Branch-and-Cut-and-Price for Multi-Agent Pickup and Delivery

Edward Lam, Peter Stuckey, Daniel Harabor

ed-lam.com

Multi-Agent Pickup and Delivery

■ Contains the Pickup and Delivery Problem with Time Windows (PDPTW)
■ Assign a sequence of pickup-delivery requests to every agent

- Requests must be visited during time windows

■ Agents have a maximum carrying capacity (capacity 1)

Multi-Agent Pickup and Delivery

■ Contains the Multi-Agent Path Finding (MAPF) problem
■ Discrete time
■ Navigate every agent from its start location to its end location

- Move north, south, east, west or wait
- Cost 1 for each action (move or wait)
- Cannot move into obstacles

■ Vertex collision: agents cannot overlap at a location

■ Edge collision: agents cannot cross over to opposite locations

■ Minimize the total number of actions to reach their end locations

Multi-Agent Pickup and Delivery

■ Multi-depot: every agent has a different start and end location
■ Path-dependent travel time/distance: agents can block a corridor
■ Violates first-in first-out property: arriving later can be better

Definitions

■ Time horizon T, timesteps $\mathcal{T}=\{1, \ldots, T\}$
■ Locations $\mathcal{L}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, excludes obstacles

- Agents \mathcal{A}
- Start location L_{a}^{+}, end location L_{a}^{-}for all $a \in \mathcal{A}$

■ Requests $\mathcal{R}=\mathcal{R}^{\uparrow} \cup \mathcal{R}^{\downarrow}$, pickup vertices \mathcal{R}^{\uparrow}, delivery vertices \mathcal{R}^{\downarrow}

- Time window $\left[\underline{T}_{i}, \bar{T}_{i}\right]$ for all $i \in \mathcal{R}$
- Location $L_{i} \in \mathcal{L}$ for all $i \in \mathcal{R}$

Definitions

■ Sequencing graph $\mathcal{G}^{\text {seq }}=\left(\mathcal{V}^{\text {seq }}, \mathcal{E}^{\text {seq }}\right)$
■ Vertices $\mathcal{V}^{\text {seq }}=\{$ start vertex \top, end vertex $\perp\} \cup \mathcal{R}$
■ Edges $\mathcal{E}^{\text {seq }}$ between pairs of compatible vertices
■ Navigation graph $\mathcal{G}^{\text {nav }}=\left(\mathcal{V}^{\text {nav }}, E^{\text {nav }}\right)$
■ Vertices $\mathcal{V}^{\text {nav }}=\mathcal{L} \times \mathcal{T}$
■ Edges $\mathcal{E}^{\text {nav }}=\left\{\left(\left(\left(x_{1}, y_{1}\right), t_{1}\right),\left(\left(x_{2}, y_{2}\right), t_{2}\right)\right) \in \mathcal{V} \times \mathcal{V}:\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right| \leq 1 \wedge t_{2}=t_{1}+1\right\}$
■ Every vertex has up to five outgoing edges - north, south, east, west, wait
■ Request sequence $s=\left(\top, r_{1}, r_{2}, \ldots, r_{n}, \perp\right)$
■ Path $p=\left(L_{a}^{+}, l_{2}, l_{3}, \ldots, l_{k-1}, L_{a}^{-}\right)$for some $a \in \mathcal{A}$

Algorithm for Joint Optimization

Intuition

■ For every agent, find a sequence of requests and a path navigating the agent to the location of those requests, ignoring collisions
■ Assign requests to agents and resolve collisions at the master level

Overview

- Master problem
- Set partition formulation

■ Select one sequence-path pair for every agent
■ Every request must be completed
■ Every agent must use one path

- Pricing problem

■ Search for a request sequence for every agent (VRP)
■ Search for a path to navigate the agent to each consecutive request (MAPF)
■ Separation problems
■ Resolve collisions by adding cuts

Master Problem

Cuts

- VRP:
- Subset row
- MAPF (robust) ${ }^{1}$:
- Vertex
- Edge
- Rectangle
- Corridor
- Two-edge
- Exit-entry

[^0]Rectangle Cuts

Corridor Cuts

Pricing Problem

■ Find a sequence-path pair (s, p) that has negative reduced cost for any agent $a \in \mathcal{A}$
■ Solve a two-level shortest path problem
■ High-level:
■ Find a request sequence (path on $\mathcal{G}^{\text {seq }}$)
■ Resource-constrained: reduced cost, time, request (if elementary)
■ Solve using a VRP labeling algorithm
■ Low-level:
■ Navigate the agent from one request to another whenever extending a label

- Find a path on $\mathcal{G}^{\text {nav }}$

■ No resource constraints

- Find a Pareto frontier minimizing reduced cost and time

■ Solve using A^{*}

Pricing Problem

■ Sequence-path pair (s, p), where $s=\left(T, r_{1}, r_{2}, \ldots, r_{n}, \perp\right), p=\left(L_{a}^{+}, l_{2}, l_{3} \ldots, L_{a}^{-}\right)$, has reduced cost

$$
\bar{c}_{(s, p)}=c_{p}-\pi_{a}-\sum_{i=1}^{n} \rho_{r_{i}}-\sum_{u \in \mathcal{U}} \sum_{t=1}^{T-1} A_{a,\left(\left(l_{t}, t\right),\left(l_{t+1}, t+1\right)\right)}^{u} \sigma_{u}-\sum_{w \in \mathcal{W}}\left\lfloor\frac{\sum_{i=1}^{n} A_{r_{i}}^{w}}{2}\right\rfloor \phi_{u}
$$

■ $\pi_{a}, \rho_{r}, \sigma_{u}, \phi_{w}$: dual variable of agent constraints, request constraints, robust MAPF constraints/cuts, subset row cuts

- \mathcal{U} : set of robust MAPF constraints/cuts

■ \mathcal{W} : set of subset row cuts

- $A_{a, e}^{u}$: coefficient of edge e for agent a in the collision constraint $u \in \mathcal{U}$

■ $A_{i}^{w}:$ coefficient of vertex i in the subset row cut $w \in \mathcal{W}$

Algorithm for Deferred Optimization

Intuition

■ Solve the PDPTW for a request sequence for each agent using their shortest path distances
■ Whenever a PDPTW solution is found, check it for MAPF infeasibility or superoptimality
■ If so, create a combinatorial Benders cut in the PDPTW master problem

Master Problem

$$
\forall a \in \mathcal{A}, s \in \Lambda_{a} \text { (8) }
$$

$$
\begin{equation*}
\xrightarrow{\text { Non-negative cost difference }} \theta \geq 0 \tag{9}
\end{equation*}
$$

Benders Problem

1. Get the used arcs of a VRP feasible solution

$$
\mathcal{F}=\left\{(a, i, j) \in \mathcal{A} \times \mathcal{E}^{\text {seq }}: \sum_{s \in \Lambda_{a}} \alpha_{i, j}^{s} \lambda_{s}=1\right\}
$$

2. Enforce these sequences in the MAPF problem and solve
3. If \mathcal{F} is infeasible, adds the feasibility cut

$$
\sum_{(a, i, j) \in \mathcal{F}} \sum_{s \in \Lambda_{a}} \alpha_{i, j}^{s} \lambda_{s} \leq|\mathcal{F}|-1
$$

4. If \mathcal{F} is superoptimal, adds the optimality cut

$$
\sum_{(a, i, j) \in \mathcal{F}} \sum_{s \in \Lambda_{a}} \alpha_{i, j}^{s} \lambda_{s}-\frac{1}{\delta} \theta \leq|\mathcal{F}|-1
$$

where δ is the cost difference

Two-Stage Heuristic

Two-Stage Heuristic

■ Solve the PDPTW optimally
■ Solve the MAPF using the request sequences from the PDPTW
■ Compute a gap using the PDPTW lower bound and MAPF upper bound

Experimental Results

Set-Up

■ AMD EPYC Rome 32 -core 2.25 GHz

- 128 GB memory

■ Gurobi 10.1 LP solver, SCIP 8.0.3 MIP solver
■ 1 hour CPU time

- 1120 instances across 4 maps

$10 \times 30-w 5$

$31 \times 79-w 5$

14 Agents

16 Agents

25 Agents

Berlin_1_256

60 Agents

den312d

80 Agents

20 Agents

\rightarrow Joint \longrightarrow Benders \longrightarrow Two-Stage

Future Work

■ Cuts over the VRP and MAPF intersection polyhedron
■ Better explanation of infeasibility and superoptimality for Benders method (irreducible infeasible subsystem, conflict analysis?)

Branch-and-Cut-and-Price for Multi-Agent Pickup and Delivery

Edward Lam, Peter Stuckey, Daniel Harabor

ed-lam.com

[^0]: ${ }^{1}$ E. Lam, P. Le Bodic, D. Harabor, and P. J. Stuckey, "Branch-and-cut-and-price for multi-agent path finding". Computers \& Operations Research, vol. 144, p. 105809, 2022.

