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Introduction Background IPColGen Results and conclusions

What?

I A Large Neighbourhood Search (LNS)
heuristic for extended formulations

I Implemented in GCG: A generic
branch-price-and-cut solver in SCIP

I Improves computational performance
of GCG for di�cult instances, i.e.
when root-node gap is large
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Why?

I LNS heuristics are vital
components in generic MIP solvers

I Challenging to extend them to
settings where columns are generated

I �Standard column generation only cares
about LP� → unexplored potential
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How?

LNS of destroy-repair type

I Destroy method:
Remove columns from current solution

I Repair method:
Solve a sub-MIP using columns from
a specialised repair pricing scheme

Key contribution: The repair pricing scheme
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Running example: Model for VRP

Problem formulation

Use these three vehicles
Visit all customers
Minimise total travel time

Feasible routes are constructed by solving a pricing problem
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Running example: Model for VRP

Compact formulation

Decision variables:

xqk =


1 if vehicle q
uses arc k ,

0 otherwise

Constraints:
Feasible routes for all vehicles
Vehicles cover all customers

Feasible routes are constructed by solving a pricing problem
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Running example: Model for VRP

Extended formulation

Decision variables:

λqj =


1 if vehicle q
uses route j ,

0 otherwise.

Constraints:
One route per vehicle
Vehicles cover all customers

Feasible routes are constructed by solving a pricing problem
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Branching for di�erent formulations

x2 ≥ 1: Force vehicle to use arc
x2 ≤ 0: Forbid vehicle to use arc

λ2 ≥ 1: Force use of route
λ2 ≤ 0: Forbid use of route &

never generate it again

Problem: No computationally e�cient way to prevent one
exact route/column/solution from being generated
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Well-known challenge: Branching in branch-and-price

Instead of the �naïve� branching λ2 ≥ 1 and λ2 ≤ 0:

I Branch on variables of the corresponding compact formulation

I Translates to using or omitting one arc in the pricing problem

Common with customised branching schemes to achieve this

Same type of challenge appears when designing LNS
heuristics for branch-and-price, so let's return to LNS ...
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Large Neighbourhood Search (LNS) heuristics

Important component in branch-and-bound-based MIP solvers
(diving, feasibility pump, local branching, ...)

I Solve an auxiliary problem to �nd an improved integer solution

I Also known as sub-MIPing

I Common: the auxiliary problem is formed by �xing variables

Fixing variables to 0 yield the same issues as in the 0-branch

This is where IPColGen attempts to contribute
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Outline of IPColGen

An LNS heuristic

I Destroy method:
Remove columns from a current solution

I Repair method:

− Generate columns using a special repair pricing scheme
− Solve a repair problem = Sub-MIP
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Illustrations and VRP interpretations

Column = binary vector (aij)i∈I

Example: feasible solution

Decision variables:

λj =

{
1 if column j ∈ Jq of pricing problem q ∈ Q is used,
0 otherwise
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Notation

[MP] min
∑
j∈J

cjλj ,

s.t.
∑
j∈J

aijλj ≥ 1, i ∈ I c,

∑
j∈J

aijλj ≤ 1, i ∈ I p,

(λj)j∈J ∈ L ⊆ {0, 1}
|J |,

L = {λj ∈ {0, 1}, j ∈ J :
∑
j∈Jq

λj = |Kq|, q ∈ Q}.
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LNS � Destroy method

Columns in RMP:
Jq, q ∈ Q

Current solution =
active columns:
J IPq , q ∈ Q

Destroy method =
Remove active columns

Let the set of remaining columns Ĵ be �xed:
What is the best possible way to repair the solution?
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What is the best possible way to repair the solution?

Elina Rönnberg



Introduction Background IPColGen Results and conclusions

LNS � Destroy method

Columns in RMP:
Jq, q ∈ Q

Current solution =
active columns:
J IPq , q ∈ Q

Destroy method =
Remove active columns

Let the set of remaining columns Ĵ be �xed:
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LNS � �Ideal� repair method

Solve [REP] over the set JR = J (all possible columns)

[REP] min
∑
j∈JR

cjλj ,

s.t.
∑
j∈JR

aijλj ≥ 1−
∑
j∈Ĵ

aij , i ∈ I c,

∑
j∈JR

aijλj ≤ 1−
∑
j∈Ĵ

aij , i ∈ I p,

∑
j∈JRq

λj = |Kq| − |Ĵq|, q ∈ Q,

λj ∈ {0, 1}, j ∈ JR ∪ J.

NOT reasonable in practice!
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Properties of JR
∗
and desired properties of JR

→ Aim for these properties when generating JR
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Desired properties translated to the pricing problem

I �Anything ok� ⇒ no change in the pricing problem

I �All = 0� ⇒ Big-M penalty on corresponding ai

I �Together ≥ 1 or ≤ 1� ⇒
In iteration l , aim at complying with

∑
j∈JR∗

∑
j ′∈L̂jl

aij ′

{
≥ 1

|JR∗ |
∑

j∈JR∗ |L̂jl |, i ∈ Î c0,

≤ 1

|JR∗ |
∑

j∈JR∗ |L̂jl |, i ∈ Î p0.

Just simple calculations and comparisons in each iteration �
adjust penalties on the corresponding ai :s dynamically

Elina Rönnberg
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≤ 1

|JR∗ |
∑

j∈JR∗ |L̂jl |, i ∈ Î p0.
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Repair pricing

Pricing problem q in iteration l

[REP-CGql ] min c −
∑
i∈I c

γ

ūiai +
∑
i∈Ip

γ

ūiai

+

+
∑
i∈Îp1

Mai −
∑
i∈Î c0

βilai +
∑
i∈Îp0

βilai

s.t. (c , a) ∈ Aq.

I Static Big-M penalties and dynamic penalties βil

I Adjust the reduced costs with the parameter γ ∈ [0, 1]
Y. Zhao, T. Larsson, E. Rönnberg.
An integer programming column generation principle for heuristic search methods.

International Transactions in Operational Research, 27:665�695, 2020.
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ūiai +
∑
i∈Ip

γ
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γūiai +
∑
i∈Ip
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Implementation in GCG module of SCIP

IPColGen is implemented as part of the B&P&C scheme in GCG

I Apply in root node

when

− when tailing-o� for the LP-relaxation begins

− optimality gap is large (= expected to be of most use)

I Apply for a subset of the nodes in the B&P tree
(too expensive to use in all nodes)

Evaluated when used in addition to all other heuristics in
GCG/SCIP to compare to its state of the art
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Evaluation measures

I All results as a function of �rst call gap

I Primal integral

− Common way to measure
progress of heuristics

− Each point in time: integral over
primal gap as function of time

I Primal / optimality gap after 3,600s

I Diverse test set:
Shifted geometric mean

I Display ratio with/without IPColGen
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Instances with known block diagonal structures

Results for about 700 instances

I Bin packing

I Capacitated p-median

I Generalised assignment

I Vertex coloring

I Optimal interval scheduling

Instance characteristics
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Show results for some parameter settings γ and β
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Results: Instances with known block diagonal structures

Final optimality gap
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I better primal solutions + better �nal gap for all instances

I better primal integral only for instances with large initial gap
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Instances from MIPLIB 2017

Results for about 160 instances
with known solution and tags

I Decomposition

I Set covering

I Set packing

I Set partitioning

Instance characteristics
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Automatic structure detection & D-W decomposition in GCG
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Results: Instances from MIPLIB 2017
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Conclusions

IPColGen behaves as intended:
Helps GCG/SCIP �nding high-quality integer solutions &
improves computational performance for di�cult instances

Paper also includes

I Detailed derivation of pricing scheme

I More tests + performance measures

I Analysis for di�erent parameter settings

I An extension of the restricted master heuristic

Room for several improvements of both theory and implementation
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Open positions on the horizon

I Assistant Professor in non-linear programming

− Needs to be a touch of AI, e.g. optimsiation for learning
− Funding: 80% research in 5 years + PhD student or 2 postdocs

I Any type of Professor in MIP/discrete optimisation

− Preferably someone who wants to collaborate with me =)
− Nice if interested in combining with data-driven methods and

has interest in both theory, methods and applications
− Funding: 80% research in 5 years +

can take part in projects/supervision in my group

Both are permanent positions
(as Assistant professor you can get kicked out after 5 years if duties are neglected)

I need to get in contact with candidates before announcing!

Elina Rönnberg
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