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• Mode of transportation in which travel costs are split among travelers by sharing 
a vehicle for their trip

Ridesharing

UberPool
Lyft Shared, …

Ride sharing market 
value

(Wadhwani and Saha, 2019)

measured value
2019

more than $34 
billion

expected value
2026

more than $50 
billion

any operations management 
improvements will be very 

valuable

State-of-the-art optimization 
techniques, are rarely used in 

their algorithm
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Ridesharing

On-demand transportation 
system

Smart phone 
application

Central server

Receive ride requests from users
(origin, destination, ready time)

shared
determining the sequence 
of pickup and drop offs

Dial-a-Ride Problem 
(DARP)

Introduction

non-shared
match ride requests with drivers to 
minimize waiting time
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• 20k requests per hour

• 2k vehicles

• Few seconds to re-optimize
the current plan

• Data from the NYC taxi and 
limousine commission

Ridesharing on Manhattan
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Time

Ride requests

Solve DARP Solve DARPSolve DARP

Time step • Update the dispatching plan
• Update system information (based on requests received so far)

Introduction

Realtime Ridesharing
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Time

Ride requests

Re-optimization Re-optimizationRe-optimization

Time step • Update the dispatching plan
• Update system information (based on requests received so far)

§ The system should always be able to provide good solutions in each given short time
§ Solutions should be fast enough to provide real-time booking for customers

Any Time algorithmNegligible delay

Introduction

Return a sub-optimal solution within any small 
allocated runtime budget

Realtime Ridesharing
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Exact methods

Dual fractional
methods

Primal
approaches

Exact solution methods

• Maintain optimality as well as the feasibility of the linear 
model and terminate when reach to integrality.

• Branch and Price

• Maintain feasibility (and integrality) throughout the 
process and terminate when optimality is achieved.

• It should explore a branch-and bound tree to reach an 
integer solution

• it starts re-optimization from scratch and can not take 
advantage of a warm start 

5 /31Literature Review

DARP is
• Obtaining an optimal solution can be computationally expensive

• Make it more challenging in real-time for large-scale problems
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• Start from an integer solution
• Find a direction of descent to improve the current solution
• Continue iterations to reach optimality.

• Do not restart the optimization from scratch
• Take advantage of  the previous solution as the warm start to 

produce next solution

• A feasible integer solution is available at anytime
• Possibility of  stopping the procedure at any time if  the time is limited     
• Avoid the combinatorial exploration of  a branching tree to reach 

integer solution

Advantages

Integral Primal Simplex

6 /31Literature Review
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• In the literature, a DARP has never been solved using a primal algorithm

Main contribution:

• Performing the first implementation of Integral Column Generation in the 
context of a Dial-a-Ride Problem (Set Packing Problem)

• Using the strength of integral primal simplex to propose an anytime algorithm 
for real-time application

• Solve large scale instances (2k vehicles and >50k requests over Manhattan)

Contributions

Literature Review 8 /31
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Integral Simplex using Decomposition (Zaghrouti, et al. 2014)

Reduced Problem (RP)
(compatible columns)

Complementary Problem 
(CP)

(incompatible columns)

ISUD

Definition: 

• A column or a positive combination of columns is said to 
be compatible with      if it can be written as a linear
combination of columns of 

P : set of positive value variables in current solution:

P

P
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Integral Simplex using Decomposition (Zaghrouti, et al. 2014)

ISUD Algorithm

Step 0: Start from an initial integer solution      

10 /31Overview of ISUD
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Integral Simplex using Decomposition (Zaghrouti, et al. 2014)

A

Compatible Incompatible
RP

Set partitioning Problem

Z∗
RP1 = min

θCP

c
"
CP

θCP

s.t.

ACP
θCP

= e

θCP
∈ {0, 1}|CP |

CP : Index set of compatible columns
ACP

: Set of columns in A indexed by CP

Z∗
SPP = min

θ
c
"
θ

s.t. Aθ = e

θ ∈ {0, 1}n
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Integral Simplex using Decomposition (Zaghrouti, et al. 2014)

ISUD Algorithm

Start from an initial integer solution      

Improve the current integer solution     by solving the RPP

Step 0:

Step 1:

10 /31Overview of ISUD
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Integral Simplex using Decomposition (Zaghrouti, et al. 2014)

Z∗
SPP = min

θ
c
"
θ

s.t. Aθ = e

θ ∈ {0, 1}n

A

AP ACP
AIP

Compatible Incompatible
CP

Compatibility constraints

Normalization constraint

Set partitioning Problem

{

νj > 0 entering variables (j ∈ IP)

λj > 0 leaving variables (j ∈ P)

λj , νj : Weight variables defining the linear 
combination of compatible and 
incompatible columns

Decrease costZ
∗
CP1 = min

ν,λ

∑

j∈IP

cjνj −
∑

l∈P

clλl

s.t.
∑

j∈IP

νjAj −
∑

l∈P

λlAl = 0

∑

j∈IP

wjνj +
∑

l∈P

wlλl = 1

ν ≥ 0

Z∗

CP1
< 0 d = (νj ,−λj , 0)

descent direction
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Integral Simplex using Decomposition (Zaghrouti, et al. 2014)

ISUD Algorithm

Start from an initial integer solution      

Improve the current integer solution     by solving the RP

Solve the CP and Improve the current integer solution with a 
compatible combination of columns 

If Step 2 improves the solution, go to Step 1. Otherwise, return the 
current solution.

P

Step 0:

Step 1:

Step 2:

Control:

10 /31Overview of ISUD
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Problem Description (Riley et al. 2019)

Methodology

u0
v : departure time

TB
v : vehicle start time

TE
v : vehicle end time

Qv : capacity of the vehicle

qi : number of people to pickup (qi > 0) or drop off (qi < 0)

ei : earliest possible pickup

oi : pickup location

di : drop-off location

ti : shortest travel time between its pickup and drop-off locations

Vehicle Data

Ride requests 
data

IN
PU

TS

12 /31
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Z∗

MP = min
∑

r∈R

cryr +
∑

i∈P

pizi

s.t.

(

∑

r∈R

yra
r
i

)

+ zi = 1 ∀i ∈ P

∑

r∈Rv

yr = 1 ∀v ∈ V

zi ∈ N ∀i ∈ P

yr ∈ {0, 1} ∀r ∈ R

Master Problem

Minimize the total waiting time of served requests +  
penalties of unserved requests

Assign routes to vehicles

Scheduling of requests

set packing Problem modelled as a set partitioning Problem

cr : sum of the waiting times of customers

pi : penalty of unserved requests

Determine unscheduled requests

Determine selected/assigned routes
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Pricing Subproblems

ensure vehicle capacity

control travel time duration

control arrival time to nodes

ensure to drop off onboard passengers 
and those that are picked up

flow constraints

Z∗
SP = min

∑

i∈Pv

(ui − ei)−
∑

i∈Pv

∑

j∈Nv

xijπi − σv (1)

s.t.
∑

j∈Nv

xij =
∑

j∈Nv

xij ∀i ∈ Nv \ {0, s} (2)

∑

j∈Nv

x0j = 1 (3)

∑

j∈Nv

xjs = 1 (4)

∑

j∈Nv

xij −
∑

j∈Nv

xn+i,j = 0 ∀i ∈ Pv (5)

∑

j∈Nv

xij = 1 ∀j ∈ Iv (6)

uj ≥ (ui + εi + tij)xij ∀i, j ∈ Nv (7)

ui ≥ ei ∀i ∈ Pv (8)

u0 ≥ TB
v (9)

us ≤ TE
v (10)

ti ≤ un+i − (ui + εi) ≤ max{αti,β + ti} ∀i ∈ Pv (11)

ti ≤ ui −
(

uP
i + εi

)

≤ max{αti,β + ti} ∀i ∈ Iv (12)

ωj ≥ (ωi + qj)xij ∀i, j ∈ Nv (13)

0 ≤ ωi ≤ Qv ∀i ∈ Nv (14)

xij ∈ {0, 1} ∀i, j ∈ Nv (15)
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General ICG framework

Initialization

Update system status

Build a feasible solution 
based on the solution from the 

previous epoch

Restricted Master 
Problem

Reduced problem

Complementary 
problem

Pool of 
Columns 

(routes)Incompatible 
columns

Compatible 
columns

Solving
Pricing

Subproblems

Dual values

columns
•Get vehicles positions

•Determine unserved 
requests in previous 
epochs

16 /31

(re-optimization in real-time)

Methodology
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• Use Dynamic Programming approach (Ghilas et al. 2018)

• Forward labeling algorithm

Pricing Subproblems

Label Data

- last node of the partial path
- accumulated reduced cost 
- reach time to the last node
- set of onboard requests 
- set of completed/onboard requests
- number of passengers in the vehicle 

at last node

- available travel times for onboard 
requests based on Max travel time

pairwise comparison 
within the dominance rules

ensure vehicle capacity constraint

ensure trip duration deviation

17 /31

Acceleration Techniques

- Truncated labeling (Dabia et al. 2017)
- Avoid visiting pickup nodes after drops

Methodology
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Experimental Results

§ New York City Taxi and Limousine Commission

§ Manhattan is divided into a grid 

of cells of 200 square meters

Instance Description (Riley et al. 2020)

10 /31Experimental Results
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Experimental Results

§ New York City Taxi and Limousine Commission

§ Manhattan is divided into a grid 

of cells of 200 square meters

§ 24 Instances

§ July 2015 to June 2016

Instance Description (Riley et al. 2020)

10 /31Experimental Results

Pick up points

Drop off points
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Experimental Results

§ New York City Taxi and Limousine Commission

§ Manhattan is divided into a grid 

of cells of 200 square meters

§ 24 Instances

§ July 2015 to June 2016

§ 2 days a month (7 AM to 9 AM)

Instance Description (Riley et al. 2020)
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Experimental Results

§ New York City Taxi and Limousine Commission

§ Manhattan is divided into a grid 

of cells of 200 square meters

§ 24 Instances

§ July 2015 to June 2016

§ 2 days a month (7 AM to 9 AM)

§ Customers ranges from

19,276 to 59,820

Instance Description (Riley et al. 2020)

10 /31Experimental Results
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Vehicle fleet distribution

10 /31Experimental Results

Even Distribution

Set V1

Distribution Based on 
average demands

Set V2

2000 vehicles 2000 vehicles
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Numerical Results

10 /31Experimental Results

Instance
2000 vehicles (V1) 1600 vehicles (V2)

Instance
2000 vehicles (Set V1) 1600 vehicles (V2)

F-Greedy F-ICG A-Greedy A-ICG A-Greedy A-ICG F-Greedy F-ICG A-Greedy A-ICG A-Greedy A-ICG

G1_17709 103.2 100.0 85.3 82.1 79.8 79.5 G3_39550 176.7 151.5 154.1 144.4 164.0 149.1
G1_12856 97.9 95.1 81.4 79.5 74.0 72.8 G3_36757 166.2 149.1 150.8 140.8 153.2 143.6
G1_18450 110.9 110.1 97.0 93.2 94.7 93.0 G3_40567 159.8 140.8 140.6 129.0 148.3 135.2
G1_14091 107.0 104.5 90.8 87.2 78.6 76.5 G3_39944 164.5 146.9 148.4 134.7 143.1 130.8
G1_16080 103.0 98.7 84.7 81.4 73.7 72.8 G3_40398 158.5 141.1 139.6 129.8 128.5 116.3
< 40,000 104.4 101.7 87.8 84.7 80.2 78.9 G3_35726 150.3 134.5 127.6 118.2 119.3 110.0

G3_38730 144.6 129.3 122.6 115.0 114.3 108.8
G3_38984 145.3 132.5 127.4 119.4 120.1 107.7
G3_37214 155.8 136.9 136.2 127.7 134.4 126.5

Instance
2000 vehicles (V1) 1600 vehicles (V2) G3_40698 166.4 146.3 146.9 134.3 150.4 133.5

F-Greedy F-ICG A-Greedy A-ICG A-Greedy A-ICG G3_40474 164.3 143.7 142.7 129.3 140.7 130.5

G2_30749 166.0 147.2 149.5 134.3 139.4 128.4 G3_36526 170.6 152.3 153.6 143.7 161.3 149.2
G2_29476 142.5 132.9 127.0 117.6 116.6 110.7 G3_37367 164.6 145.6 145.4 135.3 146.4 131.6
G2_33460 155.7 137.1 136.0 124.9 121.9 111.3 G3_37973 159.8 141.2 142.0 129.6 135.9 126.0
G2_34544 160.4 140.3 137.6 132.4 134.5 125.4 G3_39427 163.7 141.2 143.7 131.5 133.5 122.0

40,000 - 50,000 156.2 139.4 137.5 127.3 128.1 119.0 50,000 < 160.7 142.2 141.4 130.9 139.6 128.1
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Comparison with Greedy Approach:

10 /31Experimental Results
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Sensitivity analysis

10 /31Experimental Results
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Comparison with Column generation (preliminary results)

10 /31Experimental Results
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• Develop a nearly anytime discrete optimization algorithm for dynamic in a large-
scale ride-sharing system
• Propose a flexible rolling horizon for re-optimizing the dispatching plan
• Evaluate the proposed method on large-size instances from New York City Taxi 

Dataset with up to 59820 customers
• About 45% decrease in average wait time compared to M-RTRS and 20% improve 

over A-RTRS 
• Decreasing the size of vehicle fleet by 20% with out reducing the efficiency by just 

distributing the vehicles based on average demands

Take-home message

• build a policy based on RL techniques to adjust the parameters of  CP
• Put the algorithm into practice

Conclusion and Future work

Future Work


