POLYTECHNIQUE

 MONTREALTECHNOLOGICAL UNIVERSITY N...ll

Online Optimization of dial-a-ride problem with the integral primal simplex

Elahe Amiri, Antoine Legrain, Issmail El Hallaoui
Column Generation 2023

Agenda

> Introduction
$>$ Overview of Integral Simplex using Decomposition (ISUD)
> Methodology
> Experimental Results
> Conclusion and Future works

Ridesharing

- Mode of transportation in which travel costs are split among travelers by sharing a vehicle for their trip

UberPool Lyft Shared, ...

State-of-the-art optimization techniques, are rarely used in their algorithm

Ridesharing

On-demand transportation
system

Receive ride requests from users
(origin, destination, ready time)

Dial-a-Ride Problem
(DARP)

Ridesharing on Manhattan

- 20k requests per hour
- $2 k$ vehicles
- Few seconds to re-optimize the current plan
- Data from the NYC taxi and limousine commission

Realtime Ridesharing

Ride requests

- Update the dispatching plan
- Update system information (based on requests received so far)

Realtime Ridesharing

Negligible delay \quad Any Time algorithm
Return a sub-optimal solution within any small allocated runtime budget

- The system should always be able to provide good solutions in each given short time
- Solutions should be fast enough to provide real-time booking for customers

Exact solution methods

DARP is $\quad \mathcal{N} \mathcal{P}$-hard

- Obtaining an optimal solution can be computationally expensive
- Make it more challenging in real-time for large-scale problems

- Maintain optimality as well as the feasibility of the linear model and terminate when reach to integrality.
- Branch and Price
- It should explore a branch-and bound tree to reach an integer solution
- it starts re-optimization from scratch and can not take advantage of a warm start
- Maintain feasibility (and integrality) throughout the process and terminate when optimality is achieved.

Integral Primal Simplex

- Start from an integer solution
- Find a direction of descent to improve the current solution
- Continue iterations to reach optimality.

Advantages

- Do not restart the optimization from scratch
- Take advantage of the previous solution as the warm start to produce next solution
- A feasible integer solution is available at anytime

- Possibility of stopping the procedure at any time if the time is limited
- Avoid the combinatorial exploration of a branching tree to reach integer solution

Contributions

- In the literature, a DARP has never been solved using a primal algorithm

Main contribution:

- Performing the first implementation of Integral Column Generation in the context of a Dial-a-Ride Problem (Set Packing Problem)
- Using the strength of integral primal simplex to propose an anytime algorithm for real-time application
- Solve large scale instances (2 k vehicles and $>50 \mathrm{k}$ requests over Manhattan)

Integral Simplex using Decomposition (Zaghrouti, et al. 2014)

\mathcal{P} : set of positive value variables in current solution:

Definition:

- A column or a positive combination of columns is said to be compatible with \mathcal{P} if it can be written as a linear combination of columns of \mathcal{P}

Integral Simplex using Decomposition (Zaghrouti, et al. 2014)

ISUD Algorithm

Step 0: Start from an initial integer solution \mathcal{P}

Integral Simplex using Decomposition (Zaghrouti, et al. 2014)

Set partitioning Problem

$$
\begin{aligned}
& Z_{\mathrm{SPP}}^{*}= \min _{\boldsymbol{\theta}} \boldsymbol{c}^{\top} \boldsymbol{\theta} \\
& \text { s.t. } \mathbf{A} \boldsymbol{\theta}=\boldsymbol{e} \\
& \boldsymbol{\theta} \in\{0,1\}^{n}
\end{aligned}
$$

$\mathcal{C}_{\mathcal{P}}$: Index set of compatible columns
$\mathbf{A}_{\mathcal{C}_{\mathcal{P}}}$: Set of columns in \mathbf{A} indexed by $\mathcal{C}_{\mathcal{P}}$

$$
Z_{R P 1}^{*}=\min _{\boldsymbol{\theta}_{\mathcal{C}_{\mathcal{P}}}} \boldsymbol{c}_{\mathcal{C}_{\mathcal{P}}}^{\top} \boldsymbol{\theta}_{\mathcal{C}_{\mathcal{P}}}
$$

s.t.

$$
\mathbf{A}_{\mathcal{C}_{\mathcal{P}}} \boldsymbol{\theta}_{\mathcal{C}_{\mathcal{P}}}=e
$$

$$
\boldsymbol{\theta}_{\mathcal{C}_{\mathcal{P}}} \in\{0,1\}^{\left|\mathcal{C}_{\mathcal{P}}\right|}
$$

Integral Simplex using Decomposition (Zaghrouti, et al. 2014)

ISUD Algorithm

Step 0: Start from an initial integer solution \mathcal{P}
Step 1: Improve the current integer solution \mathcal{P} by solving the RP

Integral Simplex using Decomposition (Zaghrouti, et al. 2014)

Set partitioning Problem

$$
\begin{aligned}
& Z_{\mathrm{SPP}}^{*}= \min _{\boldsymbol{\theta}} \boldsymbol{c}^{\top} \boldsymbol{\theta} \\
& \text { s.t. } \mathbf{A} \boldsymbol{\theta}=\boldsymbol{e} \\
& \boldsymbol{\theta} \in\{0,1\}^{n}
\end{aligned}
$$

λ_{j}, ν_{j} : Weight variables defining the linear combination of compatible and incompatible columns

$$
\begin{cases}\nu_{j}>0 & \text { entering variables }\left(j \in \mathcal{I}_{\mathcal{P}}\right) \\ \lambda_{j}>0 & \text { leaving variables }(j \in \mathcal{P})\end{cases}
$$

$$
Z_{C P 1}^{*}<0 \Rightarrow \boldsymbol{d}=\left(\nu_{j},-\lambda_{j}, 0\right)
$$

descent direction

$$
\begin{array}{rlr}
Z_{C P 1}^{*}= & \min _{\nu, \lambda} \sum_{j \in \mathcal{I}_{\mathcal{P}}} c_{j} \nu_{j}-\sum_{l \in \mathcal{P}} c_{l} \lambda_{l} & \text { Decrease cost } \\
\text { s.t. } & \\
& \sum_{j \in \mathcal{I}_{\mathcal{P}}} \nu_{j} \mathbf{A}_{j}-\sum_{l \in \mathcal{P}} \lambda_{l} \mathbf{A}_{l}=\mathbf{0} & \text { Compatibility constraints } \\
& \sum_{j \in \mathcal{I}_{\mathcal{P}}} w_{j} \nu_{j}+\sum_{l \in \mathcal{P}} w_{l} \lambda_{l}=1 \\
& \nu \geq 0 & \text { Normalization constraint }
\end{array}
$$

Integral Simplex using Decomposition (Zaghrouti, et al. 2014)

ISUD Algorithm

Step 0: Start from an initial integer solution \mathcal{P}
Step 1: Improve the current integer solution \mathcal{P} by solving the RP
Step 2: Solve the CP and Improve the current integer solution with a compatible combination of columns

Control: If Step 2 improves the solution, go to Step 1. Otherwise, return the current solution.

Problem Description (Riley et al. 2019)

Master Problem

set packing Problem modelled as a set partitioning Problem
c_{r} : sum of the waiting times of customers
p_{i} : penalty of unserved requests

$$
\begin{aligned}
Z_{M P}^{*}= & \min \sum_{r \in R} c_{r} y_{r}+\sum_{i \in P} p_{i} z_{i} \\
\text { s.t. } & \left(\sum_{r \in R} y_{r} a_{i}^{r}\right)+z_{i}=1 \\
& \left(\pi_{i}\right) \quad \\
\sum_{r \in R^{v}} y_{r}=1 & \forall i \in P \quad \begin{array}{l}
\text { Minimize the total waiting time of served requests }+ \\
\text { penalties of unserved requests }
\end{array} \\
z_{i} \in \mathbb{N} & \left(\sigma_{v}\right) \quad \forall v \in V \quad \text { Scheduling of requests } \\
& y_{r} \in\{0,1\}
\end{aligned}
$$

$$
\begin{equation*}
Z_{\mathrm{SP}}^{*}=\min \sum_{i \in P_{v}}\left(u_{i}-e_{i}\right)-\sum_{i \in P_{v}} \sum_{j \in \mathcal{N}_{v}} x_{i j} \pi_{i}-\sigma_{v} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { s.t. } \sum_{j \in \mathcal{N}_{v}} x_{i j}=\sum_{j \in \mathcal{N}_{v}} x_{i j} \quad \forall i \in \mathcal{N}_{v} \backslash\{0, s\} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j \in \mathcal{N}_{v}} x_{0 j}=1 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j \in \mathcal{N}_{v}} x_{j s}=1 \tag{4}
\end{equation*}
$$

$$
\sum_{j \in \mathcal{N}_{v}} x_{i j}-\sum_{j \in \mathcal{N}_{v}} x_{n+i, j}=0
$$

$$
\forall i \in P_{v}
$$

$$
\sum_{j \in \mathcal{N}_{v}} x_{i j}=1
$$

$$
\forall j \in I_{v}
$$

$$
\begin{equation*}
\forall i, j \in \mathcal{N}_{v} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\forall i \in P_{v} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
u_{s} \leq T_{v}^{E} \tag{9}
\end{equation*}
$$

$\begin{array}{lrr}t_{i} \leq u_{n+i}-\left(u_{i}+\varepsilon_{i}\right) \leq \max \left\{\alpha t_{i}, \beta+t_{i}\right\} & \forall i \in P_{v} & (11) \\ t_{i} \leq u_{i}-\left(u_{i}^{P}+\varepsilon_{i}\right) \leq \max \left\{\alpha t_{i}, \beta+t_{i}\right\} & \forall i \in I_{v} & (12) \\ \omega_{j} \geq\left(\omega_{i}+q_{j}\right) x_{i j} & \forall i, j \in \mathcal{N}_{v} & (13) \\ 0 \leq \omega_{i} \leq Q_{v} & \forall i \in \mathcal{N}_{v} & (14) \\ x_{i j} \in\{0,1\} & \forall i, j \in \mathcal{N}_{v} & (15)\end{array}$

Pricing Subproblems

flow constraints
ensure to drop off onboard passengers and those that are picked up
control arrival time to nodes
control travel time duration
ensure vehicle capacity

General ICG framework

(re-optimization in real-time)

Pricing Subproblems

- Use Dynamic Programming approach (Ghilas et al. 2018)
- Forward labeling algorithm

Label Data
- last node of the partial path
- accumulated reduced cost
- reach time to the last node
- set of onboard requests
- set of completed/onboard requests

- number of passengers in the vehicle at last node
pairwise comparison
within the dominance rules

Acceleration Techniques

- Truncated labeling (Dabia et al. 2017)
- Avoid visiting pickup nodes after drops
- available travel times for onboard
\longrightarrow ensure trip duration deviation requests based on Max travel time

Experimental Results

Instance Description (Riley et al. 2020)

- New York City Taxi and Limousine Commission
- Manhattan is divided into a grid of cells of 200 square meters

Experimental Results

Instance Description (Riley et al. 2020)

- New York City Taxi and Limousine Commission
- Manhattan is divided into a grid of cells of 200 square meters

Pick up points

- 24 Instances
- July 2015 to June 2016

Experimental Results

Instance Description (Riley et al. 2020)

- New York City Taxi and Limousine Commission
- Manhattan is divided into a grid of cells of 200 square meters
- 24 Instances
- July 2015 to June 2016
- 2 days a month (7 AM to 9 AM)

Experimental Results

Instance Description (Riley et al. 2020)

- New York City Taxi and Limousine Commission
- Manhattan is divided into a grid of cells of 200 square meters
- 24 Instances
- July 2015 to June 2016
- 2 days a month (7 AM to 9 AM)
- Customers ranges from

19,276 to 59,820
Number of Customers

Vehicle fleet distribution

Even Distribution

Distribution Based on average demands
Set V2

Numerical Results

Instance	2000 vehicles (V1)				1600 vehicles (V2)		Instance	2000 vehicles (Set V1)				1600 vehicles (V2)	
	F-Greedy	F-ICG	A-Greedy	A-ICG	A-Greedy	A-ICG		F-Greedy	F-ICG	A-Greedy	A-ICG	A-Greedy	A-ICG
G1_17709	103.2	100.0	85.3	82.1	79.8	79.5	G3_39550	176.7	151.5	154.1	144.4	164.0	149.1
G1_12856	97.9	95.1	81.4	79.5	74.0	72.8	G3_36757	166.2	149.1	150.8	140.8	153.2	143.6
G1_18450	110.9	110.1	97.0	93.2	94.7	93.0	G3_40567	159.8	140.8	140.6	129.0	148.3	135.2
G1_14091	107.0	104.5	90.8	87.2	78.6	76.5	G3_39944	164.5	146.9	148.4	134.7	143.1	130.8
G1_16080	103.0	98.7	84.7	81.4	73.7	72.8	G3_40398	158.5	141.1	139.6	129.8	128.5	116.3
< 40,000	104.4	101.7	87.8	84.7	80.2	78.9	G3_35726	150.3	134.5	127.6	118.2	119.3	110.0
							G3_38730	144.6	129.3	122.6	115.0	114.3	108.8
							G3_38984	145.3	132.5	127.4	119.4	120.1	107.7
							G3_37214	155.8	136.9	136.2	127.7	134.4	126.5
stance		2000 veh	cles (V1)		1600 vehic	les (V2)	G3_40698	166.4	146.3	146.9	134.3	150.4	133.5
stance	F-Greedy	F-ICG	A-Greedy	A-ICG	A-Greedy	A-ICG	G3_40474	164.3	143.7	142.7	129.3	140.7	130.5
G2_30749	166.0	147.2	149.5	134.3	139.4	128.4	G3_36526	170.6	152.3	153.6	143.7	161.3	149.2
G2_29476	142.5	132.9	127.0	117.6	116.6	110.7	G3_37367	164.6	145.6	145.4	135.3	146.4	131.6
G2_33460	155.7	137.1	136.0	124.9	121.9	111.3	G3_37973	159.8	141.2	142.0	129.6	135.9	126.0
G2_34544	160.4	140.3	137.6	132.4	134.5	125.4	G3_39427	163.7	141.2	143.7	131.5	133.5	122.0
40,000-50,000	156.2	139.4	137.5	127.3	128.1	119.0	50,000 <	160.7	142.2	141.4	130.9	139.6	128.1

Comparison with Greedy Approach:

Sensitivity analysis

Comparison with Column generation (preliminary results)

wait time
Objective value

Take-home message

- Develop a nearly anytime discrete optimization algorithm for dynamic in a largescale ride-sharing system
- Propose a flexible rolling horizon for re-optimizing the dispatching plan
- Evaluate the proposed method on large-size instances from New York City Taxi Dataset with up to 59820 customers
- About 45\% decrease in average wait time compared to M-RTRS and 20\% improve over A-RTRS
- Decreasing the size of vehicle fleet by 20% with out reducing the efficiency by just distributing the vehicles based on average demands
- build a policy based on RL techniques to adjust the parameters of CP
- Put the algorithm into practice

