

Online Optimization of dial-a-ride problem with the integral primal simplex

Elahe Amiri, Antoine Legrain, Issmail El Hallaoui

Column Generation 2023

GROUP FOR RESEARCH IN DECISION ANALYSIS

> Introduction

Overview of Integral Simplex using Decomposition (ISUD)

Methodology

- > Experimental Results
- Conclusion and Future works

Ridesharing

 Mode of transportation in which travel costs are split among travelers by sharing a vehicle for their trip

Ridesharing

Ridesharing on Manhattan

- 20k requests per hour
- 2k vehicles
- Few seconds to re-optimize the current plan
- Data from the NYC taxi and limousine commission

Realtime Ridesharing

Realtime Ridesharing

- The system should always be able to provide good solutions in each given short time
- Solutions should be <u>fast</u> enough to provide real-time booking for customers

Exact solution methods

Integral Primal Simplex

- Start from an integer solution
- Find a direction of descent to improve the current solution
- Continue iterations to reach optimality.

Advantages

- **Do not restart** the optimization from **scratch**
 - Take advantage of the previous solution as the <u>warm start</u> to produce next solution
- A feasible integer solution is available at <u>anytime</u>
 - Possibility of stopping the procedure at any time if the time is limited
 - Avoid the combinatorial exploration of a branching tree to reach integer solution

Contributions

• In the literature, a DARP has never been solved using a primal algorithm

Main contribution:

- Performing the first implementation of <u>Integral Column Generation</u> in the context of a Dial-a-Ride Problem (Set Packing Problem)
- Using the strength of <u>integral primal simplex</u> to propose an <u>anytime</u> algorithm for real-time application
- Solve <u>large scale</u> instances (2k vehicles and >50k requests over Manhattan)

 ${\mathcal P}$: set of positive value variables in current solution:

Definition:

• A column or a positive combination of columns is said to be **compatible with** \mathcal{P} if it can be written as a **linear combination** of columns of \mathcal{P}

 $Z^*_{\text{SPP}} = \min_{\boldsymbol{\theta}} \boldsymbol{c}^{\top} \boldsymbol{\theta}$ s.t. $\boldsymbol{A} \boldsymbol{\theta} = \boldsymbol{e}$ $\boldsymbol{\theta} \in \{0, 1\}^n$

Set partitioning Problem

 $\mathcal{C}_{\mathcal{P}}$: Index set of compatible columns $\mathbf{A}_{\mathcal{C}_{\mathcal{P}}}$: Set of columns in **A** indexed by $\mathcal{C}_{\mathcal{P}}$

 $Z^*_{\text{SPP}} = \min_{\boldsymbol{\theta}} \boldsymbol{c}^{\top} \boldsymbol{\theta}$ s.t. $\boldsymbol{A} \boldsymbol{\theta} = \boldsymbol{e}$ $\boldsymbol{\theta} \in \{0, 1\}^n$

Set partitioning Problem

 λ_j, ν_j : Weight variables defining the linear combination of compatible and incompatible columns

 $\begin{cases} \nu_j > 0 & \text{entering variables } (j \in \mathcal{I}_{\mathcal{P}}) \\ \lambda_j > 0 & \text{leaving variables } (j \in \mathcal{P}) \end{cases}$

$$Z_{CP1}^* < 0 \quad \Longrightarrow \quad \mathbf{d} = (\nu_j, -\lambda_j, 0)$$

descent direction

$$A_{\mathcal{P}} \qquad A_{\mathcal{C}_{\mathcal{P}}} \qquad A_{\mathcal{I}_{\mathcal{P}}}$$

$$Compatible \qquad Incompatible$$

$$CP$$

$$Z_{CP1}^{*} = \min_{\nu,\lambda} \sum_{j \in \mathcal{I}_{\mathcal{P}}} c_{j}\nu_{j} - \sum_{l \in \mathcal{P}} c_{l}\lambda_{l}$$

$$Decrease cost$$
s.t.
$$\sum_{j \in \mathcal{I}_{\mathcal{P}}} \nu_{j}A_{j} - \sum_{l \in \mathcal{P}} \lambda_{l}A_{l} = 0$$

$$\sum_{j \in \mathcal{I}_{\mathcal{P}}} w_{j}\nu_{j} + \sum_{l \in \mathcal{P}} w_{l}\lambda_{l} = 1$$

$$V \ge 0$$
Normalization constraint

Overview of ISUD

- **Step 0:** Start from an initial integer solution \mathcal{P}
- **Step 1:** *Improve* the current integer solution \mathcal{P} by solving the RP
- **Step 2:** Solve the CP and *Improve* the current integer solution with a compatible combination of columns
- **Control:** If <u>Step 2</u> improves the solution, go to <u>Step 1</u>. Otherwise, **return** the current solution.

Problem Description (Riley et al. 2019)

Vehicle Data	$egin{aligned} u_v^0 : \text{departure time} \ T_v^B : \text{vehicle start time} \ T_v^E : \text{vehicle end time} \ Q_v : \text{capacity of the vehicle} \end{aligned}$
Ride requests data	$\begin{array}{l} q_i: \mbox{number of people to pickup } (q_i > 0) \mbox{ or drop off } (q_i < 0) \\ e_i: \mbox{ earliest possible pickup } \\ o_i: \mbox{ pickup location } \end{array}$

- d_i : drop-off location
- t_i : shortest travel time between its pickup and drop-off locations

INPUTS

Master Problem

set packing Problem modelled as a set partitioning Problem

- c_r : sum of the waiting times of customers
- p_i : penalty of unserved requests

$$Z_{MP}^{*} = \min \sum_{r \in R} c_r y_r + \sum_{i \in P} p_i z_i \qquad \longrightarrow \qquad \begin{array}{l} \text{Minimize the total waiting time of served requests +} \\ \text{penalties of unserved requests} \end{array}$$
s.t.
$$\left(\sum_{r \in R} y_r a_i^r\right) + z_i = 1 \qquad (\pi_i) \qquad \forall i \in P \qquad \Longrightarrow \qquad \begin{array}{l} \text{Scheduling of requests} \\ \sum_{r \in R^v} y_r = 1 \qquad (\sigma_v) \qquad \forall v \in V \qquad \Longrightarrow \qquad \begin{array}{l} \text{Assign routes to vehicles} \\ z_i \in \mathbb{N} \\ y_r \in \{0,1\} \qquad \qquad \forall i \in P \qquad \Longrightarrow \qquad \begin{array}{l} \text{Determine unscheduled requests} \\ \forall r \in R \qquad \Longrightarrow \qquad \begin{array}{l} \text{Determine selected/assigned routes} \end{array}$$

$Z_{\rm SP}^* =$	$\min \sum_{i \in P_v} (u_i - e_i) - \sum_{i \in P_v} \sum_{j \in \mathcal{N}_v} x_{ij} \pi_i - \sigma_v$		(1)	Pricing Subproblems
m s.t	$\sum_{j \in \mathcal{N}_v} x_{ij} = \sum_{j \in \mathcal{N}_v} x_{ij}$	$\forall i \in \mathcal{N}_v \setminus \{0, s\}$	(2)	
	$\sum_{j \in \mathcal{N}_v} x_{0j} = 1$		(3)	flow constraints
	$\sum_{j \in \mathcal{N}_v} x_{js} = 1$		(4)	
	$\sum_{j \in \mathcal{N}_v} x_{ij} - \sum_{j \in \mathcal{N}_v} x_{n+i,j} = 0$	$\forall i \in P_v$	(5)	ensure to drop off onboard passengers
	$\sum_{j \in \mathcal{N}_v} x_{ij} = 1$	$\forall j \in I_v$	(6)	and those that are picked up
	$u_j \ge (u_i + \varepsilon_i + t_{ij}) x_{ij}$	$\forall i, j \in \mathcal{N}_v$	(7)	
	$u_i \ge e_i$	$\forall i \in P_v$	(8)	control arrival time to nodes
	$u_0 \ge T_v^B$		(9)	control arrival time to houes
	$u_s \le T_v^E$		(10)	
	$t_i \le u_{n+i} - (u_i + \varepsilon_i) \le \max\{\alpha t_i, \beta + t_i\}$	$\forall i \in P_v$	(11)	control travel time duration
	$t_i \le u_i - (u_i^P + \varepsilon_i) \le \max\{\alpha t_i, \beta + t_i\}$	$\forall i \in I_v$	(12)	control travel time duration
	$\omega_j \ge (\omega_i + q_j) x_{ij}$	$orall i,j\in\mathcal{N}_v$	(13)	ensure vehicle capacity
	$0 \le \omega_i \le Q_v$	$\forall i \in \mathcal{N}_v$	(14)	choice vehicle capacity
	$x_{ij} \in \{0,1\}$	$orall i,j\in\mathcal{N}_v$	(15)	

(re-optimization in real-time)

Pricing Subproblems

- Use Dynamic Programming approach (Ghilas et al. 2018)
- Forward labeling algorithm

Label Data

- last node of the partial path
- accumulated reduced cost
- reach time to the last node
- set of onboard requests
- set of completed/onboard requests
- number of passengers in the vehicle at last node
- available travel times for onboard requests based on Max travel time

pairwise comparison within the dominance rules

Acceleration Techniques

- Truncated labeling (Dabia et al. 2017)
- Avoid visiting pickup nodes after drops

ensure vehicle capacity constraint

ensure trip duration deviation

Instance Description (Riley et al. 2020)

- New York City Taxi and Limousine Commission
- Manhattan is divided into a grid of cells of 200 square meters

Instance Description (Riley et al. 2020)

- New York City Taxi and Limousine Commission
- Manhattan is divided into a grid of cells of 200 square meters
- 24 Instances
- July 2015 to June 2016

Instance Description (Riley et al. 2020)

- New York City Taxi and Limousine Commission
- Manhattan is divided into a grid of cells of 200 square meters
- 24 Instances
- July 2015 to June 2016
- 2 days a month (7 AM to 9 AM)

12/5/2023

Instance Description (Riley et al. 2020)

- New York City Taxi and Limousine Commission
- Manhattan is divided into a grid of cells of 200 square meters
- 24 Instances
- July 2015 to June 2016
- 2 days a month (7 AM to 9 AM)
- Customers ranges from 19,276 to 59,820

Number of Customers

Vehicle fleet distribution

Experimental Results

Numerical Results

		2000 veh	icles (V1)		1600 vehic	les (V2)		20	00 vehi	cles (Set V1)		1600 vehic	les (V2)
Instance	F-Greedy	F-ICG	A-Greedy	A-ICG	A-Greedy	A-ICG	Instance	F-Greedy	F-ICG	A-Greedy	A-ICG	A-Greedy	A-ICG
G1_17709	103.2	100.0	85.3	82.1	79.8	79.5	G3_39550	176.7	151.5	154.1	144.4	164.0	149.1
G1_12856	97.9	95.1	81.4	79.5	74.0	72.8	G3_36757	166.2	149.1	150.8	140.8	153.2	143.6
G1_18450	110.9	110.1	97.0	93.2	94.7	93.0	G3_40567	159.8	140.8	140.6	129.0	148.3	135.2
G1_14091	107.0	104.5	90.8	87.2	78.6	76.5	G3_39944	164.5	146.9	148.4	134.7	143.1	130.8
G1_16080	103.0	98.7	84.7	81.4	73.7	72.8	G3_40398	158.5	141.1	139.6	129.8	128.5	116.3
< 40,000	104.4	101.7	87.8	84.7	80.2	78.9	G3_35726	150.3	134.5	127.6	118.2	119.3	110.0
							G3_38730	144.6	129.3	122.6	115.0	114.3	108.8
							G3_38984	145.3	132.5	127.4	119.4	120.1	107.7
							G3_37214	155.8	136.9	136.2	127.7	134.4	126.5
lucetore of		2000 veh	icles (V1)		1600 vehic	les (V2)	G3_40698	166.4	146.3	146.9	134.3	150.4	133.5
Instance	F-Greedy	F-ICG	A-Greedy	A-ICG	A-Greedy	A-ICG	G3_40474	164.3	143.7	142.7	129.3	140.7	130.5
G2_30749	166.0	147.2	149.5	134.3	139.4	128.4	G3_36526	170.6	152.3	153.6	143.7	161.3	149.2
G2_29476	142.5	132.9	127.0	117.6	116.6	110.7	G3_37367	164.6	145.6	145.4	135.3	146.4	131.6
G2_33460	155.7	137.1	136.0	124.9	121.9	111.3	G3_37973	159.8	141.2	142.0	129.6	135.9	126.0
G2_34544	160.4	140.3	137.6	132.4	134.5	125.4	G3_39427	163.7	141.2	143.7	131.5	133.5	122.0
40,000 - 50,000	156.2	139.4	137.5	127.3	128.1	119.0	50,000 <	160.7	142.2	141.4	130.9	139.6	128.1

Comparison with Greedy Approach:

Experimental Results

/5/2023

Sensitivity analysis

2100

Comparison with Column generation (preliminary results)

Take-home message

- Develop a nearly <u>anytime</u> discrete optimization algorithm for dynamic in a largescale ride-sharing system
- Propose a flexible rolling horizon for re-optimizing the dispatching plan
- Evaluate the proposed method on large-size instances from New York City Taxi Dataset with up to 59820 customers
- About 45% decrease in average wait time compared to M-RTRS and 20% improve over A-RTRS
- Decreasing the size of vehicle fleet by 20% with out reducing the efficiency by just distributing the vehicles based on average demands

Future Work

- build a policy based on RL techniques to adjust the parameters of CP
- Put the algorithm into practice