
1

Revisiting 
Column Generation based 
Matheuristic for Learning 
Classification Trees
Krunal Patel
Guy Desaulniers
Andrea Lodi



Let’s say we have a dataset for a classification 
problem, and we want to construct a decision tree to 
predict the class. Each node has a specific question 
(which we will call a split check) based on a feature 
of the dataset and two branches. Each leaf has a 
target class.

2

a<4 

b<3 e<1

a b c d e T



Now standard ML algorithms, for example, CART, 
are very fast at generating trees because they use 
heuristics to compute the best split check for each 
node without considering the overall tree structure. 
Goes without saying that they, in general, do not 
generate optimal decision trees, i.e. the trees with 
the best accuracy.

3

a<4 

b<3 e<1



So, many people have worked on different 
optimization models that address this optimality 
issue. The problem is that they only work on small 
datasets and small trees. 

4

a<4 

b<3 e<1

a b c d e T



Firat et al. proposed a column generation model that 
somewhat mitigates this scalability issue. Now, their 
approach is also a heuristic. They do not generate 
optimal trees. But they come quite close to it and far 
better than CART.

5

a<4 

b<3 e<1

Scalable Optimal

FIRAT 
CG



So, let’s see what they proposed. They start with a 
restricted problem definition. We want to find a 
decision tree for the given dataset. In other words, if 
we fix the topology of the tree, then we want to find 
the best-split checks for each node. Now, they said, 
we will not look at all possible split checks. Instead, 
we will focus on a subset of them and select the 
ones that give the best accuracy. Of course, we also 
need to assign a target class to each leaf as well.

6

FIRAT CG

a < 3



How do we find this subset? Easy. Just run CART 
on a few random samples of the dataset and 
whichever splits checks CART selects are all in our 
candidate list.

7

a b c d e T

FIRAT CG



Okay, so that’s now the problem definition. We have 
to find the best split check for each node from a list 
of candidate split checks to maximize accuracy. And 
of course, the targets for each leaf.

8

FIRAT CG



Let’s say that this is a problem instance. We have a 
tree and a bunch of candidates for each node. Let’s 
focus on a root to leaf path with one split check 
selected for each node in the path and a target for 
the leaf. They created a binary variable for each 
such path. If the variable is 1, that path is selected. 

Now we can write a bunch of constraints to make 
sure that the selected paths define a valid tree. But, 
as you might have noticed already, the number of 
such possible path variables is just too large. That’s 
where we use column generation. We start with a 

9

FIRAT CG

Path 
variable: 
𝑥! ∈ {0,1}	



few and then generate these path variables as 
needed through subproblems.

9



So, let’s see a quick overview of the master 
problem. There are three main constraints.

First, we need to make sure that exactly one path is 
selected for each leaf node.
Second, we need to make sure that each row in our 
dataset follows exactly one selected path.
And third, we need to ensure that the selected paths 
agree with each other on common nodes. That is 
any two paths have the same split check on all 
common nodes. Now, this requires some additional 
variables but they are not too many. So, only path 
variables are generated through column generation.

10

Master Problem

Objective: Maximize accuracy

𝛼: For each leaf L, exactly one path 
with leaf L is selected.

𝛽: For each row R, exactly one path 
satisfied by R is selected.

𝛾: Any pair of selected paths must 
agree on the common node split 
checks.



Obviously the objective is to maximize accuracy.

10



And how are these path variables generated? As 
usual in column generation. We collect the dual 
costs of these constraints and compute the 
expression of reduced cost of a path variable. That’s 
our objective. We maximize it.
This expression involves how many rows are 
correctly classified. So, we need some variable to 
represent that a row is following the path and is 
correctly classified. And we just add a few 
constraints to ensure that.

And finally, we only solve root node with column 
generation. Whatever columns are generated by 

11

Sub Problem 

Objective: Maximize reduced cost

Main Constraints: Ensure that the 
accuracy of the generated path is 
correctly computed.

One subproblem 
for each leaf
and each target.

Branch-and-Price?



then, use take them and solve the integer program. 
So, not the complete branch and price. Same as 
FIRAT.

11



In their model, they defined one subproblem for 
each leaf and target pair. But it turns out that we can 
add a few more variables and constraints to move 
the target computation inside the subproblem.

This basically reduces the number of subproblems. 
But at the same time it makes each subproblem a 
bit harder to solve. Precisely, this involves adding 2 
times the number of rows + 1 extra constraint and 
the number of rows plus the number of targets extra 
variables.

So, is it worth it? That we will discuss when I show 

12

Sub Problem 

Objective: Maximize reduced cost

Main Constraints: Ensure that the 
accuracy of the generated path is 
correctly computed.

One subproblem 
for each leaf

and compute target.

Merged
Larger sub problem: 
Involves extra 
constraints and 
variables.



the results.

12



Let’s look again at the master problem. Some of 
you might have noticed that the second (beta) 
constraints are not really needed. In other words, 
the First (alpha) and the third (gamma) constraints 
are sufficient to define a valid tree.

13

Master problem

Objective: Maximize accuracy.

𝛼: For each leaf L, exactly one path 
with leaf L is selected.

𝛽: For each row R, exactly one path 
satisfied by R is selected.

𝛾: Any pair of selected paths must 
agree on the common node split 
checks.



Now, instead of discussing a formal proof, I will give 
you an informal argument. Let’s say that we have a 
dataset. We used this model and generated an 
optimal tree for given candidate splits. This is a valid 
tree. We can use it to predict classes on unseen 
rows. 

14

a b c d e T

𝛽: For each row R, exactly one path 
satisfied by R is selected.



Now let’s say that we now decided to reduce our test dataset size and move 
some of the rows to our training dataset.

It is possible that this tree that we have generated, is no longer optimal. But it 
is certainly feasible. It did classify those extra test rows before. So, it can still 
classify them. In short, the optimality is affected, but not feasibility. That is the 
corresponding beta constraints are satisfied for the new rows.

15

a b c d e T

𝛽: For each row R, exactly one path 
satisfied by R is selected.



So, can we remove them? Well, they are satisfied 
for the integer program. But not necessarily for the 
LP relaxation. It turns out that these rows are helpful 
in the sense that they provide a tighter relaxation.

16

Master problem

Objective: Maximize accuracy.

𝛼: For each leaf L, exactly one path 
with leaf L is selected.

𝛽: For each row R, exactly one path 
satisfied by R is selected.

𝛾: Any pair of selected paths must 
agree on the common node split 
checks.

Poor LP relaxation.



So, we can’t remove them. But we can do the next 
best thing. We can add them as cuts. There are 
many ways to do this but I did it this way. I would 
execute my normal column generation iterations. On 
every 10th iteration, I check if there is any beta 
constraint violated. And I add a few violated 
constraints to the model and resolve the restricted 
master LP again. And continue with the column 
generation.

Now, this begs a question. These constraints that 
make the formulation stronger are dependent on the 

17

Master problem

Objective: Maximize accuracy.

𝛼: For each leaf L, exactly one path 
with leaf L is selected.

𝛽: For each row R, exactly one path 
satisfied by R is selected.

𝛾: Any pair of selected paths must 
agree on the common node split 
checks.



dataset. If I have a different set of rows, the strength 
of the model will be different. And that’s not so good. 
I might have a garbage dataset and that results in a 
bad relaxation. Can we fix this?

17



The answer is YES. We can actually generate 
datapoints for which the corresponding constraints 
are violated by LP relaxation. Note that I only need 
to generate the features of the rows and not the 
target. I don’t care if the generated data point is 
classified correctly because I am not updating the 
objective. 

I only need to figure out which branch this new data 
row will follow on each split check. And those are 
my binary variables. 
This is a SAT model, but we can also linearize it. I 

18

Master problem

Objective: Maximize accuracy.

𝛼: For each leaf L, exactly one path 
with leaf L is selected.

𝛽: For each row R, exactly one path 
satisfied by R is selected.

𝛾: Any pair of selected paths must 
agree on the common node split 
checks.

Generated 𝛽: For each generated row R’, 
exactly one path satisfied by R’ is selected.

For each split check, decide 
which branch to take in 
order to maximize the 
violation.

SAT model. Can be linearized.



kept it this way and used a CP-SAT solver to solve 
this problem. 

18



Finally, the biggest bottleneck of column generation 
is: generating columns. We avoid doing this as 
much as possible by putting more promising 
columns in the beginning. These columns come 
from the problem definition stage where we 
generated the candidate splits using CART, we can 
also take the entire paths and put them in the 
master problem. FIRAT only added paths from the 
last complete execution of CART. We do it for some 
more.

19

a b c d e T



And now that our problem is restricted to a set of 
candidate splits, we can eliminate rows as well. If 
there is a pair of rows that take the same branch on 
all candidate split checks, we can remove one of 
them. We don’t even need them to agree on all 
candidate split checks. We just need them to agree 
on candidate split checks of the nodes they can 
reach.

20



So, let’s see how all these worked out. We used the same dataset as them. It 
was open sourced. Except, we are not interested in tiny datasets that is less 
than 500 rows. So, we selected a total of 12 datasets (6 small (<10000) and 6 
large (>10000). For each, we ran on 5 different train test splits. This is again 
same as FIRAT. 

Other non-CG approaches fail at handling large datasets.

23



Merging subproblems is always better. The merged subproblem is faster and hence it 
results in more column generation iterations in the given time limit. This results in 
higher gains over CART compared to the original SP.

24



We tried 6 ways of using Beta constraints. The first one is not using them at all. Next 
three variants use them as cuts (with lower bound, upper bound, and equality 
constraints). The next variant uses all given beta constraints (used by Firat). The last 
variant uses beta constraints as cuts and generates additional cuts (using SAT model). 
We measure the solving time.

The first two variants are the fastest. But we will see in the next slides that they 
provide weaker LP relaxation and result in lower gains over CART. The next two 
variants are the best in terms of solving time. Using all given beta constraints is 
always slower. Finally, generating extra cuts takes the longest because of the solving 
time for SAT model and the added column generation iterations because of added 
cuts.

25



As discussed, the first two variants provide worse LP relaxation. The other four have 
minor differences but not noticeable in the graph.

26



And this translates into gains over CART. Lower for the first two variants. The other 4 
are similar. So, because of their lower solving time, the BETA CUTS UB and BETA AS 
CUTS are best overall.

27



The generated cuts help with ”proving” optimality. This is done by having good LP 
relaxation at root and finding the integer solution with the same objective. BETA AND 
GEN CUTS could prove optimality for 53 out of 55 instances. This shows that the 
branch and price is not really needed (won’t result in much gains) for this approach.

28



Finally, effects of preprocessing and extra initialization. 3 variants. One where 
everything is on. One where preprocessing is off. And one where extra initialization is 
off.

It is always better to use extra initialization.

For preprocessing, the story is more complex. On smaller instances, preprocessing is 
harmful but works very well on the larger instances.

29



Comparisions with old CG approach. 600s time limit. Clearly the new approach gains 
more over CART compared to the original approach.

31



Results on larger datasets on testing sets. The training results are not available for 
Firat’s approach. Since we don’t optimize for generalization of performance, we see a 
lot of zeros in gain over cart for both approaches. But there are significant gains for 
example in letter recog.

33



We improved master problem, subproblem, and preprocessing and initialization stage 
of the column generation approach. So, overall, we improved trees!

34

Thank you!

Conclusion

Q & S


