イロト イポト イヨト イヨト ヨー シスペ

ML-based heuristic branch-and-price for the aircrew pairing problem

Pierre Pereira Emeric Courtade Daniel Aloise **Frédéric Quesnel** François Soumis Yassine Yaakoubi

Introduction

▲□ > ▲圖 > ▲ 臣 > ▲臣 > □ 臣 → のへで

The crew pairing problem

Description

- Pairing : Sequence of flights forming one or several days of work.
- **Goal** : Minimize cost, optimize for other KPIs.
- **Constraints :** Cover all flights, comply with regulations, etc.
- Pairings assigned to crew members in a second step.
- Large instances : several tens of thousands of flights

Solving the CPP in practice

Branch-and-price

- Columns = pairings
- RMP : Set-partitioning problem.
- Subproblems : Constrained shortest path problems.

Heuristics everywhere

- Heuristic branching.
 That's the topic of the talk !
- Early stopping for relaxation. This will be relevant later.
- Exact pricing in our case
 Although heuristic pricing is common...

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨー つくで

Heuristic branching schemes

Heuristic strong branching (HSB)

- Candidates : highest fractional value
- Slow but better results.
- ESG UQÀM SOLYTECHNIQUE

イロン イボン イヨン イヨン 三日

Digression - strong branching in practice

In our software...

- Generated columns are kept between nodes...
- So if you use HSB...
- And solve in decreasing order of candidate value...
- And solve heuristically each relaxation...
- The last (worse) candidate has more columns...

Therefore the worse candidate has an advantage!

Heuristic branching schemes

Diving heuristic (DH)

- Candidates : highest fractional value.
- Possible to fix several columns at once.

イロン イボン イモン イモン 三日

Fastest but risky.

Our goal

General objective

Develop a branching heuristic as good as heuristic strong branching, but as fast as heuristic diving.

Specific objectives

Develop a machine learning based heuristic branching scheme that imitates heuristic strong branching.

Our goal

- As good as HSB (if predictions are good enough).
- As fast as DH
- Considers several factors (not just fractional values).

イロン 不得 とくきとくきとう

Imitating strong branching

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへぐ

But what about Alvarez et al. (2017)?

Alvarez et al. (2017)

- Small MIPS solved using B&B
 - \rightarrow Fixed probelem size.
- Exact method

ightarrow We want to increases the lower bound the *most*.

Our research

- Large MIPS solved using B&P
 - \rightarrow Variable problem size.
- Heuristic method
 - \rightarrow We want to increases the lower bound the *least*.

Learning framework

Basic idea

- Solve several CPPs with HSB.
- Record data on branching decisions.
- Train a ML model to imitate HSB.
- Replace HSB with the ML model.

Data

Pairing data

- CPP instances from Kasirzadeh (2017)
- 7 base instances between 1000 and 7800 flights.
- $\blacksquare \rightarrow 63$ instances by slightly perturbating the base instances.
 - Removing a few flights.
 - Perturbating side constraints.

ML data

- 5 candidate columns per node
- 1 entry per candidate column
- Raw score : RMP optimal value after fixing the candidate column
- Learning features

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨー つくで

Learning features

Candidate column information

- Value in RMP
- Cost
- Nb. tasks
- Parent node information
 - Nb. columns in RMP
 - Dual
 - % columns conflicting with candidate
 - % columns conflicting with positive value
 - **...**
- Solving process information
 - Node depth
 - % of tasks fixed

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨー つくで

Imitating strong branching

Experimental Results

Future work

Regression or classification?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 - のへの

Normalization?

Necessary to normalize the raw scores

Tempered softmax

$$s_i' = \frac{e^{-s_i/t}}{\sum\limits_{k \in K} e^{-s_k/t_k}}$$

K = set of candidates.

Improved normalization proposed

- Similar to tempered softmax
- Takes into account average and standard deviation among candidates.

イロト イヨト イヨト トヨー シック

ML Models

Linear regression

- Simple model, fast to train.
- DH heuristic included in the solution space.

Deep neural network

- Small-ish (3 layers, 150 neurons/layer)
- Should be able to derive more complex rules

Transformer encoder

- Consider all 5 candidates at once.
- Very small.
- It's what the cool kids do.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨー つくで

Training procedure

K-fold cross validation

- 1 base instance (9 instances total) left for testing
- Training performed on the remaining 6 base instances (42 instances total)
- Rotate the testing instances

Training

- 20% of training data put aside for validation.
- Trained with ADAM

イロト 不得 トイヨト イヨト ヨー ろくで

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへぐ

mitating strong branching

Experimental Results

Future work

Prediction accuracy

Neural network accuracy

- \approx 90% *top-1* accuracy
- $\blacksquare \approx 95\%$ close-to-best accuracy
- Diving heuristic accuracy
 - \blacksquare \approx 60% *close-to-best* accuracy

イロト イポト イヨト イヨト ヨー わらや

Results for the CPP

<u>CPU</u>

Time (s)	1	12	13	14	15	16	17
strong branching	178	227	889	40 481	44 639	51 478	109 365
diving heuristic	49	55	218	9 037	8 690	11 450	23 999
linear (our norm)	52	73	246	9 271	9 880	11 878	26 560
linear (softmax)	57	69	236	9 441	9 833	12 247	24 777
MLP (our norm)	52	71	248	9 743	10 450	12 406	25 084
MLP (softmax)	57	73	246	10 000	10 013	13 092	26 191
transformer (our norm)	55	62	217	10 713	10 052	12 027	26 763
transformer (softmax)	54	68	244	9 899	10 739	12 012	25 142

Results for the CPP

Solution value

Solution w.r.t. HSB (%)	1	12	13	14	15	16	17	mean
diving heuristic	1.87	0.27	1.14	0.05	0.12	0.42	0.05	0.56
linear (our norm)	1.11	0.51	0.72	0.05	0.10	0.24	0.67	0.49
linear (softmax)	0.88	0.06	0.56	0.21	0.17	0.37	-0.04	0.31
MLP (our norm)	1.45	0.50	0.55	-0.42	0.21	0.47	0.15	0.42
MLP (softmax)	0.68	0.42	0.58	0.13	0.13	0.35	0.18	0.35
transformer (our norm)	0.92	0.42	0.35	-0.11	0.07	0.40	-0.06	0.28
transformer (softmax)	1.73	-0.08	0.89	0.57	0.27	0.10	0.12	0.51

Results for the CPP

Solution value

Solution w.r.t. HSB (%)	1	12	13	14	15	16	17	mean
diving heuristic	1.87	0.27	1.14	0.05	0.12	0.42	0.05	0.56
linear (our norm)	1.11	0.51	0.72	0.05	0.10	0.24	0.67	0.49
linear (softmax)	0.88	0.06	0.56	0.21	0.17	0.37	-0.04	0.31
MLP (our norm)	1.45	0.50	0.55	-0.42	0.21	0.47	0.15	0.42
MLP (softmax)	0.68	0.42	0.58	0.13	0.13	0.35	0.18	0.35
transformer (our norm)	0.92	0.42	0.35	-0.11	0.07	0.40	-0.06	0.28
transformer (softmax)	1.73	-0.08	0.89	0.57	0.27	0.10	0.12	0.51

The bad news :

Not much to gain in the first place...

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Future work

Future work

Find a better-suited application

- Large-scale problem.
- Large gap between HSB and DH.

Improved learning

- Reinforcement learning.
- Features related to the application.
- How much training data is needed?

Improved branching

- Fixing several candidates at once.
- Consider a larger pool of candidates.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨー つくで

Questions?

Crew pairings, a costly chore, Heuristics used, to solve once more, Strong branching best, but slow to soar, New strategy learned, solutions galore.

– ChatGPT

イロト イポト イヨト イヨト ヨー わらや