Branch-price-and-cut algorithm for the multi-commodity two-echelon vehicle routing problem with time windows

Tayeb Mhamedi Polytechnique Montréal and GERAD, Canada

Under the supervision of: Guy Desaulniers, Marilène Cherkesly

Column Generation 2023 Montréal, Québec

May 16-19, 2023

< □ > < 同 > < 三 > < 三 >

Introduction	Mathematical formulation	Branch-price-and-cut algorithm	Computational results	Conclusion	References
Outline					

1 Introduction

- 2 Mathematical formulation
- Branch-price-and-cut algorithm
- 4 Computational results

5 Conclusion

個 ト イヨト イヨト

Introduction	Mathematical formulation	Branch-price-and-cut algorithm	Computational results	Conclusion	References
Outline	9				

1 Introduction

- 2 Mathematical formulation
- Branch-price-and-cut algorithm
- 4 Computational results

5 Conclusion

・ロト ・四ト ・ヨト ・ヨト

Legend

《曰》《聞》《臣》《臣》

Legend

- \triangle depot (N^D)
- □ satellite (N^S)
- O customer (N^C)

- \triangle depot (N^D)
- □ satellite (N^S)
- O customer (N^C)
 - qi customer demand

Legend

- \triangle depot (N^D)
- □ satellite (N^S)
- O customer (N^C)
 - qi customer demand
- [a_i, b_i] customer time window

Taveb Mhamedi

Legend

- depot (N^D)
 - satellite (N^{S})
 - customer (N^{C})
 - customer demand
- customer time window

Legend

- \triangle depot (N^D)
- □ satellite (N^S)
- O customer (N^C)
 - qi customer demand
- [a_i, b_i] customer time window
 - first-echelon route

< ロ > < 同 > < 回 > < 回 >

second-echelon route

- Minimize total routing costs
- First-echelon route constraints: vehicle capacity (Q¹)
- Second-echelon route constraints: vehicle capacity (Q^2) & time windows
- Every customer's demand is available at a **specific** depot and is fed by a **single** first-echelon vehicle

Introduction ○○●	Mathematical formulation	Branch-price-and-cut algorithm ດດດດດ	Computational results	Conclusion	References
Literat	ture Review				

- Surveys: Cuda et al. (2015); Guastaroba et al. (2016); Sluijk et al. (2022)
- Exact algorithms for 2E-VRPTW
 - Dellaert et al. (2019)
 - Mhamedi et al. (2022)
 - Marques et al. (2022) (2E-VRPTW-FC)
- Exact algorithms for the MC-2E-VRPTW : Dellaert et al. (2021)
 - Two-path formulation (MC2E-2P): solution method based on a branch-and-price approach
 - Instances with up to 5 satellites and 100 customers are solved to optimality

米部 とくほと くほと

Introduction ○○●	Mathematical formulation	Branch-price-and-cut algorithm ດດດດດ	Computational results	Conclusion	References
Literat	ture Review				

- Surveys: Cuda et al. (2015); Guastaroba et al. (2016); Sluijk et al. (2022)
- Exact algorithms for 2E-VRPTW
 - Dellaert et al. (2019)
 - Mhamedi et al. (2022)
 - Marques et al. (2022) (2E-VRPTW-FC)
- Exact algorithms for the MC-2E-VRPTW : Dellaert et al. (2021)
 - Two-path formulation (MC2E-2P): solution method based on a branch-and-price approach
 - Instances with up to 5 satellites and 100 customers are solved to optimality

Our goal

Develop an efficient branch-price-and-cut algorithm for multi-commodity 2E-VRPTW $\ensuremath{\mathsf{VRPTW}}$

米部 とくほと くほと

Introduction	Mathematical formulation ●○○○	Branch-price-and-cut algorithm	Computational results	Conclusion	References
Outline	Э				

Introduction

- 2 Mathematical formulation
- Branch-price-and-cut algorithm
- 4 Computational results

5 Conclusion

・ロト ・四ト ・ヨト ・ヨト

Introduction	Mathematical formulation ○●○○	Branch-price-and-cut algorithm ດດດດດ	Computational results	Conclusion	References
Notati	on				

First echelon

λαιι

- \mathcal{M} : Set of all first-echelon routes
 - *c_m*: Cost of route *m*
 - S(m): Set of satellites visited by route m
- Q¹: First-echelon vehicle capacity
- x_m : Binary variable equal to 1 if route *m* is chosen, 0 otherwise.

*日を *日を *日を

Introduction	Mathematical formulation ೧೧●೧	Branch-price-and-cut algorithm ດດດດດ	Computational results ဂဂဂဂဂ	Conclusion	References
Notati	on				

Second echelon

- \mathcal{L} : Set of all feasible second-echelon routes
 - c_l: Cost of route l
 - \mathcal{P}_l : Set of supply-patterns that can be assigned to route l
 - a_{il}: Binary parameter equal to 1 if route *l* services customer *i*
 - Q_l^{mp}: Total demand serviced by route l that was provided by first-echelon route m when supply-pattern p is assigned to l
- Q^2 : Second-echelon vehicle capacity
- y_{lp} : Binary variable equal to 1 if second-echelon route l with supply-pattern $p \in \mathcal{P}_l$ is selected, 0 otherwise.

< 回 > < 三 > < 三 > -

Introduction	Mathematical formulation ○○○●	Branch-price-and-cut algorithm ດດດດດ	Computational results	Conclusion	References
Dauta	hand former	ation			

Route-based formulation

min	$\sum_{m \in \mathcal{M}} c_m x_m + \sum_{l \in \mathcal{L}} \sum_{p \in \mathcal{P}_l} c_l y_{lp}$		(1)
s.t.	$\sum_{l\in\mathcal{L}}\sum_{p\in\mathcal{P}_l}a_{il}y_{lp}=1,$	$\forall i \in N^{C},$	(2)
	$\sum_{l \in \mathcal{L}} \sum_{p \in \mathcal{P}_l} Q_l^{mp} y_{lp} \leq Q^1 x_m,$	$\forall m \in \mathcal{M},$	(3)
	$x_m \in \{0,1\},$	$\forall m \in \mathcal{M},$	(4)
	$y_{lp}\in\{0,1\},$	$\forall l \in \mathcal{L}, p \in \mathcal{P}_l.$	(5)

First-echelon routes are enumerated a priori Tyeb Mhamedi BPC for the multicommodity 2E-VRPTW

Introduction ೧೧೧	Mathematical formulation ○○○●	Branch-price-and-cut algorithm ດດດດດ	Computational results	Conclusion 000	References			
Dauta	Deute based formulation							

Route-based formulation

min	$\sum_{m \in \mathcal{M}} c_m x_m + \sum_{l \in \mathcal{L}} \sum_{p \in \mathcal{P}_l} c_l y_{lp}$		(1)
s.t.	$\sum_{l\in\mathcal{L}}\sum_{p\in\mathcal{P}_l}a_{il}y_{lp}=1,$	$\forall i \in N^C,$	(2)
	$\sum_{l \in \mathcal{L}} \sum_{p \in \mathcal{P}_l} Q_l^{mp} y_{lp} \leq Q^1 x_m,$	$\forall m \in \mathcal{M},$	(3)
	$x_m \in \{0,1\},$	$\forall m \in \mathcal{M},$	(4)
	$y_{lp}\in\{0,1\},$	$\forall l \in \mathcal{L}, p \in \mathcal{P}_l.$	(5)

- First-echelon routes are enumerated a priori
- A very large number of second-echelon routes : apply BPC.

・ロト ・回ト ・ヨト ・ヨト

Introduction へへへ	Mathematical formulation ດດດດ	Branch-price-and-cut algorithm ●∩∩∩∩	Computational results ဂဂဂဂ	Conclusion	References
Outline	е				

1 Introduction

- Branch-price-and-cut algorithm
- 4 Computational results

Introduction	Mathematical formulation	Branch-price-and-cut algorithm ○●○○○	Computational results	Conclusion	References
Pricing	; problems				

Reduced cost of second-echelon route variable y_{lp} :

$$\bar{c}_{lp} = c_l - \sum_{i \in N^C} a_{il} \sigma_i - \sum_{i \in N^C} \sum_{m \in \mathcal{M}_{d_i}} \delta_{im}^p(q_i \pi_m)$$

where σ_i , π_m are the dual variables of constraints (2), and (3).

PP per satellite s

- Modeled on a network G^s
- Find least-reduced-cost second-echelon route associated with s
- Variant of an elementary shortest path problem with resource constraints (on time and load)
- Challenge: Handling the subset of selected π_m dual values (at most one per depot d)

・ 回 ト ・ ヨ ト ・ ヨ ト

Introduction	Mathematical formulation	Branch-price-and-cut algorithm ○●○○○	Computational results	Conclusion	References
Pricing	; problems				

Reduced cost of second-echelon route variable y_{lp} :

$$\bar{c}_{lp} = c_l - \sum_{i \in N^C} a_{il} \sigma_i - \sum_{i \in N^C} \sum_{m \in \mathcal{M}_{d_i}} \delta_{im}^p(q_i \pi_m)$$

where σ_i , π_m are the dual variables of constraints (2), and (3).

PP per satellite s

- Modeled on a network G^s
- Find least-reduced-cost second-echelon route associated with s
- Variant of an elementary shortest path problem with resource constraints (on time and load)
- Challenge: Handling the subset of selected π_m dual values (at most one per depot d)

・ 何 ト ・ ヨ ト ・ ヨ ト

Introduction 000	Mathematical formulation	Branch-price-and-cut algorithm ೧೧●೧೧	Computational results රරරර	Conclusion 000	References
Labolin	a algorithm				

Labeling algorithm

Label *E* represents a partial second-echelon route R(E) assigned to a supply-pattern

- $\eta(E)$: Last visited node on path R(E)
- *c*(*E*): Reduced cost
- t(E): Earliest service start time at node $\eta(E)$
- q(E): Total load
- $\mathcal{U}(E)$: Set of unreachable nodes
- $\theta(E)$: Time service starts at the satellite associated to R(E)

Introduction	Mathematical formulation ດດດດ	Branch-price-and-cut algorithm ೧೧●೧೧	Computational results ററററ	Conclusion	References
Labelin	a algorithm				

Label *E* represents a partial second-echelon route R(E) assigned to a supply-pattern

- $\eta(E)$: Last visited node on path R(E)
- *c*(*E*): Reduced cost

angoi

- t(E): Earliest service start time at node $\eta(E)$
- q(E): Total load
- $\mathcal{U}(E)$: Set of unreachable nodes
- $\theta(E)$: Time service starts at the satellite associated to R(E)

Component $\theta(E)$ is required to retrieve information regarding the best available π_m values (per depot $d, m \in \mathcal{M}_{ds}$) when extending a path

• Image: A image A image: A

Introduction ೧೧೧	Mathematical formulation ດດດດ	Branch-price-and-cut algorithm ○○○●○	Computational results	Conclusion	References

Labeling algorithm

Specificities

- Initialization
 - One label E^k for every arrival time $t_k \in T_s$
- Label extension
 - Copy time service start component
 - Reduced cost is updated using information derived from $\theta(E)$
- Dominance rule A label E_1 dominates a label E_2 when

•
$$\eta(E_1) = \eta(E_2)$$

• $t(E_1) \le t(E_2), \ q(E_1) \le q(E_2), \ U(E_1) \subseteq U(E_2)$
• $\overline{c}(E_1) \le \overline{c}(E_2) + (Q^2 - q(E_2)) \times \Delta(\theta(E_1), \theta(E_2))$

$$\Delta\big(\theta(E_1), \theta(E_2)\big) = \begin{cases} 0, & \text{if } \theta(E_1) \ge \theta(E_2) \\ \min_{d \in \mathcal{D}_{\theta(E_1)}} \big\{ \pi_{m_{(\theta(E_1),d)}} - \pi_{m_{(\theta(E_2),d)}} \big\}, & \text{otherwise} \end{cases}$$

通 ト イ ヨ ト イ ヨ ト

Introduction ೧೧೧	Mathematical formulation ດດດດ	Branch-price-and-cut algorithm ○○○○○	Computational results ဝဝဝဝ	Conclusion	References
Additio	nal algorithn	nic components			

Dual inequalities

Transfer inequalities (Mhamedi et al., 2022) are used to speed-up CG convergence

Valid inequalities

- Rounded capacity cuts , Laporte and Nobert (1983)
- Subset-row inequalities , Jepsen et al. (2008)
- (Lifted) visited satellites inequalities, Marques et al. (2020)

Hierarchical branching

- 1- Branch on whether or not commodities associated with a depot are allowed to be supplied through a given satellite
- 2- Total flow on a back-and-forth route
- 3- Number of vehicles
- 4- Use of a first-echelon route
- 5- Branch on servicing a customer from a specific satellite
- 6- Flow on an arc
- 7- Branch on servicing a customer using a given first-echelon route

・ 何 ト ・ ヨ ト ・ ヨ ト

Introduction	Mathematical formulation ດດດດ	Branch-price-and-cut algorithm ດດດດດ	Computational results ●○○○	Conclusion	References
Outline	е				

Introduction

- 2 Mathematical formulation
- Branch-price-and-cut algorithm
- 4 Computational results

5 Conclusion

Introduction ೧೧೧	Mathematical formulation ດດດດ	Branch-price-and-cut algorithm ດດດດດ	Computational results ○●○○	Conclusion	References
MC-2E	-VRPTW ins	stances			

- Generated from instances for the 2E-VRPTW (Dellaert et al., 2019)
- Number of customers $|N^{C}| \in \{30, 50, 100\}$
- 2 groups of instances per $|N^{C}|$ value
 - 2 depots, 3 satellites
 - 3 depots, 5 satellites
- $Q^1 = 200, \ Q^2 = 50$
- Each customer is randomly assigned to a depot to introduce commodities
- 3-hour time limit

通 ト イ ヨ ト イ ヨ ト

Introd	

Comparison with Dellaert et al. (2021)

	_	_	Dellaert	et al. †	Our Bl	PC algorithm ‡	BMSU
$ N^D $	<i>N^S</i>	$ N^{C} $	T (s)	# Opt	T (s)	# Opt	factor
2	3	30	79.8	20/20	2.2	20/20	36.2
2	3	50	2235	4/5	5.1	5/5	18.2
3	5	50	2794.2	5/5	530.9	5/5	5.3
2	3	100	10800	0/5	1514.6	5/5	7.1
3	5	100	9223.8	1/5	10800	0/5	-

† Tests ran on a computer equipped with an Intel Core i7-4770 processor

 \ddagger Tests ran on a computer equipped with an Intel Core i7-8700 processor

T (s) Average time in seconds over the solved instances

BMSU: Biased minimal speed-up factor (bias induced by computers)

< ロ > < 同 > < 回 > < 回 >

Introduction Mathematical formulation		Branch-price-and-cut algorithm ດດດດດ	Computational results	Conclusion	References
Sensiti	vity analysis				

Omit one component at a time (subset of 10 instances solved by our full BPC algorithm)

Instances with $ N^{C} = 50$			Instance	es with A	C = 100	
Family	# Opt	T (s)	ΔΤ (%)	# Opt	T (s)	ΔΤ (%)
DDOIs	3/5	1711.1	847.5	5/5	2252.2	48.7
RCIs	5/5	1299.2	144.7	5/5	1553.5	2.6
SRIs	5/5	964.2	81.7	5/5	3802.4	151.1
VSIs	3/5	1941.9	342.1	5/5	1106.9	-26.9
CSBr*	4/5	2243.2	392.3	5/5	1311.8	-13.9

* CSBr: commodity-supply-through-satellite branching

・ロト ・四ト ・ヨト ・ヨト

Introduction	Mathematical formulation	Branch-price-and-cut algorithm	Computational results	Conclusion	References
Outlin	ie				

Introduction

- 2 Mathematical formulation
- Branch-price-and-cut algorithm
- 4 Computational results

5 Conclusion

・ロト ・四ト ・ヨト ・ヨト

Introduction	Mathematical formulation	Branch-price-and-cut algorithm ດດດດດ	Computational results	Conclusion ○●○	References
Conclu	isions				

- Efficient branch-price-and-cut algorithm for the MC-2E-VRPTW
 - Labeling algorithm allowing the aggregation of pricing problems per satellite
- Outperforms existing state-of-the-art algorithm

くぼう くほう くほう

Introduction	Mathematical formulation	Branch-price-and-cut algorithm	Computational results	Conclusion ○●○	References
Conclu	isions				

- Efficient branch-price-and-cut algorithm for the MC-2E-VRPTW
 - Labeling algorithm allowing the aggregation of pricing problems per satellite
- Outperforms existing state-of-the-art algorithm

Future works

- Study extensions where reverse merchandise flows are introduced
- Investigate the effect of considering different synchronization schemes

Introduction 000	Mathematical formulation	Branch-price-and-cut algorithm 00000	Computational results	Conclusion ○O●	References

Thank you !

tayeb.mhamedi@polymtl.ca

- Cuda, R., Guastaroba, G., and Speranza, M. (2015). A survey on two-echelon routing problems. <u>Computers & Operations Research</u>, 55:185–199.
- Dellaert, N., Dashty Saridarq, F., Van Woensel, T., and Crainic, T. G. (2019). Branch-and-price-based algorithms for the two-echelon vehicle routing problem with time windows. Transportation Science, 53(2):463–479.
- Dellaert, N., Van Woensel, T., Crainic, T. G., and Saridarq, F. D. (2021). A multi-commodity two-echelon capacitated vehicle routing problem with time windows: Model formulations and solution approach. Computers & Operations Research, 127:105154.
- Guastaroba, G., Speranza, M. G., and Vigo, D. (2016). Intermediate facilities in freight transportation planning: A survey. <u>Transportation</u> <u>Science</u>, 50(3):763–789.
- Jepsen, M., Petersen, B., Spoorendonk, S., and Pisinger, D. (2008). Subset-row inequalities applied to the vehicle-routing problem with time windows. Operations Research, 56(2):497–511.
- Laporte, G. and Nobert, Y. (1983). A branch and bound algorithm for the capacitated vehicle routing problem. Operations-Research-Spektrum, 5(2):77–85.
- Marques, G., Sadykov, R., Deschamps, J.-C., and Dupas, R. (2020). An improved branch-cut-and-price algorithm for the two-echelon capacitated vehicle routing problem. Computers & Operations Research, 114:104833.
- Marques, G., Sadykov, R., Dupas, R., and Deschamps, J.-C. (2022). A branch-cut-and-price approach for the single-trip and multi-trip two-echelon vehicle routing problem with time windows. Transportation Science.
- Mhamedi, T., Andersson, H., Cherkesly, M., and Desaulniers, G. (2022). A branch-price-and-cut algorithm for the two-echelon vehicle routing problem with time windows. Transportation Science, 56(1):245–264.
- Sluijk, N., Florio, A. M., Kinable, J., Dellaert, N., and Van Woensel, T. (2022). Two-echelon vehicle routing problems: A literature review. European Journal of Operational Research.