Integer programming column generation:
 Accelerating branch-and-price for set covering, packing, and partitioning problems

Stephen J. Maher and Elina Rönnberg

Column generation 2023

What?

- A Large Neighbourhood Search (LNS) heuristic for extended formulations
- Implemented in GCG: A generic branch-price-and-cut solver in SCIP
- Improves computational performance of GCG for difficult instances, i.e. when root-node gap is large

Why?

- LNS heuristics are vital components in generic MIP solvers
- Challenging to extend them to settings where columns are generated
- "Standard column generation only cares about LP" \rightarrow unexplored potential

How?

LNS of destroy-repair type

- Destroy method:

Remove columns from current solution

- Repair method:

Solve a sub-MIP using columns from a specialised repair pricing scheme

Key contribution: The repair pricing scheme

Outline

Introduction

Background

IPCoIGen

Results and conclusions

111 имкӧпм
Elina Rönnberg

Running example: Model for VRP

Problem formulation

Use these three vehicles
Visit all customers
Minimise total travel time

Running example: Model for VRP

Compact formulation

Decision variables:

$$
x_{q k}=\left\{\begin{array}{c}
1 \text { if vehicle } q \\
\text { uses arc } k, \\
0 \text { otherwise }
\end{array}\right.
$$

Constraints:
Feasible routes for all vehicles
Vehicles cover all customers

Running example: Model for VRP

Extended formulation

Decision variables:

$$
\lambda_{q j}=\left\{\begin{array}{c}
1 \text { if vehicle } q \\
\text { uses route } j \\
0 \text { otherwise }
\end{array}\right.
$$

Constraints:
One route per vehicle
Vehicles cover all customers

Running example: Model for VRP

Extended formulation

Decision variables:

$$
\lambda_{q j}=\left\{\begin{array}{c}
1 \text { if vehicle } q \\
\text { uses route } j \\
0 \text { otherwise }
\end{array}\right.
$$

Constraints:
One route per vehicle
Vehicles cover all customers

Feasible routes are constructed by solving a pricing problem

Branching for different formulations

$x_{2} \geq 1$: Force vehicle to use arc
$x_{2} \leq 0$: Forbid vehicle to use arc

Branching for different formulations

Compact formulation

$$
x=(1,1 / 2)
$$

$x_{2} \geq 1$: Force vehicle to use arc
$x_{2} \leq 0$: Forbid vehicle to use arc

Extended formulation
$\lambda=(1,1 / 2)$

$\lambda_{2} \geq 1$: Force use of route
$\lambda_{2} \leq 0$: Forbid use of route

Branching for different formulations

Compact formulation

$$
x=(1,1 / 2)
$$

$x_{2} \geq 1$: Force vehicle to use arc
$x_{2} \leq 0$: Forbid vehicle to use arc

Extended formulation
$\lambda=(1,1 / 2)$

$\lambda_{2} \geq 1$: Force use of route $\lambda_{2} \leq 0$: Forbid use of route \& never generate it again

Branching for different formulations

Compact formulation

$$
x=(1,1 / 2)
$$

$x_{2} \geq 1$: Force vehicle to use arc
$x_{2} \leq 0$: Forbid vehicle to use arc

Extended formulation

$$
\lambda=(1,1 / 2)
$$

$\lambda_{2} \geq 1$: Force use of route $\lambda_{2} \leq 0$: Forbid use of route \& never generate it again

Problem: No computationally efficient way to prevent one exact route/column/solution from being generated

Elina Rönnberg

Well-known challenge: Branching in branch-and-price

Instead of the "naïve" branching $\lambda_{2} \geq 1$ and $\lambda_{2} \leq 0$:

- Branch on variables of the corresponding compact formulation
- Translates to using or omitting one arc in the pricing problem

Common with customised branching schemes to achieve this

Well-known challenge: Branching in branch-and-price

Instead of the "naïve" branching $\lambda_{2} \geq 1$ and $\lambda_{2} \leq 0$:

- Branch on variables of the corresponding compact formulation
- Translates to using or omitting one arc in the pricing problem

Common with customised branching schemes to achieve this

Same type of challenge appears when designing LNS heuristics for branch-and-price, so let's return to LNS ...

Large Neighbourhood Search (LNS) heuristics

Important component in branch-and-bound-based MIP solvers (diving, feasibility pump, local branching, ...)

- Solve an auxiliary problem to find an improved integer solution
- Also known as sub-MIPing
- Common: the auxiliary problem is formed by fixing variables

Large Neighbourhood Search (LNS) heuristics

Important component in branch-and-bound-based MIP solvers (diving, feasibility pump, local branching, ...)

- Solve an auxiliary problem to find an improved integer solution
- Also known as sub-MIPing
- Common: the auxiliary problem is formed by fixing variables

Fixing variables to 0 yield the same issues as in the 0 -branch
This is where IPColGen attempts to contribute

Outline of IPColGen

An LNS heuristic

- Destroy method:

Remove columns from a current solution

- Repair method:
- Generate columns using a special repair pricing scheme
- Solve a repair problem $=$ Sub-MIP

Illustrations and VRP interpretations
Column $=$ binary vector $\left(a_{i j}\right)_{i \in I}$
Corresponds to a route and indicates if customer i is visited by the vehicle or not

Illustrations and VRP interpretations

Column $=$ binary vector $\left(a_{i j}\right)_{i \in I}$

$$
=\left(\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

Corresponds to a route and indicates if customer i is visited by the vehicle or not

Example: feasible solution

5 routes that together visit each costumer exactly once

Illustrations and VRP interpretations

Column $=$ binary vector $\left(a_{i j}\right)_{i \in I}$

$$
=\left(\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

Decision variables:

$$
\lambda_{j}=\left\{\begin{array}{l}
1 \text { if column } j \in \mathcal{J}_{q} \text { of pricing problem } q \in Q \text { is used, } \\
0 \text { otherwise }
\end{array}\right.
$$

LINKÖPING
UNIVERSITY

Notation

$$
\begin{aligned}
{[\mathrm{MP}] \quad \min \quad } & \sum_{j \in \mathcal{J}} c_{j} \lambda_{j}, \\
\text { s.t. } \quad & \sum_{j \in \mathcal{J}} a_{i j} \lambda_{j} \geq 1, \quad i \in I^{\text {c }}, \\
& \sum_{j \in \mathcal{J}} a_{i j} \lambda_{j} \leq 1, \quad i \in I^{\mathbb{P}}, \\
& \left(\lambda_{j}\right)_{j \in \mathcal{J}} \in \mathcal{L} \subseteq\{0,1\}^{|\mathcal{J}|}, \\
\mathcal{L}= & \left\{\lambda_{j} \in\{0,1\}, j \in \mathcal{J}: \sum_{j \in \mathcal{J}_{q}} \lambda_{j}=\left|K_{q}\right|, q \in Q\right\} .
\end{aligned}
$$

Elina Rönnberg

Notation

$$
\begin{aligned}
{[\mathrm{MP}] \quad \min } & \sum_{j \in \mathcal{J}} c_{j} \lambda_{j}, \\
\text { s.t. } & \sum_{j \in \mathcal{J}} a_{i j} \lambda_{j} \geq 1, \quad i \in I^{\mathrm{c}}, \\
& \sum_{j \in \mathcal{J}} a_{i j} \lambda_{j} \leq 1, \quad i \in \mathbb{I}^{\mathbb{P}}, \\
& \left(\lambda_{j}\right)_{j \in \mathcal{J}} \in \mathcal{L} \subseteq\{0,1\}^{|\mathcal{J}|},
\end{aligned}
$$

LNS - Destroy method

Columns in RMP:
$J_{q}, q \in Q$

$+$

LNS - Destroy method

Columns in RMP:
$J_{q}, q \in Q$
Current solution $=$ active columns:
$J_{q}^{\mathbb{P}}, q \in Q$

三
Elina Rönnberg

LNS - Destroy method

Columns in RMP:
$J_{q}, q \in Q$
Current solution $=$ active columns:
$J_{q}^{\mathbb{P}, q \in Q}$
Destroy method = Remove active columns

LNS - Destroy method

Columns in RMP:
$J_{q}, q \in Q$
Current solution $=$ active columns:
$J_{q}^{\mathbb{P}, q \in Q}$
Destroy method =
Remove active columns

Let the set of remaining columns $\hat{\jmath}$ be fixed: What is the best possible way to repair the solution?

LNS - "Ideal" repair method

Solve [REP] over the set $J^{R}=\mathcal{J}$ (all possible columns)
[REP] min $\sum_{j \in J \mathbb{R}} c_{j} \lambda_{j}$,

$$
\begin{aligned}
& \text { s.t. } \quad \sum_{j \in \mathcal{R}} a_{i j} \lambda_{j} \geq 1-\sum_{j \in \hat{J}} a_{i j}, i \in I^{c} \text {, } \\
& \sum_{j \in \mathcal{J}^{\mathbb{R}}} a_{i j} \lambda_{j} \leq 1-\sum_{j \in \jmath} a_{i j}, i \in \mathbb{I}^{\boldsymbol{p}}, \\
& \sum_{j \in \mathcal{q}_{q}^{\mathrm{R}}} \lambda_{j}=\left|K_{q}\right|-\left|\hat{J}_{q}\right|, \quad q \in Q, \\
& \lambda_{j} \in\{0,1\}, j \in J^{\mathbb{R}} \cup J .
\end{aligned}
$$

LNS - "Ideal" repair method

Solve [REP] over the set $J^{R}=\mathcal{J}$ (all possible columns)
[REP] min $\sum_{j \in J \mathbb{R}} c_{j} \lambda_{j}$,
s.t. $\quad \sum_{j \in \mathcal{R}} a_{i j} \lambda_{j} \geq 1-\sum_{j \in \mathcal{J}} a_{i j}, i \in I^{c}$,
$\sum_{j \in \mathcal{J}^{\mathbb{R}}} a_{i j} \lambda_{j} \leq 1-\sum_{j \in \hat{J}} a_{i j}, i \in \mathbb{I}^{\mathbf{p}}$,
$\sum_{j \in J_{q}^{\mathbb{R}}} \lambda_{j}=\left|K_{q}\right|-\left|\hat{J}_{q}\right|, \quad q \in Q$,
$\lambda_{j} \in\{0,1\}, j \in J^{\mathbb{R}} \cup J$.

LNS - "Ideal" repair method

Solve [REP] over the set $J^{R}=\mathcal{J}$ (all possible columns)
[REP] min $\sum_{j \in J \mathbb{R}} c_{j} \lambda_{j}$,
s.t. $\quad \sum_{j \in \mathcal{R}} a_{i j} \lambda_{j} \geq 1-\sum_{j \in \mathcal{J}} a_{i j}, i \in I^{c}$,
$\sum_{j \in \mathcal{I}^{\mathbb{R}}} a_{i j} \lambda_{j} \leq 1-\sum_{j \in \hat{J}} a_{i j}, i \in \mathbb{I}^{\boldsymbol{p}}$,
$\sum_{j \in J_{q}^{\mathbb{R}}} \lambda_{j}=\left|K_{q}\right|-\left|\hat{J}_{q}\right|, \quad q \in Q$,
$\lambda_{j} \in\{0,1\}, j \in J^{R} \cup J$.
NOT reasonable in practice!

Properties of $J^{R^{*}}$ and desired properties of J^{R}

Properties of $J^{R^{*}}$ and desired properties of J^{R}

Properties of $J^{R^{*}}$ and desired properties of J^{R}

Properties of $J^{R^{*}}$ and desired properties of J^{R}

Elina Rönnberg

Properties of $J^{R^{*}}$ and desired properties of J^{R}

Properties of $J^{R^{*}}$ and desired properties of J^{R}

\rightarrow Aim for these properties when generating J^{R}

Desired properties translated to the pricing problem

- "Anything ok" \Rightarrow no change in the pricing problem

Desired properties translated to the pricing problem

- "Anything ok" \Rightarrow no change in the pricing problem
- "All $=0$ " \Rightarrow Big- M penalty on corresponding a_{i}

Desired properties translated to the pricing problem

- "Anything ok" \Rightarrow no change in the pricing problem
- "All $=0$ " \Rightarrow Big- M penalty on corresponding a_{i}
- "Together ≥ 1 or $\leq 1 " \Rightarrow$

Desired properties translated to the pricing problem

- "Anything ok" \Rightarrow no change in the pricing problem
- "All $=0$ " \Rightarrow Big- M penalty on corresponding a_{i}
- "Together ≥ 1 or $\leq 1 " \Rightarrow$

In iteration I, aim at complying with

$$
\sum_{j \in J^{R^{*}}} \sum_{j^{\prime} \in \hat{L}_{j l}} a_{i j j^{\prime}}\left\{\begin{array}{l}
\geq \frac{1}{\left|J^{*}\right|} \sum_{j \in J^{R^{*}}}\left|\hat{L}_{j j}\right|, \quad i \in \hat{\jmath}^{\mathrm{co}} \\
\leq \frac{1}{\left|\mathrm{R}^{*}\right|} \sum_{j \in \mathrm{R}^{*}}\left|\hat{L}_{j l}\right|, \quad i \in \hat{\mathrm{I}}^{\mathrm{p} 0}
\end{array}\right.
$$

Desired properties translated to the pricing problem

- "Anything ok" \Rightarrow no change in the pricing problem
- "All $=0$ " \Rightarrow Big- M penalty on corresponding a_{i}
- "Together ≥ 1 or $\leq 1 " \Rightarrow$

In iteration I, aim at complying with

$$
\sum_{j \in J^{R^{*}}} \sum_{j^{\prime} \in \hat{L}_{j l}} a_{i j^{\prime}}\left\{\begin{array}{l}
\geq \frac{1}{\left|J^{*}\right|} \sum_{j \in J^{*}}\left|\hat{L}_{j j}\right|, \quad i \in \hat{\Lambda}^{00}, \\
\leq \frac{1}{\left|J^{*}\right|} \sum_{j \in J^{*}}\left|\hat{L}_{j i}\right|, \quad i \in \hat{\jmath}^{00}
\end{array}\right.
$$

Just simple calculations and comparisons in each iteration adjust penalties on the corresponding a_{i} :s dynamically

LINKÖPING
UNIVERSITY
Elina Rönnberg

Repair pricing

Pricing problem q in iteration /
$\left[\right.$ REP-CG $\left._{q l}\right] \min \quad c-\sum_{i \in I^{c}} \bar{u}_{i} a_{i}+\sum_{i \in I^{\mathbf{P}}} \bar{u}_{i} a_{i}$

$$
\text { s.t. } \quad(c, a) \in \mathcal{A}_{q} .
$$

Repair pricing

Pricing problem q in iteration /
$\left[\right.$ REP-CG $\left._{q l}\right] \min c-\sum_{i \in I^{\boldsymbol{c}}} \bar{u}_{i} a_{i}+\sum_{i \in I^{\mathbb{P}}} \bar{u}_{i} a_{i}+$ $+\sum_{i \in \hat{I^{1} 1}} M a_{i}-\sum_{i \in \hat{I} \hat{c}^{0}} \beta_{i l} a_{i}+\sum_{i \in \hat{\mathrm{P}}^{0}} \beta_{i l} a_{i}$

$$
\text { s.t. } \quad(c, a) \in \mathcal{A}_{q} .
$$

- Static Big- M penalties and dynamic penalties $\beta_{i l}$

Repair pricing

Pricing problem q in iteration /
$\left[\right.$ REP-CG $\left._{q l}\right] \quad \min \quad c-\sum_{i \in I^{\mathrm{c}}} \gamma \bar{u}_{i} a_{i}+\sum_{i \in I^{\mathrm{P}}} \gamma \bar{u}_{i} a_{i}+$

$$
+\sum_{i \in \hat{\jmath} \mathrm{p} 1} M a_{i}-\sum_{i \in \hat{\jmath} \hat{\jmath}^{0}} \beta_{i l} a_{i}+\sum_{i \in \hat{1} \mathrm{p} 0} \beta_{i l} a_{i}
$$

$$
\text { s.t. } \quad(c, a) \in \mathcal{A}_{q} .
$$

- Static Big- M penalties and dynamic penalties $\beta_{i l}$
- Adjust the reduced costs with the parameter $\gamma \in[0,1]$ Y. Zhao, T. Larsson, E. Rönnberg.

An integer programming column generation principle for heuristic search methods. International Transactions in Operational Research, 27:665-695, 2020.

Implementation in GCG module of SCIP

IPColGen is implemented as part of the B\&P\&C scheme in GCG

- Apply in root node

Implementation in GCG module of SCIP

IPColGen is implemented as part of the B\&P\&C scheme in GCG

- Apply in root node when
- when tailing-off for the LP-relaxation begins

Implementation in GCG module of SCIP

IPColGen is implemented as part of the B\&P\&C scheme in GCG

- Apply in root node when
- when tailing-off for the LP-relaxation begins
- optimality gap is large (= expected to be of most use)

Implementation in GCG module of SCIP

IPColGen is implemented as part of the B\&P\&C scheme in GCG

- Apply in root node when
- when tailing-off for the LP-relaxation begins
- optimality gap is large (= expected to be of most use)
- Apply for a subset of the nodes in the B\&P tree (too expensive to use in all nodes)

Implementation in GCG module of SCIP

IPColGen is implemented as part of the B\&P\&C scheme in GCG

- Apply in root node when
- when tailing-off for the LP-relaxation begins
- optimality gap is large (= expected to be of most use)
- Apply for a subset of the nodes in the B\&P tree (too expensive to use in all nodes)

Evaluated when used in addition to all other heuristics in GCG/SCIP to compare to its state of the art

Evaluation measures

- All results as a function of first call gap

Evaluation measures

- All results as a function of first call gap
- Primal integral
- Common way to measure progress of heuristics
- Each point in time: integral over primal gap as function of time
- Primal / optimality gap after 3,600s

Evaluation measures

- All results as a function of first call gap
- Primal integral
- Common way to measure progress of heuristics
- Each point in time: integral over primal gap as function of time
- Primal / optimality gap after 3,600s
- Diverse test set:

Shifted geometric mean

- Display ratio with/without IPCoIGen

Evaluation measures

- All results as a function of first call gap
- Primal integral
- Common way to measure progress of heuristics
- Each point in time: integral over primal gap as function of time
- Primal / optimality gap after 3,600s
- Diverse test set:

Shifted geometric mean

- Display ratio with/without IPCoIGen

Essentially:
A value <1 means we perform well

Instances with known block diagonal structures

Results for about 700 instances

- Bin packing
- Capacitated p-median
- Generalised assignment
- Vertex coloring
- Optimal interval scheduling

Instances with known block diagonal structures

Results for about 700 instances

- Bin packing
- Capacitated p-median
- Generalised assignment
- Vertex coloring
- Optimal interval scheduling

Instance characteristics

LINKÖPING
UNIVERSITY

Instances with known block diagonal structures

Results for about 700 instances

- Bin packing
- Capacitated p-median
- Generalised assignment
- Vertex coloring
- Optimal interval scheduling

Instance characteristics

Show results for some parameter settings γ and β

Results: Instances with known block diagonal structures

Final optimality gap

Results: Instances with known block diagonal structures

Final optimality gap

Primal integral

Results: Instances with known block diagonal structures

Final optimality gap

Primal integral

- better primal solutions + better final gap for all instances
- better primal integral only for instances with large initial gap

Instances from MIPLIB 2017

Results for about 160 instances
with known solution and tags

- Decomposition
- Set covering
- Set packing
- Set partitioning

Automatic structure detection \& D-W decomposition in GCG

Instances from MIPLIB 2017

Results for about 160 instances with known solution and tags

- Decomposition
- Set covering
- Set packing
- Set partitioning

Instance characteristics

Automatic structure detection \& D-W decomposition in GCG

Results: Instances from MIPLIB 2017

Final primal gap

Primal integral

Results: Instances from MIPLIB 2017

Final primal gap

Primal integral

Same type of results as for instances with known structure!

Conclusions

IPColGen behaves as intended:
Helps GCG/SCIP finding high-quality integer solutions \& improves computational performance for difficult instances

Conclusions

IPColGen behaves as intended:
Helps GCG/SCIP finding high-quality integer solutions \& improves computational performance for difficult instances

Paper also includes

- Detailed derivation of pricing scheme
- More tests + performance measures
- Analysis for different parameter settings
- An extension of the restricted master heuristic

Room for several improvements of both theory and implementation

LINKOPING
UNIVERSITY
Elina Rönnberg

Final notes and acknowledgments

April 2023:
Published in Mathematical
Programming Computation
Elina Rönnberg: funding from The Center for Industrial Information Technology (CENIIT)

Thanks for listening!

Open positions on the horizon

- Assistant Professor in non-linear programming
- Needs to be a touch of AI, e.g. optimsiation for learning
- Funding: 80% research in 5 years + PhD student or 2 postdocs
- Any type of Professor in MIP/discrete optimisation
- Preferably someone who wants to collaborate with me=)
- Nice if interested in combining with data-driven methods and has interest in both theory, methods and applications
- Funding: 80\% research in 5 years + can take part in projects/supervision in my group
Both are permanent positions
(as Assistant professor you can get kicked out after 5 years if duties are neglected)
I need to get in contact with candidates before announcing!

LINKÖPING
UNIVERSITY
Elina Rönnberg

