call gap

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Ra
tio

 a
vg

 (I
PC

ol
Ge

n
/ d

ef
au

lt)

: 0.25 0: 0.1

Same type of results as for instances with known structure!

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Results: Instances from MIPLIB 2017

Final primal gap

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
First call gap

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Ra
tio

 a
vg

 (I
PC

ol
Ge

n
/ d

ef
au

lt)

: 0.25 0: 0.1

Primal integral

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
First call gap

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Ra
tio

 a
vg

 (I
PC

ol
Ge

n
/ d

ef
au

lt)

: 0.25 0: 0.1

Same type of results as for instances with known structure!

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Conclusions

IPColGen behaves as intended:
Helps GCG/SCIP �nding high-quality integer solutions &
improves computational performance for di�cult instances

Paper also includes

I Detailed derivation of pricing scheme

I More tests + performance measures

I Analysis for di�erent parameter settings

I An extension of the restricted master heuristic

Room for several improvements of both theory and implementation

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Conclusions

IPColGen behaves as intended:
Helps GCG/SCIP �nding high-quality integer solutions &
improves computational performance for di�cult instances

Paper also includes

I Detailed derivation of pricing scheme

I More tests + performance measures

I Analysis for di�erent parameter settings

I An extension of the restricted master heuristic

Room for several improvements of both theory and implementation

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Final notes and acknowledgments

April 2023:
Published in Mathematical
Programming Computation

Elina Rönnberg: funding
from The Center for Industrial
Information Technology (CENIIT)

Thanks for listening!

Elina Rönnberg

Introduction Background IPColGen Results and conclusions

Open positions on the horizon

I Assistant Professor in non-linear programming

− Needs to be a touch of AI, e.g. optimsiation for learning
− Funding: 80% research in 5 years + PhD student or 2 postdocs

I Any type of Professor in MIP/discrete optimisation

− Preferably someone who wants to collaborate with me =)
− Nice if interested in combining with data-driven methods and

has interest in both theory, methods and applications
− Funding: 80% research in 5 years +

can take part in projects/supervision in my group

Both are permanent positions
(as Assistant professor you can get kicked out after 5 years if duties are neglected)

I need to get in contact with candidates before announcing!

Elina Rönnberg

	Introduction
	

	Background
	

	IPColGen
	

	Results and conclusions
	

