Resource-Window Reduction by Reduced Costs in Path-based Formulations for Routing and Scheduling Problems

Column Generation, Montréal, 2023

Nicola Bianchessi

Timo Gschwind

Stefan Irnich

irnich@uni-mainz.de

Chair for Logistics Management Gutenberg School of Management and Economics

Tighter upper bounds lead to less feasible labels

- Tighter upper bounds lead to less feasible labels
- Tighter lower bounds lead to more labels that are comparable

- Tighter upper bounds lead to less feasible labels
- Tighter lower bounds lead to more labels that are comparable
- Faster pricing accelerates overall BPC algorithm (major effect)

- Tighter upper bounds lead to less feasible labels
- Tighter lower bounds lead to more labels that are comparable
- Faster pricing accelerates overall BPC algorithm (major effect)
- Some paths/columns of the RMP can be eliminated so that the lower bound of the (minor effect)

- Tighter upper bounds lead to less feasible labels
- Tighter lower bounds lead to more labels that are comparable
- Faster pricing accelerates overall BPC algorithm (major effect)
- Some paths/columns of the RMP can be eliminated so that the lower bound of the (minor effect)

- Tighter upper bounds lead to less feasible labels
- Tighter lower bounds lead to more labels that are comparable
- Faster pricing accelerates overall BPC algorithm (major effect)
- Some paths/columns of the RMP can be eliminated so that the lower bound of the (minor effect)

Take away:

- Direct resource-window reduction not helpful
- Consider arc-specific resource windows

Proposition 1 (Nemhauser and Wolsey (1988), Proposition 2.1, page 389)

Let UB be an upper bound on the optimal value of the minimization problem M, and let π be a dual solution to the linear relaxation of M providing a lower bound $LB(\pi)$.

If an integer variable $x \ge 0$ has reduced cost $\tilde{c}_x(\pi) > UB - LB(\pi)$, then x = 0 in every optimal solution to M, i.e., x can be eliminated.

Proposition 1 (Nemhauser and Wolsey (1988), Proposition 2.1, page 389)

Let UB be an upper bound on the optimal value of the minimization problem M, and let π be a dual solution to the linear relaxation of M providing a lower bound $LB(\pi)$. If an integer variable $x \ge 0$ has reduced cost $\tilde{c}_x(\pi) > UB - LB(\pi)$, then x = 0 in every optimal solution to M, i.e., x can be eliminated.

No direct application in column generation:

- Forbidding the re-generation of one or several variables changes the structure of the pricing problem
- Effort of solving modified pricing problems is often too high
- Possible via network modification (Villeneuve and Desaulniers, 2005)

Notation

$$\begin{split} \min \sum_{p \in \mathcal{P}} c_p \lambda_p & (1a) \\ \text{s.t.} \sum_{p \in \mathcal{P}} a_{kp} \lambda_p = 1 & \forall k \in \mathcal{K} & [\pi] & (1b) \\ \lambda_p \geq 0 \quad \text{integer} & \forall p \in \mathcal{P} & (1c) \end{split}$$

with

- K: set of tasks to fulfill
- \mathcal{P} : set of all resource feasible paths, underlying network D = (V, A)
- MP: linear relaxation, i.e., $\lambda_{p} \geq 0$, $\lambda_{p} \in \mathbb{R}$
- **RMP**: linear relaxation defined of subset $\mathcal{P}' \subset \mathcal{P}$
 - π : dual solution of MP/RMP

Consider an arc $(i,j) \in A$ and the set $\mathcal{P}[ij]$ of all paths that contain the arc (i,j).

Consider an arc $(i,j) \in A$ and the set $\mathcal{P}[ij]$ of all paths that contain the arc (i,j).

Proposition 2 (Irnich et al. (2010))

If the reduced cost $\tilde{c}_p(\pi)$ of all variables λ_p for $p \in \mathcal{P}[ij]$ fulfill $\tilde{c}_p(\pi) \geq UB - LB(\pi)$, then the arc (i, j) is not used in an optimal solution and can be eliminated.

Consider an arc $(i,j) \in A$ and the set $\mathcal{P}[ij]$ of all paths that contain the arc (i,j).

Proposition 2 (Irnich et al. (2010))

If the reduced cost $\tilde{c}_p(\pi)$ of all variables λ_p for $p \in \mathcal{P}[ij]$ fulfill $\tilde{c}_p(\pi) \geq UB - LB(\pi)$, then the arc (i, j) is not used in an optimal solution and can be eliminated.

More general: Paths $\mathcal{P}[prop]$ is the subset of all \mathcal{P} that fulfill a given property *prop*.

$$\tilde{c}[prop](\pi) = \min_{p \in \mathcal{P}[prop]} \tilde{c}_p(\pi)$$

Consider an arc $(i,j) \in A$ and the set $\mathcal{P}[ij]$ of all paths that contain the arc (i,j).

Proposition 2 (Irnich et al. (2010))

If the reduced cost $\tilde{c}_p(\pi)$ of all variables λ_p for $p \in \mathcal{P}[ij]$ fulfill $\tilde{c}_p(\pi) \geq UB - LB(\pi)$, then the arc (i, j) is not used in an optimal solution and can be eliminated.

More general: Paths $\mathcal{P}[prop]$ is the subset of all \mathcal{P} that fulfill a given property *prop*.

$$\widetilde{c}[prop](\pi) = \min_{p \in \mathcal{P}[prop]} \widetilde{c}_p(\pi)$$

Two important properties are:

[*ij*]: For an arc $(i, j) \in A$, the path includes the arc (i, j) at least once;

[*hij*]: For two arcs $(h, i), (i, j) \in A$, the path includes the sequence (h, i, j) at least once; (Desaulniers *et al.*, 2018)

Reduced Cost-based Variable Elimination/Fixing

The values $\tilde{c}[ij](\pi)$ can be effectively computed for all arcs $(i, j) \in A$ with the help of the forward REFs f_{ij} , backward REFs b_{ij} , and the merge operator m (return value of m is the reduced cost):

Reduced Cost-based Variable Elimination/Fixing

The values $\tilde{c}[ij](\pi)$ can be effectively computed for all arcs $(i,j) \in A$ with the help of the forward REFs f_{ij} , backward REFs b_{ij} , and the merge operator m (return value of m is the reduced cost):

• Full forward and full backward labeling gives label sets (\mathcal{F}_i) and (\mathcal{B}_i)

• $f_{ij}(F) = b_{ij}(B) = \infty$, if infeasible; $m(\cdot, \cdot) = \infty$, if infeasible

Reduced Cost-based Variable Elimination/Fixing

The values $\tilde{c}[ij](\pi)$ can be effectively computed for all arcs $(i,j) \in A$ with the help of the forward REFs f_{ij} , backward REFs b_{ij} , and the merge operator m (return value of m is the reduced cost):

• Full forward and full backward labeling gives label sets (\mathcal{F}_i) and (\mathcal{B}_i)

•
$$f_{ij}(F) = b_{ij}(B) = \infty$$
, if infeasible; $m(\cdot, \cdot) = \infty$, if infeasible

$$\tilde{c}[ij](\pi) = \min_{\substack{F \in \mathcal{F}_i, \\ B \in \mathcal{B}_j}} m(f_{ij}(F), B) = \min_{\substack{F \in \mathcal{F}_i, \\ B \in \mathcal{B}_j}} m(F, b_{ij}(B))$$

$$F \in \mathcal{F}_{i} \qquad B \in \mathcal{B}_{j}$$

$$0 \qquad fw \text{ part. path} \qquad i \qquad \xrightarrow{\rightarrow \text{ fw REF } f_{ij}} \qquad bw \text{ part. path} \qquad 0'$$

Two-arc fixing was suggested by Desaulniers et al. (2018):

$$\tilde{c}[hij](\pi) = \min_{\substack{F \in \mathcal{F}_h, \\ B \in \mathcal{B}_j}} m(f_{hi}(F), b_{ij}(B))$$

Two-arc fixing was suggested by Desaulniers et al. (2018):

$$\tilde{c}[hij](\pi) = \min_{\substack{F \in \mathcal{F}_h, \\ B \in \mathcal{B}_j}} m(f_{hi}(F), b_{ij}(B))$$

$$F \in \mathcal{F}_{h} \qquad f_{hi}(F), b_{ij}(B) \qquad B \in \mathcal{B}_{j}$$

$$0 \qquad fw \text{ path } h \xrightarrow{\rightarrow \text{ fw REF } f_{hi}} b_{w \text{ REF } b_{hi}} \xleftarrow{i} b_{w \text{ REF } b_{ij}} \xleftarrow{j} b_{w \text{ path } 0'} 0'$$

- Two-arc sequences cannot be eliminated from the network
- Must be eliminated during label extension
- Modified dominance comparison between labels required

For time window VRPs (with TWs $[e_i, \ell_i]$, travel times τ_{ij}), the standard forward and backward REFs propagate the time attribute T^{time} in the following way:

$$T_{j}^{time} = f_{ij}^{time}(T_{i}) = \max\{e_{j}, T_{i}^{time} + \tau_{ij}\} \quad \text{feasible if} \quad T_{j}^{time} \le \ell_{j}$$
$$T_{i}^{time} = b_{ij}^{time}(T_{j}) = \min\{\ell_{i}, T_{j}^{time} - \tau_{ij}\} \quad \text{feasible if} \quad T_{i}^{time} \ge e_{i}$$

For time window VRPs (with TWs $[e_i, \ell_i]$, travel times τ_{ij}), the standard forward and backward REFs propagate the time attribute T^{time} in the following way:

$$\begin{array}{ll} T_{j}^{time} = f_{ij}^{time}(T_{i}) = \max\{e_{j}, T_{i}^{time} + \tau_{ij}\} & \text{ feasible if } & T_{j}^{time} \leq \ell_{j} \\ T_{i}^{time} = b_{ij}^{time}(T_{j}) = \min\{\ell_{i}, T_{j}^{time} - \tau_{ij}\} & \text{ feasible if } & T_{i}^{time} \geq e_{i} \end{array}$$

Three properties of resource-feasible paths $p \in \mathcal{P}$ related to a vertex $i \in V$ and an arbitrary point in time $t \in \mathbb{R}$:

 $[T_i^{time} < t]$: The path can service/visit vertex *i* before *t*;

For time window VRPs (with TWs $[e_i, \ell_i]$, travel times τ_{ij}), the standard forward and backward REFs propagate the time attribute T^{time} in the following way:

$$T_{j}^{time} = f_{ij}^{time}(T_{i}) = \max\{e_{j}, T_{i}^{time} + \tau_{ij}\} \quad \text{feasible if} \quad T_{j}^{time} \le \ell_{j}$$
$$T_{i}^{time} = b_{ij}^{time}(T_{j}) = \min\{\ell_{i}, T_{j}^{time} - \tau_{ij}\} \quad \text{feasible if} \quad T_{i}^{time} \ge e_{i}$$

Three properties of resource-feasible paths $p \in \mathcal{P}$ related to a vertex $i \in V$ and an arbitrary point in time $t \in \mathbb{R}$:

 $[T_i^{time} < t]$: The path can service/visit vertex *i* before *t*; if *i* occurs several times in path *p*, at least one of the services must start strictly before time *t*;

For time window VRPs (with TWs $[e_i, \ell_i]$, travel times τ_{ij}), the standard forward and backward REFs propagate the time attribute T^{time} in the following way:

$$T_{j}^{time} = f_{ij}^{time}(T_{i}) = \max\{e_{j}, T_{i}^{time} + \tau_{ij}\} \quad \text{feasible if} \quad T_{j}^{time} \le \ell_{j}$$
$$T_{i}^{time} = b_{ij}^{time}(T_{j}) = \min\{\ell_{i}, T_{j}^{time} - \tau_{ij}\} \quad \text{feasible if} \quad T_{i}^{time} \ge e_{i}$$

Three properties of resource-feasible paths $p \in \mathcal{P}$ related to a vertex $i \in V$ and an arbitrary point in time $t \in \mathbb{R}$:

- $[T_i^{time} < t]$: The path can service/visit vertex *i* before *t*; if *i* occurs several times in path *p*, at least one of the services must start strictly before time *t*;
- $[T_i^{time} > t]$: Likewise with a possible service start/visit at vertex *i* at a time strictly after time *t*;

For time window VRPs (with TWs $[e_i, \ell_i]$, travel times τ_{ij}), the standard forward and backward REFs propagate the time attribute T^{time} in the following way:

$$T_{j}^{time} = f_{ij}^{time}(T_{i}) = \max\{e_{j}, T_{i}^{time} + \tau_{ij}\} \quad \text{feasible if} \quad T_{j}^{time} \le \ell_{j}$$
$$T_{i}^{time} = b_{ij}^{time}(T_{j}) = \min\{\ell_{i}, T_{j}^{time} - \tau_{ij}\} \quad \text{feasible if} \quad T_{i}^{time} \ge e_{i}$$

Three properties of resource-feasible paths $p \in \mathcal{P}$ related to a vertex $i \in V$ and an arbitrary point in time $t \in \mathbb{R}$:

- $[T_i^{time} < t]$: The path can service/visit vertex *i* before *t*; if *i* occurs several times in path *p*, at least one of the services must start strictly before time *t*;
- $[T_i^{time} > t]$: Likewise with a possible service start/visit at vertex *i* at a time strictly after time *t*;

 $[T_i^{time} = t]$: Likewise with a service/visit at vertex *i* starting exactly at time *t*;

Example: VRPTW; Consider paths and service times at vertex i = 4:

Example: VRPTW; Consider paths and service times at vertex i = 4:

The values $\tilde{c}[T_i^{time} < t](\pi)$, $\tilde{c}[T_i^{time} < t](\pi)$, and $\tilde{c}[T_i^{time} = t](\pi)$ can be effectively computed for all vertices $i \in V$ with the help of the forward REFs f_{ij} , backward REFs b_{ij} , and the merge operator m (return value of m is reduced cost):

The values $\tilde{c}[T_i^{time} < t](\pi)$, $\tilde{c}[T_i^{time} < t](\pi)$, and $\tilde{c}[T_i^{time} = t](\pi)$ can be effectively computed for all vertices $i \in V$ with the help of the forward REFs f_{ij} , backward REFs b_{ij} , and the merge operator m (return value of m is reduced cost):

$$\tilde{c}[T_{i}^{time} < t](\pi) = \min_{\substack{F \in \mathcal{F}_{i}: F^{time} < t \\ B \in \mathcal{B}_{i}}} m(F, B)$$
$$\tilde{c}[T_{i}^{time} > t](\pi) = \min_{\substack{F \in \mathcal{F}_{i}, \\ B \in \mathcal{B}_{i}: B^{time} > t}} m(F, B)$$
$$\tilde{c}[T_{i}^{time} = t](\pi) = \min_{\substack{F \in \mathcal{F}_{i}: F^{time} \leq t \\ B \in \mathcal{B}: B^{time} > t}} m(F, B)$$

Proposition 3

Feasible path $p \in \mathcal{P}$	Possible values <i>T</i> 4 ^{time}	Reduced cost $\tilde{c}_p(\pi)$
$\begin{array}{c} (0,1,4,5,8) \\ (0,2,4,5,8) \\ (0,2,4,6,8) \\ (0,3,4,6,8) \\ (0,3,4,7,8) \end{array}$	[2, 3] [3, 3] [3, 4] [4, 4] [4, 5]	0 2 3 1 1.5

The lower bound functions have the following properties in terms of $t \in \mathbb{R}$:

- (i) $\tilde{c}[T_i^{time} < t](\pi)$ is a non-increasing, piecewise constant function; it is continuous from the left;
- (ii) $\tilde{c}[T_i^{time} > t](\pi)$ is a non-decreasing, piecewise constant function; it is continuous from the right;

Proposition 3

Feasible path $p \in \mathcal{P}$	Possible values <i>T</i> 4 ^{time}	Reduced cost $\tilde{c}_p(\pi)$
$\begin{array}{c} (0,1,4,5,8) \\ (0,2,4,5,8) \\ (0,2,4,6,8) \\ (0,3,4,6,8) \\ (0,3,4,7,8) \end{array}$	[2,3] [3,3] [3,4] [4,4] [4,5]	0 2 3 1 1.5

The lower bound functions have the following properties in terms of $t \in \mathbb{R}$:

- (i) $\tilde{c}[T_i^{time} < t](\pi)$ is a non-increasing, piecewise constant function; it is continuous from the left;
- (ii) $\tilde{c}[T_i^{time} > t](\pi)$ is a non-decreasing, piecewise constant function; it is continuous from the right;
- (iii) $\tilde{c}[T_i^{time} = t](\pi)$ is a piecewise constant function; it is not necessarily monotone;

(iv) $\tilde{c}[T_i^{time} = t](\pi) \ge \max{\{\tilde{c}[T_i^{time} \le t](\pi), \tilde{c}[T_i^{time} \ge t](\pi)\}}$ holds true; strictly > is possible.

For any property [prop],

 $\tilde{c}[prop](\pi) > UB - LB(\pi)$ $\Leftrightarrow LB[prop](\pi) := LB(\pi) + \tilde{c}[prop](\pi) > UB.$

For any property [prop],

$$\tilde{c}[prop](\pi) > UB - LB(\pi)$$

 $\Leftrightarrow LB[prop](\pi) := LB(\pi) + \tilde{c}[prop](\pi) > UB$

Proposition 4

The following rules are valid for all $t \in \mathbb{R}$:

(i) If $LB[T_i^{time} < t](\pi) > UB$, the value e_i can be updated to $\max\{e_i, t\}$.

(ii) If $LB[T_i^{time} > t](\pi) > UB$, the value ℓ_i can be updated to min $\{t, \ell_i\}$.

For any property [prop],

$$\tilde{c}[prop](\pi) > UB - LB(\pi)$$

 $\Leftrightarrow LB[prop](\pi) := LB(\pi) + \tilde{c}[prop](\pi) > UB$

Proposition 4

The following rules are valid for all $t \in \mathbb{R}$:

(i) If $LB[T_i^{time} < t](\pi) > UB$, the value e_i can be updated to $\max\{e_i, t\}$.

(ii) If $LB[T_i^{time} > t](\pi) > UB$, the value ℓ_i can be updated to min $\{t, \ell_i\}$.

Remarks:

- We do not use property [*T_i^{time} = t*], because the time windows would then be split into multiple smaller time windows per vertex.
- For different dual prices $\pi^1, \pi^2, \ldots, \pi^k$, the lower bound functions can be combined into

$$LB^*[prop] := \max_{s=1,\dots,k} \{LB[prop](\pi^s)\}.$$

Load-Resource Windows

Standard REFs for capacity constraints start with an initial load of 0 for the forward and backward labeling and propagate the load-attributes as follows:

$$\begin{split} T_j^{load} &= f_{ij}^{load}(T_i) = T_i^{load} + d_j & \text{feasible if } T_j^{load} \leq Q \\ T_i^{load} &= b_{ij}^{load}(T_j) = T_j^{load} + d_i & \text{feasible if } T_i^{load} \leq Q \end{split}$$

Load-Resource Windows

Standard REFs for capacity constraints start with an initial load of 0 for the forward and backward labeling and propagate the load-attributes as follows:

$$T_j^{load} = f_{ij}^{load}(T_i) = T_i^{load} + d_j$$
 feasible if $T_j^{load} \le Q$
 $T_i^{load} = b_{ij}^{load}(T_j) = T_j^{load} + d_i$ feasible if $T_i^{load} \le Q$

Problem: fw and bw values are not referring to the same resource window.
Load-Resource Windows

Standard REFs for capacity constraints start with an initial load of 0 for the forward and backward labeling and propagate the load-attributes as follows:

$$\begin{split} T_{j}^{load} &= f_{ij}^{load}(T_{i}) = T_{i}^{load} + d_{j} & \text{feasible if } T_{j}^{load} \leq Q \\ T_{i}^{load} &= b_{ij}^{load}(T_{j}) = T_{j}^{load} + d_{i} & \text{feasible if } T_{i}^{load} \leq Q \end{split}$$

Problem: fw and bw values are not referring to the same resource window.

Solution: In bw direction, consider the residual capacity and delay the demand propagation:

$$T_j^{l\tilde{o}ad} = f_{ij}^{l\tilde{o}ad}(T_i) = \max\{d_j, T_i^{l\tilde{o}ad} + d_j\} \quad \text{feasible if} \quad T_j^{l\tilde{o}ad} \le \bar{Q}_j$$
$$T_i^{l\tilde{o}ad} = b_{ij}^{l\tilde{o}ad}(T_j) = \min\{Q_i, T_j^{l\tilde{o}ad} - d_j\} \quad \text{feasible if} \quad T_i^{l\tilde{o}ad} \ge \bar{d}_i$$

with initial value $\bar{d}_o = 0$ at origin o, and value $\bar{Q}_{o'} = Q$ at destination o'.

Instances: Solomon VRPTW benchmark with 25, 50 and 100 customers

- 86 instances solved in root node
- R208.100 and R211.100 not solved within 2 hours
- 80 instance in experiments

Instances: Solomon VRPTW benchmark with 25, 50 and 100 customers

- 86 instances solved in root node
- R208.100 and R211.100 not solved within 2 hours
- 80 instance in experiments

BPC algorithm:

Standard components: preprocessing (Desrochers et al., 1992); ng-route relaxation (Baldacci et al., 2011); bidirectional labeling with dynamic HWP (Tilk et al., 2017); partial pricing with reduced networks (Desaulniers et al., 2008); arc fixing (Irnich et al., 2010); limited-memory subset-row inequalities (Im-SRIs, Pecin et al., 2017) for subsets S of rows with |S| = 3; branching on #vehicle and arcs with best-first search

time limit 7200 seconds (2 hours)

Instances: Solomon VRPTW benchmark with 25, 50 and 100 customers

- 86 instances solved in root node
- R208.100 and R211.100 not solved within 2 hours
- 80 instance in experiments

BPC algorithm:

Standard components: preprocessing (Desrochers et al., 1992); ng-route relaxation (Baldacci et al., 2011); bidirectional labeling with dynamic HWP (Tilk et al., 2017); partial pricing with reduced networks (Desaulniers et al., 2008); arc fixing (Irnich et al., 2010); limited-memory subset-row inequalities (Im-SRIs, Pecin et al., 2017) for subsets S of rows with |S| = 3; branching on #vehicle and arcs with best-first search

time limit 7200 seconds (2 hours)

Computational setup:

- C++ using the callable library of CPLEX 12.7.0 and compiled into 64-bit single-thread release code with Microsoft Visual Studio 2017
- 64-bit Microsoft Windows 10 computer with an Intel[®] Core[™] i7-6700K clocked at 4.00 GHz and with 32 GB of RAM

The following seven computational settings are analyzed:

- AF: arc fixing (AF), no resource-window reduction; this is the baseline setting;
- AF/LD: AF and resource-window reduction for the *load*-attribute;
- AF/TW: AF and time-window reduction, i.e., for the time-attribute;
- AF/LD.TW: AF and resource-window reduction for *load* and *time*;
 - LD: w/o AF, but with resource-window reduction for the *load*-attribute;
 - TW: w/o AF, but with time-window reduction, i.e., for the time-attribute;
 - LD.TW: w/o AF, but with resource-window reduction for *load* and *time*

		Computational Settings						
		AF	AF/LD	AF/TW	AF/LD.TW	LD	TW	LD.TW
Geometric mean time ratios		1.00	1.02	1.04	1.05	2.33	2.33	2.11
#Opt		78	78	77	78	72	73	75
#Unsolved		2	2	3	2	8	7	5
arcs eliminated (%)	min.	60.51	59.42	60.51	59.42			
	avg.	88.70	88.69	88.68	88.70			
	max.	96.67	96.43	96.49	96.43			
lõad-window reduction (%)	min.		2.00		2.00	2.00		2.00
	avg.		12.80		12.91	13.10		13.06
	max.		33.92		35.74	38.70		36.40
time-window reduction (%)	min.			0.00	0.08		0.08	1.12
	avg.			14.50	14.67		14.26	14.20
	max.			30.25	32.04		31.80	32.57

		Computational Settings						
		AF	AF/LD	AF/TW	AF/LD.TW	LD	TW	LD.TW
Geometric mean time ratios		1.00	1.02	1.04	1.05	2.33	2.33	2.11
#Opt		78	78	77	78	72	73	75
#Unsolved		2	2	3	2	8	7	5
arcs eliminated (%)	min.	60.51	59.42	60.51	59.42			
	avg.	88.70	88.69	88.68	88.70			
	max.	96.67	96.43	96.49	96.43			
lõad-window reduction (%)	min.		2.00		2.00	2.00		2.00
	avg.		12.80		12.91	13.10		13.06
	max.		33.92		35.74	38.70		36.40
time-window reduction (%)	min.			0.00	0.08		0.08	1.12
	avg.			14.50	14.67		14.26	14.20
	max.			30.25	32.04		31.80	32.57

		Computational Settings						
		AF	AF/LD	AF/TW	AF/LD.TW	LD	TW	LD.TW
Geometric mean time ratios		1.00	1.02	1.04	1.05	2.33	2.33	2.11
#Opt		78	78	77	78	72	73	75
#Unsolved		2	2	3	2	8	7	5
arcs eliminated (%)	min.	60.51	59.42	60.51	59.42			
	avg.	88.70	88.69	88.68	88.70			
	max.	96.67	96.43	96.49	96.43			
lõad-window reduction (%)	min.		2.00		2.00	2.00		2.00
	avg.		12.80		12.91	13.10		13.06
	max.		33.92		35.74	38.70		36.40
time-window reduction (%)	min.			0.00	0.08		0.08	1.12
	avg.			14.50	14.67		14.26	14.20
	max.			30.25	32.04		31.80	32.57

$$T_j^{time} = f_{ij}^{time}(T_i) = \max\{ \mathbf{e}_j^{ij}, T_i^{time} + \tau_{ij} \}$$

$$\mathcal{T}^{time}_j = f^{time}_{ij}(\mathcal{T}_i) = \max\{e^{ij}_j, \mathcal{T}^{time}_i + au_{ij}\}$$
 feasible if $\mathcal{T}^{time}_j \leq \ell^{ij}_j$

$$T_{j}^{time} = f_{ij}^{time}(T_{i}) = \max\{e_{j}^{ij}, T_{i}^{time} + \tau_{ij}\} \text{ feasible if } T_{j}^{time} \le \ell_{j}^{ij}$$
$$T_{i}^{time} = b_{ij}^{time}(T_{j}) = \min\{\ell_{i}^{ij}, T_{j}^{time} - \tau_{ij}\}$$

$$T_{j}^{time} = f_{ij}^{time}(T_{i}) = \max\{e_{j}^{ij}, T_{i}^{time} + \tau_{ij}\} \text{ feasible if } T_{j}^{time} \le \ell_{j}^{ij}$$
$$T_{i}^{time} = b_{ij}^{time}(T_{j}) = \min\{\ell_{i}^{ij}, T_{j}^{time} - \tau_{ij}\} \text{ feasible if } T_{i}^{time} \ge e_{i}^{ij}$$

New properties:

 $[T_i^{time} < t, ij]$: All paths that include arc (i, j) and allow a start of service at vertex i before time t followed by the traversal of arc (i, j);

New properties:

 $[T_i^{time} < t, ij]$: All paths that include arc (i, j) and allow a start of service at vertex i before time t followed by the traversal of arc (i, j);

 $[ij, T_j^{time} < t]$: All paths that include arc (i, j) and allow a start of service at vertex j before time t after the traversal of arc (i, j).

Likewise for > t.

New properties:

 $[T_i^{time} < t, ij]$: All paths that include arc (i, j) and allow a start of service at vertex i before time t followed by the traversal of arc (i, j);

 $[ij, T_j^{time} < t]$: All paths that include arc (i, j) and allow a start of service at vertex j before time t after the traversal of arc (i, j).

Likewise for > t.

$$\tilde{c}[T_{i}^{time} < t, ij](\pi) = \min_{\substack{F \in \mathcal{F}_{i}; F^{time} < t \\ B \in \mathcal{B}_{j}}} m(F, b_{ij}(B))$$

$$\tilde{c}[T_{i}^{time} > t, ij](\pi) = \min_{\substack{F \in \mathcal{F}_{i}, \\ B \in \mathcal{B}_{j} : b_{ij}^{time}(B) > t}} m(F, b_{ij}(B))$$

$$\tilde{c}[ij, T_{j}^{time} < t](\pi) = \min_{\substack{F \in \mathcal{F}_{i}, f_{ij}^{time}(F) < t \\ B \in \mathcal{B}_{j}}} m(f_{ij}(F), B)$$

$$\tilde{c}[ij, T_{j}^{time} > t](\pi) = \min_{\substack{F \in \mathcal{F}_{i}, \\ B \in \mathcal{B}_{j}: B^{time} > t}} m(f_{ij}(F), B)$$

Proposition 5

The following four rules are valid for all $t \in \mathbb{R}$:

- (i) If $LB[T_i^{time} < t, ij](\pi) > UB$, the value e_i^{ij} can be updated to $\max\{e_i^{ij}, t\}$.
- (ii) If $LB[T_i^{time} > t, ij](\pi) > UB$, the value ℓ_i^{ij} can be updated to $\min\{t, \ell_i^{ij}\}$.
- (iii) If $LB[ij, T_j^{time} < t](\pi) > UB$, the value e_j^{ij} can be updated to $\max\{e_j^{ij}, t\}$.

(iv) If $LB[ij, T_j^{time} > t](\pi) > UB$, the value ℓ_j^{ij} can be updated to $\min\{t, \ell_j^{ij}\}$.

Algorithm 1: Reduction Procedure for Arc-specific TWs

Input: Label sets \mathcal{F}_i and \mathcal{B}_i for all $i \in V$, upper bound UB, and arc-specific TWs $[e_i^{ij}, \ell_i^{ij}]$ and $[e_i^{ij}, \ell_i^{ij}]$ for all $(i, j) \in A$ 1 for $(i,j) \in A$ do $e_i = e_i \leftarrow \infty, \ \ell_i = \ell_i \leftarrow -\infty;$ 2 for $F \in \mathcal{F}_i$ do 3 for $B \in \mathcal{B}_i$ do 4 if $m(f_{ii}(F), B) \leq UB$ then 5 $e_i \leftarrow \min\{F^{time}, e_i\}, e_j \leftarrow \min\{f_{ij}^{time}(F), e_j\}; \\ \ell_i \leftarrow \max\{b_{ij}^{time}(B), \ell_i\}, \ell_j \leftarrow \max\{B^{time}, \ell_j\}; \end{cases}$ 6 7 $e_i^{ij} \leftarrow \max\{e_i^{ij}, e_i\}, e_i^{ij} \leftarrow \max\{e_i^{ij}, e_i\};$ 8 $\ell_i^{ij} \leftarrow \min\{\ell_i^{ij}, \ell_i\}, \ \ell_i^{ij} \leftarrow \min\{\ell_i^{ij}, \ell_i\};$ 9 **Output:** Updated arc-specific TWs $[e_i^{ij}, \ell_i^{ij}]$ and $[e_i^{ij}, \ell_i^{ij}]$ for all $(i, j) \in A$

$$T_j^{l\tilde{o}ad} = f_{ij}^{l\tilde{o}ad}(T_i) = \max\{d_j^{ij}, T_i^{l\tilde{o}ad} + d_j\}$$

$$T_j^{l\tilde{o}ad} = f_{ij}^{l\tilde{o}ad}(T_i) = \max\{d_j^{ij}, T_i^{l\tilde{o}ad} + d_j\} \quad \text{feasible if} \quad T_j^{l\tilde{o}ad} \le Q_j^{ij}$$

$$T_j^{l\tilde{o}ad} = f_{ij}^{l\tilde{o}ad}(T_i) = \max\{d_j^{ij}, T_i^{l\tilde{o}ad} + d_j\} \text{ feasible if } T_j^{l\tilde{o}ad} \le Q_j^{ij}$$
$$T_i^{l\tilde{o}ad} = b_{ij}^{l\tilde{o}ad}(T_j) = \min\{Q_i^{ij}, T_j^{l\tilde{o}ad} - d_j\}$$

$$T_{j}^{l\tilde{o}ad} = f_{ij}^{l\tilde{o}ad}(T_{i}) = \max\{d_{j}^{ij}, T_{i}^{l\tilde{o}ad} + d_{j}\} \text{ feasible if } T_{j}^{l\tilde{o}ad} \le Q_{j}^{ij}$$
$$T_{i}^{l\tilde{o}ad} = b_{ij}^{l\tilde{o}ad}(T_{j}) = \min\{Q_{i}^{ij}, T_{j}^{l\tilde{o}ad} - d_{j}\} \text{ feasible if } T_{i}^{l\tilde{o}ad} \ge d_{i}^{ij}$$

Redefine the load-related parts of forward and backward REFs with the four arc-specific attributes $d_i^{ij}, d_i^{ij}, Q_i^{ij}$, and Q_i^{ij} in the following way:

$$T_{j}^{l\tilde{o}ad} = f_{ij}^{l\tilde{o}ad}(T_{i}) = \max\{d_{j}^{ij}, T_{i}^{l\tilde{o}ad} + d_{j}\} \text{ feasible if } T_{j}^{l\tilde{o}ad} \le Q_{j}^{ij}$$
$$T_{i}^{l\tilde{o}ad} = b_{ij}^{l\tilde{o}ad}(T_{j}) = \min\{Q_{i}^{ij}, T_{j}^{l\tilde{o}ad} - d_{j}\} \text{ feasible if } T_{i}^{l\tilde{o}ad} \ge d_{i}^{ij}$$

Initialization:

$$[d_i^{ij},Q_i^{ij}]:=[d_i,Q-d_j] \qquad ext{and} \qquad [d_j^{ij},Q_j^{ij}]:=[d_i+d_j,Q].$$

Results are grouped according to computation times, where $\geq rt$ indicates that only instances with a computation time t_{AF} of at least rt are considered.

Results are grouped according to computation times, where $\geq rt$ indicates that only instances with a computation time t_{AF} of at least rt are considered.

Remarks:

- Arc fixing (AF) is by-product of (i, j)-specific resource-window reduction: If the window of an arc (i, j) ∈ A for some resource becomes an empty interval (LHS > RHS), the arc (i, j) is redundant (can be removed from the network).
- No explicit AF needed.

Performance profile:

In the VRPTW with simultaneous deliveries and pickups, each customer $i \in N$ has to be visited exactly once. The service consists of

- a delivery of a non-negative quantity d_i
- a pickup of a non-negative quantity u_i .

In the VRPTW with simultaneous deliveries and pickups, each customer $i \in N$ has to be visited exactly once. The service consists of

- a delivery of a non-negative quantity d_i
- a pickup of a non-negative quantity u_i .

For the resource pick, the resource windows can be initialized with the values

 $[q_i^{ij}, Q_i^{ij}] := [u_i, Q - u_j]$ and $[q_j^{ij}, Q_j^{ij}] := [u_i + u_j, Q]$

and for the resource *mI* with

 $[m_i^{ij}, M_i^{ij}] := [\max\{u_i, d_i\}, Q - d_j] \quad \text{and} \quad [m_j^{ij}, M_j^{ij}] := [\max\{d_i + d_j, u_i + d_j, u_i + u_j\}, Q].$

In the VRPTW with simultaneous deliveries and pickups, each customer $i \in N$ has to be visited exactly once. The service consists of

- a delivery of a non-negative quantity d_i
- a pickup of a non-negative quantity u_i .

For the resource pick, the resource windows can be initialized with the values

 $[q_i^{ij}, Q_i^{ij}] := [u_i, Q - u_j]$ and $[q_j^{ij}, Q_j^{ij}] := [u_i + u_j, Q]$

and for the resource *mI* with

 $[m_i^{ij}, M_i^{ij}] := [\max\{u_i, d_i\}, Q - d_j] \text{ and } [m_j^{ij}, M_j^{ij}] := [\max\{d_i + d_j, u_i + d_j, u_i + u_j\}, Q].$

The forward propagation of the resources pick and ml is performed with

$$\begin{split} T_j^{pick} &= f_{ij}^{pick}(T_i) = \max\{q_j^{ij}, T_i^{pick} + u_j \} & \text{feasible if } T_j^{pick} \leq Q_j^{ij} \\ T_j^{ml} &= f_{ij}^{ml}(T_i) = \max\{m_j^{ij}, T_i^{pick} + u_j, T_i^{ml} + d_j\} & \text{feasible if } T_j^{ml} \leq M_j^{ij}, \end{split}$$

while the backward propagation is performed with

$$\begin{split} T_i^{pick} &= b_{ij}^{pick}(T_j) = \min\{Q_i^{ij}, T_j^{pick} - u_j, T_j^{ml} - u_j\} & \text{feasible if} \quad T_i^{pick} \geq q_i^{ij} \\ T_i^{ml} &= b_{ij}^{ml}(T_j) = \min\{M_i^{ij}, T_j^{ml} - d_j\} & \text{feasible if} \quad T_i^{ml} \geq m_i^{ij}. \end{split}$$

The following <u>additional</u> computational settings are analyzed:

- AF/PI: AF and resource-window reduction for the pick;
- **AF/ML**: AF and resource-window reduction for *mI*;
- AF/All3: AF and resource-window reduction for pick, ml, and time;
 - PI: w/o AF, but with resource-window reduction for the pick;
 - ML: w/o AF, but with resource-window reduction for *mI*;
 - All3: w/o AF, but with resource-window reduction for *pick*, *ml*, and *time*;

We use the VRPSDPTW instances of Hof and Schneider (2019): 43 instances in testset (not solved in root node; 12 instances with unknown objective value *opt*).

		Computational Settings								
		AF	AF/PI	AF/ML	AF/TW	AF/All3	PI	ML	TW	All3
Geometric mean time ratios		1.00	0.95	1.00	0.98	1.00	1.74	1.67	1.67	1.54
#Opt		38	39	37	38	39	36	36	36	35
#Unsolved		5	4	6	5	4	7	7	7	8
arcs eliminated (%)	min.	46.50	46.76	46.50	46.50	46.63				
	avg.	87.89	88.01	87.96	87.80	87.78				
	max.	96.79	96.85	96.59	96.68	96.49				
pick-window reduction (%)	min.		0.03			0.02	0.02			0.02
	avg.		14.79			14.45	14.16			14.03
	max.		57.87			62.59	61.10			60.83
ml-window reduction (%)	min.			0.07		0.07		0.09		0.07
	avg.			16.70		16.29		15.84		15.94
	max.			66.48		66.83		65.03		66.52
time-window reduction (%)	min.				0.00	0.00			0.00	0.00
	avg.				10.72	10.80			10.49	9.89
	max.				32.51	32.65			29.63	29.37

Results are grouped according to computation times, where $\geq rt$ indicates that only instances with a computation time t_{AF} of at least rt are considered.

Results are grouped according to computation times, where $\geq rt$ indicates that only instances with a computation time t_{AF} of at least rt are considered.

Remarks:

- Arc fixing (AF) is by-product of (*i*, *j*)-specific resource-window reduction: If the window of an arc (*i*, *j*) ∈ A for some resource becomes an empty interval (LHS > RHS), the arc (*i*, *j*) is redundant (can be removed from the network).
- No explicit AF needed.

Findings:

 For resource-window reduction, forward and backward resource variables should provide lower and upper bounds, respectively.

Findings:

- For resource-window reduction, forward and backward resource variables should provide lower and upper bounds, respectively.
- Possible also for interdependent resource values (for simultaneous delivery and pickup, tour duration [=travel plus waiting time], etc.).

Findings:

- For resource-window reduction, forward and backward resource variables should provide lower and upper bounds, respectively.
- Possible also for interdependent resource values (for simultaneous delivery and pickup, tour duration [=travel plus waiting time], etc.).
- Arc-specific properties that simultaneously consider a given arc (i, j) and two resource windows at the endpoints i and j lead to more effective resource-window reduction procedures.
Thank you for listening!

Questions?!

References

- Baldacci, R., Mingozzi, A., and Roberti, R. (2011). New route relaxation and pricing strategies for the vehicle routing problem. *Operations Research*, 59(5), 1269–1283.
- Desaulniers, G., Lessard, F., and Hadjar, A. (2008). Tabu search, partial elementarity, and generalized *k*-path inequalities for the vehicle routing problem with time windows. *Transportation Science*, **42**(3), 387–404.
- Desaulniers, G., Gschwind, T., and Irnich, S. (2018). Variable fixing based on two arc sequences in branch-price-and-cut algorithms. Presentation at 7th International Workshop on Freight Transportation and Logistics, ODYSSEUS 2018.
- Desrochers, M., Desrosiers, J., and Solomon, M. (1992). A new optimization algorithm for the vehicle routing problem with time windows. *Operations Research*, **40**(2), 342–354.
- Hof, J. and Schneider, M. (2019). An adaptive large neighborhood search with path relinking for a class of vehicle-routing problems with simultaneous pickup and delivery. *Networks*, **74**(3), 207–250.
- Irnich, S., Desaulniers, G., Desrosiers, J., and Hadjar, A. (2010). Path-reduced costs for eliminating arcs in routing and scheduling. *INFORMS Journal on Computing*, 22(2), 297–313.
- Nemhauser, G. and Wolsey, L. (1988). Integer and Combinatorial Optimization. John Wiley & Sons, Inc.
- Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017). Improved branch-cut-and-price for capacitated vehicle routing. *Mathematical Programming Computation*, 9(1), 61–100.

- Tilk, C., Rothenbächer, A.-K., Gschwind, T., and Irnich, S. (2017). Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving shortest path problems with resource constraints faster. *European Journal of Operational Research*, **261**(2), 530–539.
- Villeneuve, D. and Desaulniers, G. (2005). The shortest path problem with forbidden paths. *European Journal of Operational Research*, **165**(1), 97–107.