
Resource-Window Reduction by Reduced
Costs in Path-based Formulations for

Routing and Scheduling Problems

Column Generation, Montréal, 2023

Nicola Bianchessi Timo Gschwind Stefan Irnich

irnich@uni-mainz.de

Chair for Logistics Management
Gutenberg School of Management and Economics

Stefan Irnich May 16–19, 2023 1 / 31

Overall Idea

Reduce resource windows (beyond preprocessing) with the help of
reduced costs.

Tighter upper bounds lead to less feasible labels

Tighter lower bounds lead to more labels that are comparable

Faster pricing accelerates overall BPC algorithm (major effect)

Some paths/columns of the RMP can be eliminated so that the
lower bound of the (minor effect)

Take away:

Direct resource-window reduction not helpful

Consider arc-specific resource windows

Stefan Irnich May 16–19, 2023 2 / 31

Overall Idea

Reduce resource windows (beyond preprocessing) with the help of
reduced costs.

Tighter upper bounds lead to less feasible labels

Tighter lower bounds lead to more labels that are comparable

Faster pricing accelerates overall BPC algorithm (major effect)

Some paths/columns of the RMP can be eliminated so that the
lower bound of the (minor effect)

Take away:

Direct resource-window reduction not helpful

Consider arc-specific resource windows

Stefan Irnich May 16–19, 2023 2 / 31

Overall Idea

Reduce resource windows (beyond preprocessing) with the help of
reduced costs.

Tighter upper bounds lead to less feasible labels

Tighter lower bounds lead to more labels that are comparable

Faster pricing accelerates overall BPC algorithm (major effect)

Some paths/columns of the RMP can be eliminated so that the
lower bound of the (minor effect)

Take away:

Direct resource-window reduction not helpful

Consider arc-specific resource windows

Stefan Irnich May 16–19, 2023 2 / 31

Overall Idea

Reduce resource windows (beyond preprocessing) with the help of
reduced costs.

Tighter upper bounds lead to less feasible labels

Tighter lower bounds lead to more labels that are comparable

Faster pricing accelerates overall BPC algorithm (major effect)

Some paths/columns of the RMP can be eliminated so that the
lower bound of the (minor effect)

Take away:

Direct resource-window reduction not helpful

Consider arc-specific resource windows

Stefan Irnich May 16–19, 2023 2 / 31

Overall Idea

Reduce resource windows (beyond preprocessing) with the help of
reduced costs.

Tighter upper bounds lead to less feasible labels

Tighter lower bounds lead to more labels that are comparable

Faster pricing accelerates overall BPC algorithm (major effect)

Some paths/columns of the RMP can be eliminated so that the
lower bound of the (minor effect)

Take away:

Direct resource-window reduction not helpful

Consider arc-specific resource windows

Stefan Irnich May 16–19, 2023 2 / 31

Overall Idea

Reduce resource windows (beyond preprocessing) with the help of
reduced costs.

Tighter upper bounds lead to less feasible labels

Tighter lower bounds lead to more labels that are comparable

Faster pricing accelerates overall BPC algorithm (major effect)

Some paths/columns of the RMP can be eliminated so that the
lower bound of the (minor effect)

Take away:

Direct resource-window reduction not helpful

Consider arc-specific resource windows

Stefan Irnich May 16–19, 2023 2 / 31

Reduced Cost-based Variable Elimination/Fixing

Proposition 1 (Nemhauser and Wolsey (1988), Proposition 2.1, page 389)

Let UB be an upper bound on the optimal value of the minimization
problem M, and let π be a dual solution to the linear relaxation of M
providing a lower bound LB(π).
If an integer variable x ≥ 0 has reduced cost c̃x(π) > UB − LB(π), then
x = 0 in every optimal solution to M, i.e., x can be eliminated.

No direct application in column generation:

Forbidding the re-generation of one or several variables changes the
structure of the pricing problem

Effort of solving modified pricing problems is often too high

Possible via network modification (Villeneuve and Desaulniers, 2005)

Stefan Irnich May 16–19, 2023 3 / 31

Reduced Cost-based Variable Elimination/Fixing

Proposition 1 (Nemhauser and Wolsey (1988), Proposition 2.1, page 389)

Let UB be an upper bound on the optimal value of the minimization
problem M, and let π be a dual solution to the linear relaxation of M
providing a lower bound LB(π).
If an integer variable x ≥ 0 has reduced cost c̃x(π) > UB − LB(π), then
x = 0 in every optimal solution to M, i.e., x can be eliminated.

No direct application in column generation:

Forbidding the re-generation of one or several variables changes the
structure of the pricing problem

Effort of solving modified pricing problems is often too high

Possible via network modification (Villeneuve and Desaulniers, 2005)

Stefan Irnich May 16–19, 2023 3 / 31

Notation

min
∑
p∈P

cpλp (1a)

s.t.
∑
p∈P

akpλp = 1 ∀k ∈ K [π] (1b)

λp ≥ 0 integer ∀p ∈ P (1c)

with

K : set of tasks to fulfill

P: set of all resource feasible paths, underlying network D = (V ,A)

MP: linear relaxation, i.e., λp ≥ 0, λp ∈ R

RMP: linear relaxation defined of subset P ′ ⊂ P

π: dual solution of MP/RMP

Stefan Irnich May 16–19, 2023 4 / 31

Reduced Cost-based Arc Fixing
Consider an arc (i , j) ∈ A and the set P[ij] of all paths that contain the
arc (i , j).

Proposition 2 (Irnich et al. (2010))

If the reduced cost c̃p(π) of all variables λp for p ∈ P[ij] fulfill
c̃p(π) ≥ UB − LB(π), then the arc (i , j) is not used in an optimal
solution and can be eliminated.

More general: Paths P[prop] is the subset of all P that fulfill a given
property prop.

c̃[prop](π) = min
p∈P[prop]

c̃p(π)

Two important properties are:

[ij]: For an arc (i , j) ∈ A, the path includes the arc (i , j) at least once;

[hij]: For two arcs (h, i), (i , j) ∈ A, the path includes the sequence (h, i , j)
at least once; (Desaulniers et al., 2018)

Stefan Irnich May 16–19, 2023 5 / 31

Reduced Cost-based Arc Fixing
Consider an arc (i , j) ∈ A and the set P[ij] of all paths that contain the
arc (i , j).

Proposition 2 (Irnich et al. (2010))

If the reduced cost c̃p(π) of all variables λp for p ∈ P[ij] fulfill
c̃p(π) ≥ UB − LB(π), then the arc (i , j) is not used in an optimal
solution and can be eliminated.

More general: Paths P[prop] is the subset of all P that fulfill a given
property prop.

c̃[prop](π) = min
p∈P[prop]

c̃p(π)

Two important properties are:

[ij]: For an arc (i , j) ∈ A, the path includes the arc (i , j) at least once;

[hij]: For two arcs (h, i), (i , j) ∈ A, the path includes the sequence (h, i , j)
at least once; (Desaulniers et al., 2018)

Stefan Irnich May 16–19, 2023 5 / 31

Reduced Cost-based Arc Fixing
Consider an arc (i , j) ∈ A and the set P[ij] of all paths that contain the
arc (i , j).

Proposition 2 (Irnich et al. (2010))

If the reduced cost c̃p(π) of all variables λp for p ∈ P[ij] fulfill
c̃p(π) ≥ UB − LB(π), then the arc (i , j) is not used in an optimal
solution and can be eliminated.

More general: Paths P[prop] is the subset of all P that fulfill a given
property prop.

c̃[prop](π) = min
p∈P[prop]

c̃p(π)

Two important properties are:

[ij]: For an arc (i , j) ∈ A, the path includes the arc (i , j) at least once;

[hij]: For two arcs (h, i), (i , j) ∈ A, the path includes the sequence (h, i , j)
at least once; (Desaulniers et al., 2018)

Stefan Irnich May 16–19, 2023 5 / 31

Reduced Cost-based Arc Fixing
Consider an arc (i , j) ∈ A and the set P[ij] of all paths that contain the
arc (i , j).

Proposition 2 (Irnich et al. (2010))

If the reduced cost c̃p(π) of all variables λp for p ∈ P[ij] fulfill
c̃p(π) ≥ UB − LB(π), then the arc (i , j) is not used in an optimal
solution and can be eliminated.

More general: Paths P[prop] is the subset of all P that fulfill a given
property prop.

c̃[prop](π) = min
p∈P[prop]

c̃p(π)

Two important properties are:

[ij]: For an arc (i , j) ∈ A, the path includes the arc (i , j) at least once;

[hij]: For two arcs (h, i), (i , j) ∈ A, the path includes the sequence (h, i , j)
at least once; (Desaulniers et al., 2018)

Stefan Irnich May 16–19, 2023 5 / 31

Reduced Cost-based Variable Elimination/Fixing

The values c̃[ij](π) can be effectively computed for all arcs (i , j) ∈ A with
the help of the forward REFs fij , backward REFs bij , and the merge
operator m (return value of m is the reduced cost):

Full forward and full backward labeling gives label sets (F i) and (Bi)

fij(F) = bij(B) =∞, if infeasible; m(·, ·) =∞, if infeasible

c̃[ij](π) = min
F∈F i ,
B∈Bj

m(fij(F),B) = min
F∈F i ,
B∈Bj

m(F , bij(B))

0 i

F ∈ F i

j

B ∈ Bj

0′
fw part. path → fw REF fij

bw REF bij ←
bw part. path

Stefan Irnich May 16–19, 2023 6 / 31

Reduced Cost-based Variable Elimination/Fixing

The values c̃[ij](π) can be effectively computed for all arcs (i , j) ∈ A with
the help of the forward REFs fij , backward REFs bij , and the merge
operator m (return value of m is the reduced cost):

Full forward and full backward labeling gives label sets (F i) and (Bi)

fij(F) = bij(B) =∞, if infeasible; m(·, ·) =∞, if infeasible

c̃[ij](π) = min
F∈F i ,
B∈Bj

m(fij(F),B) = min
F∈F i ,
B∈Bj

m(F , bij(B))

0 i

F ∈ F i

j

B ∈ Bj

0′
fw part. path → fw REF fij

bw REF bij ←
bw part. path

Stefan Irnich May 16–19, 2023 6 / 31

Reduced Cost-based Variable Elimination/Fixing

The values c̃[ij](π) can be effectively computed for all arcs (i , j) ∈ A with
the help of the forward REFs fij , backward REFs bij , and the merge
operator m (return value of m is the reduced cost):

Full forward and full backward labeling gives label sets (F i) and (Bi)

fij(F) = bij(B) =∞, if infeasible; m(·, ·) =∞, if infeasible

c̃[ij](π) = min
F∈F i ,
B∈Bj

m(fij(F),B) = min
F∈F i ,
B∈Bj

m(F , bij(B))

0 i

F ∈ F i

j

B ∈ Bj

0′
fw part. path → fw REF fij

bw REF bij ←
bw part. path

Stefan Irnich May 16–19, 2023 6 / 31

Reduced Cost-based Two-Arc Fixing

Two-arc fixing was suggested by Desaulniers et al. (2018):

c̃[hij](π) = min
F∈Fh,
B∈Bj

m(fhi (F), bij(B))

0 h

F ∈ Fh

i

fhi (F), bij(B)

j

B ∈ Bj

0′
fw path → fw REF fhi

bw REF bhi ←

→ fw REF fij

bw REF bij ←
bw path

Two-arc sequences cannot be eliminated from the network

Must be eliminated during label extension

Modified dominance comparison between labels required

Stefan Irnich May 16–19, 2023 7 / 31

Reduced Cost-based Two-Arc Fixing

Two-arc fixing was suggested by Desaulniers et al. (2018):

c̃[hij](π) = min
F∈Fh,
B∈Bj

m(fhi (F), bij(B))

0 h

F ∈ Fh

i

fhi (F), bij(B)

j

B ∈ Bj

0′
fw path → fw REF fhi

bw REF bhi ←

→ fw REF fij

bw REF bij ←
bw path

Two-arc sequences cannot be eliminated from the network

Must be eliminated during label extension

Modified dominance comparison between labels required

Stefan Irnich May 16–19, 2023 7 / 31

Time Windows

For time window VRPs (with TWs [ei , `i], travel times τij), the standard
forward and backward REFs propagate the time attribute T time in the
following way:

T time
j = ftime

ij (Ti) = max{ej ,T time
i + τij} feasible if T time

j ≤ `j
T time
i = btime

ij (Tj) = min{`i ,T time
j − τij} feasible if T time

i ≥ ei

Three properties of resource-feasible paths p ∈ P related to a
vertex i ∈ V and an arbitrary point in time t ∈ R:

[T time
i < t]: The path can service/visit vertex i before t; if i occurs

several times in path p, at least one of the services must
start strictly before time t;

[T time
i > t]: Likewise with a possible service start/visit at vertex i at a

time strictly after time t;

[T time
i = t]: Likewise with a service/visit at vertex i starting exactly at

time t;

Stefan Irnich May 16–19, 2023 8 / 31

Time Windows

For time window VRPs (with TWs [ei , `i], travel times τij), the standard
forward and backward REFs propagate the time attribute T time in the
following way:

T time
j = ftime

ij (Ti) = max{ej ,T time
i + τij} feasible if T time

j ≤ `j
T time
i = btime

ij (Tj) = min{`i ,T time
j − τij} feasible if T time

i ≥ ei

Three properties of resource-feasible paths p ∈ P related to a
vertex i ∈ V and an arbitrary point in time t ∈ R:

[T time
i < t]: The path can service/visit vertex i before t; if i occurs

several times in path p, at least one of the services must
start strictly before time t;

[T time
i > t]: Likewise with a possible service start/visit at vertex i at a

time strictly after time t;

[T time
i = t]: Likewise with a service/visit at vertex i starting exactly at

time t;

Stefan Irnich May 16–19, 2023 8 / 31

Time Windows

For time window VRPs (with TWs [ei , `i], travel times τij), the standard
forward and backward REFs propagate the time attribute T time in the
following way:

T time
j = ftime

ij (Ti) = max{ej ,T time
i + τij} feasible if T time

j ≤ `j
T time
i = btime

ij (Tj) = min{`i ,T time
j − τij} feasible if T time

i ≥ ei

Three properties of resource-feasible paths p ∈ P related to a
vertex i ∈ V and an arbitrary point in time t ∈ R:

[T time
i < t]: The path can service/visit vertex i before t; if i occurs

several times in path p, at least one of the services must
start strictly before time t;

[T time
i > t]: Likewise with a possible service start/visit at vertex i at a

time strictly after time t;

[T time
i = t]: Likewise with a service/visit at vertex i starting exactly at

time t;

Stefan Irnich May 16–19, 2023 8 / 31

Time Windows

For time window VRPs (with TWs [ei , `i], travel times τij), the standard
forward and backward REFs propagate the time attribute T time in the
following way:

T time
j = ftime

ij (Ti) = max{ej ,T time
i + τij} feasible if T time

j ≤ `j
T time
i = btime

ij (Tj) = min{`i ,T time
j − τij} feasible if T time

i ≥ ei

Three properties of resource-feasible paths p ∈ P related to a
vertex i ∈ V and an arbitrary point in time t ∈ R:

[T time
i < t]: The path can service/visit vertex i before t; if i occurs

several times in path p, at least one of the services must
start strictly before time t;

[T time
i > t]: Likewise with a possible service start/visit at vertex i at a

time strictly after time t;

[T time
i = t]: Likewise with a service/visit at vertex i starting exactly at

time t;

Stefan Irnich May 16–19, 2023 8 / 31

Time Windows

For time window VRPs (with TWs [ei , `i], travel times τij), the standard
forward and backward REFs propagate the time attribute T time in the
following way:

T time
j = ftime

ij (Ti) = max{ej ,T time
i + τij} feasible if T time

j ≤ `j
T time
i = btime

ij (Tj) = min{`i ,T time
j − τij} feasible if T time

i ≥ ei

Three properties of resource-feasible paths p ∈ P related to a
vertex i ∈ V and an arbitrary point in time t ∈ R:

[T time
i < t]: The path can service/visit vertex i before t; if i occurs

several times in path p, at least one of the services must
start strictly before time t;

[T time
i > t]: Likewise with a possible service start/visit at vertex i at a

time strictly after time t;

[T time
i = t]: Likewise with a service/visit at vertex i starting exactly at

time t;

Stefan Irnich May 16–19, 2023 8 / 31

Time Windows
Example: VRPTW; Consider paths and service times at vertex i = 4:

o

do = 0
[eo , `o] = [0, 7]

Q = 10

τij = 1 for all (i , j) ∈ A

2

3

[2, 3]

1

8

[1, 2]

3

1

[3, 4]

i = 4

1

[2, 5]

6

3

[4, 5]

5

1

[3, 4]

7

8

[5, 6]

o′

0

[0, 7]

c̃o1 = 1

2

1

0

1

0

−1

−1

0

0

1

1/2

Feasible Possible Reduced
path p ∈ P values T time

4 cost c̃p(π)

(o, 1, 4, 5, o′) [2, 3] 0
(o, 2, 4, 5, o′) [3, 3] 2
(o, 2, 4, 6, o′) [3, 4] 3
(o, 3, 4, 6, o′) [4, 4] 1
(o, 3, 4, 7, o′) [4, 5] 1.5

Infeasible Reason for
path infeasibility

(o, 1, 4, 6, o′) load
∑

di = 12
(o, 1, 4, 7, o′) load

∑
di = 17

(o, 2, 4, 7, o′) load
∑

di = 12
(o, 3, 4, 5, o′) time window at vertex 5

Stefan Irnich May 16–19, 2023 9 / 31

Time Windows
Example: VRPTW; Consider paths and service times at vertex i = 4:

o

do = 0
[eo , `o] = [0, 7]

Q = 10

τij = 1 for all (i , j) ∈ A

2

3

[2, 3]

1

8

[1, 2]

3

1

[3, 4]

i = 4

1

[2, 5]

6

3

[4, 5]

5

1

[3, 4]

7

8

[5, 6]

o′

0

[0, 7]

c̃o1 = 1

2

1

0

1

0

−1

−1

0

0

1

1/2

Feasible Possible Reduced
path p ∈ P values T time

4 cost c̃p(π)

(o, 1, 4, 5, o′) [2, 3] 0
(o, 2, 4, 5, o′) [3, 3] 2
(o, 2, 4, 6, o′) [3, 4] 3
(o, 3, 4, 6, o′) [4, 4] 1
(o, 3, 4, 7, o′) [4, 5] 1.5

Infeasible Reason for
path infeasibility

(o, 1, 4, 6, o′) load
∑

di = 12
(o, 1, 4, 7, o′) load

∑
di = 17

(o, 2, 4, 7, o′) load
∑

di = 12
(o, 3, 4, 5, o′) time window at vertex 5

Stefan Irnich May 16–19, 2023 9 / 31

Time Windows

The values c̃[T time
i < t](π), c̃[T time

i < t](π), and c̃[T time
i = t](π) can be

effectively computed for all vertices i ∈ V with the help of the forward
REFs fij , backward REFs bij , and the merge operator m (return value of
m is reduced cost):

c̃[T time
i < t](π) = min

F∈F i :F
time<t

B∈Bi

m(F ,B)

c̃[T time
i > t](π) = min

F∈F i ,

B∈Bi :B
time>t

m(F ,B)

c̃[T time
i = t](π) = min

F∈F i :F
time≤t

B∈Bi :B
time≥t

m(F ,B)

Stefan Irnich May 16–19, 2023 10 / 31

Time Windows

The values c̃[T time
i < t](π), c̃[T time

i < t](π), and c̃[T time
i = t](π) can be

effectively computed for all vertices i ∈ V with the help of the forward
REFs fij , backward REFs bij , and the merge operator m (return value of
m is reduced cost):

c̃[T time
i < t](π) = min

F∈F i :F
time<t

B∈Bi

m(F ,B)

c̃[T time
i > t](π) = min

F∈F i ,

B∈Bi :B
time>t

m(F ,B)

c̃[T time
i = t](π) = min

F∈F i :F
time≤t

B∈Bi :B
time≥t

m(F ,B)

Stefan Irnich May 16–19, 2023 10 / 31

Time Windows

1 2 3 4 5 6

1

2

3

4

∞

t

Feasible Possible Reduced
path p ∈ P values T time

4 cost c̃p(π)

(0, 1, 4, 5, 8) [2, 3] 0
(0, 2, 4, 5, 8) [3, 3] 2
(0, 2, 4, 6, 8) [3, 4] 3
(0, 3, 4, 6, 8) [4, 4] 1
(0, 3, 4, 7, 8) [4, 5] 1.5

Proposition 3

The lower bound functions have the following
properties in terms of t ∈ R:

(i) c̃[T time
i < t](π) is a non-increasing, piecewise

constant function; it is continuous from the left;

(ii) c̃[T time
i > t](π) is a non-decreasing, piecewise

constant function; it is continuous from the right;

(iii) c̃[T time
i = t](π) is a piecewise constant function;

it is not necessarily monotone;

(iv) c̃[T time
i = t](π) ≥

max{c̃[T time
i ≤ t](π), c̃[T time

i ≥ t](π)} holds
true; strictly > is possible.

Stefan Irnich May 16–19, 2023 11 / 31

Time Windows

1 2 3 4 5 6

1

2

3

4

∞

t

Feasible Possible Reduced
path p ∈ P values T time

4 cost c̃p(π)

(0, 1, 4, 5, 8) [2, 3] 0
(0, 2, 4, 5, 8) [3, 3] 2
(0, 2, 4, 6, 8) [3, 4] 3
(0, 3, 4, 6, 8) [4, 4] 1
(0, 3, 4, 7, 8) [4, 5] 1.5

Proposition 3

The lower bound functions have the following
properties in terms of t ∈ R:

(i) c̃[T time
i < t](π) is a non-increasing, piecewise

constant function; it is continuous from the left;

(ii) c̃[T time
i > t](π) is a non-decreasing, piecewise

constant function; it is continuous from the right;

(iii) c̃[T time
i = t](π) is a piecewise constant function;

it is not necessarily monotone;

(iv) c̃[T time
i = t](π) ≥

max{c̃[T time
i ≤ t](π), c̃[T time

i ≥ t](π)} holds
true; strictly > is possible.

Stefan Irnich May 16–19, 2023 11 / 31

Time Windows

1 2 3 4 5 6

1

2

3

4

∞

t

Feasible Possible Reduced
path p ∈ P values T time

4 cost c̃p(π)

(0, 1, 4, 5, 8) [2, 3] 0
(0, 2, 4, 5, 8) [3, 3] 2
(0, 2, 4, 6, 8) [3, 4] 3
(0, 3, 4, 6, 8) [4, 4] 1
(0, 3, 4, 7, 8) [4, 5] 1.5

Proposition 3

The lower bound functions have the following
properties in terms of t ∈ R:

(i) c̃[T time
i < t](π) is a non-increasing, piecewise

constant function; it is continuous from the left;

(ii) c̃[T time
i > t](π) is a non-decreasing, piecewise

constant function; it is continuous from the right;

(iii) c̃[T time
i = t](π) is a piecewise constant function;

it is not necessarily monotone;

(iv) c̃[T time
i = t](π) ≥

max{c̃[T time
i ≤ t](π), c̃[T time

i ≥ t](π)} holds
true; strictly > is possible.

Stefan Irnich May 16–19, 2023 11 / 31

Time Windows
For any property [prop],

c̃[prop](π) > UB − LB(π)

⇔ LB[prop](π) := LB(π) + c̃[prop](π) > UB.

Proposition 4

The following rules are valid for all t ∈ R:
(i) If LB[T time

i < t](π) > UB, the value ei can be updated to max{ei , t}.
(ii) If LB[T time

i > t](π) > UB, the value `i can be updated to min{t, `i}.

Remarks:

We do not use property [T time
i = t], because the time windows

would then be split into multiple smaller time windows per vertex.

For different dual prices π1, π2, . . . , πk , the lower bound functions
can be combined into

LB∗[prop] := max
s=1,...,k

{LB[prop](πs)}.

Stefan Irnich May 16–19, 2023 12 / 31

Time Windows
For any property [prop],

c̃[prop](π) > UB − LB(π)

⇔ LB[prop](π) := LB(π) + c̃[prop](π) > UB.

Proposition 4

The following rules are valid for all t ∈ R:
(i) If LB[T time

i < t](π) > UB, the value ei can be updated to max{ei , t}.
(ii) If LB[T time

i > t](π) > UB, the value `i can be updated to min{t, `i}.

Remarks:

We do not use property [T time
i = t], because the time windows

would then be split into multiple smaller time windows per vertex.

For different dual prices π1, π2, . . . , πk , the lower bound functions
can be combined into

LB∗[prop] := max
s=1,...,k

{LB[prop](πs)}.

Stefan Irnich May 16–19, 2023 12 / 31

Time Windows
For any property [prop],

c̃[prop](π) > UB − LB(π)

⇔ LB[prop](π) := LB(π) + c̃[prop](π) > UB.

Proposition 4

The following rules are valid for all t ∈ R:
(i) If LB[T time

i < t](π) > UB, the value ei can be updated to max{ei , t}.
(ii) If LB[T time

i > t](π) > UB, the value `i can be updated to min{t, `i}.

Remarks:

We do not use property [T time
i = t], because the time windows

would then be split into multiple smaller time windows per vertex.

For different dual prices π1, π2, . . . , πk , the lower bound functions
can be combined into

LB∗[prop] := max
s=1,...,k

{LB[prop](πs)}.

Stefan Irnich May 16–19, 2023 12 / 31

Load-Resource Windows

Standard REFs for capacity constraints start with an initial load of 0 for
the forward and backward labeling and propagate the load-attributes as
follows:

T load
j = floadij (Ti) = T load

i + dj feasible if T load
j ≤ Q

T load
i = bloadij (Tj) = T load

j + di feasible if T load
i ≤ Q

Problem: fw and bw values are not referring to the same resource
window.

Solution: In bw direction, consider the residual capacity and delay the
demand propagation:

T l õad
j = fl õad

ij (Ti) = max{dj ,T l õad
i + dj} feasible if T l õad

j ≤ Q̄ j

T l õad
i = bl õad

ij (Tj) = min{Qi ,T
l õad
j − dj} feasible if T l õad

i ≥ d̄ i

with initial value d̄ o = 0 at origin o, and value Q̄ o′ = Q at destination o′.

Stefan Irnich May 16–19, 2023 13 / 31

Load-Resource Windows

Standard REFs for capacity constraints start with an initial load of 0 for
the forward and backward labeling and propagate the load-attributes as
follows:

T load
j = floadij (Ti) = T load

i + dj feasible if T load
j ≤ Q

T load
i = bloadij (Tj) = T load

j + di feasible if T load
i ≤ Q

Problem: fw and bw values are not referring to the same resource
window.

Solution: In bw direction, consider the residual capacity and delay the
demand propagation:

T l õad
j = fl õad

ij (Ti) = max{dj ,T l õad
i + dj} feasible if T l õad

j ≤ Q̄ j

T l õad
i = bl õad

ij (Tj) = min{Qi ,T
l õad
j − dj} feasible if T l õad

i ≥ d̄ i

with initial value d̄ o = 0 at origin o, and value Q̄ o′ = Q at destination o′.

Stefan Irnich May 16–19, 2023 13 / 31

Load-Resource Windows

Standard REFs for capacity constraints start with an initial load of 0 for
the forward and backward labeling and propagate the load-attributes as
follows:

T load
j = floadij (Ti) = T load

i + dj feasible if T load
j ≤ Q

T load
i = bloadij (Tj) = T load

j + di feasible if T load
i ≤ Q

Problem: fw and bw values are not referring to the same resource
window.

Solution: In bw direction, consider the residual capacity and delay the
demand propagation:

T l õad
j = fl õad

ij (Ti) = max{dj ,T l õad
i + dj} feasible if T l õad

j ≤ Q̄ j

T l õad
i = bl õad

ij (Tj) = min{Qi ,T
l õad
j − dj} feasible if T l õad

i ≥ d̄ i

with initial value d̄ o = 0 at origin o, and value Q̄ o′ = Q at destination o′.

Stefan Irnich May 16–19, 2023 13 / 31

Results for VRPTW

Stefan Irnich May 16–19, 2023 14 / 31

Results for VRPTW
Instances: Solomon VRPTW benchmark with 25, 50 and 100 customers

86 instances solved in root node

R208.100 and R211.100 not solved within 2 hours

80 instance in experiments

BPC algorithm:
Standard components: preprocessing (Desrochers et al., 1992); ng -route
relaxation (Baldacci et al., 2011); bidirectional labeling with dynamic
HWP (Tilk et al., 2017); partial pricing with reduced networks
(Desaulniers et al., 2008); arc fixing (Irnich et al., 2010); limited-memory
subset-row inequalities (lm-SRIs, Pecin et al., 2017) for subsets S of rows
with |S | = 3; branching on #vehicle and arcs with best-first search

UB := opt + 1

time limit 7200 seconds (2 hours)

Computational setup:
C++ using the callable library of CPLEX 12.7.0 and compiled into 64-bit
single-thread release code with Microsoft Visual Studio 2017

64-bit Microsoft Windows 10 computer with an Intel® Core™ i7-6700K
clocked at 4.00 GHz and with 32 GB of RAM

Stefan Irnich May 16–19, 2023 15 / 31

Results for VRPTW
Instances: Solomon VRPTW benchmark with 25, 50 and 100 customers

86 instances solved in root node

R208.100 and R211.100 not solved within 2 hours

80 instance in experiments

BPC algorithm:
Standard components: preprocessing (Desrochers et al., 1992); ng -route
relaxation (Baldacci et al., 2011); bidirectional labeling with dynamic
HWP (Tilk et al., 2017); partial pricing with reduced networks
(Desaulniers et al., 2008); arc fixing (Irnich et al., 2010); limited-memory
subset-row inequalities (lm-SRIs, Pecin et al., 2017) for subsets S of rows
with |S | = 3; branching on #vehicle and arcs with best-first search

UB := opt + 1

time limit 7200 seconds (2 hours)

Computational setup:
C++ using the callable library of CPLEX 12.7.0 and compiled into 64-bit
single-thread release code with Microsoft Visual Studio 2017

64-bit Microsoft Windows 10 computer with an Intel® Core™ i7-6700K
clocked at 4.00 GHz and with 32 GB of RAM

Stefan Irnich May 16–19, 2023 15 / 31

Results for VRPTW
Instances: Solomon VRPTW benchmark with 25, 50 and 100 customers

86 instances solved in root node

R208.100 and R211.100 not solved within 2 hours

80 instance in experiments

BPC algorithm:
Standard components: preprocessing (Desrochers et al., 1992); ng -route
relaxation (Baldacci et al., 2011); bidirectional labeling with dynamic
HWP (Tilk et al., 2017); partial pricing with reduced networks
(Desaulniers et al., 2008); arc fixing (Irnich et al., 2010); limited-memory
subset-row inequalities (lm-SRIs, Pecin et al., 2017) for subsets S of rows
with |S | = 3; branching on #vehicle and arcs with best-first search

UB := opt + 1

time limit 7200 seconds (2 hours)

Computational setup:
C++ using the callable library of CPLEX 12.7.0 and compiled into 64-bit
single-thread release code with Microsoft Visual Studio 2017

64-bit Microsoft Windows 10 computer with an Intel® Core™ i7-6700K
clocked at 4.00 GHz and with 32 GB of RAM

Stefan Irnich May 16–19, 2023 15 / 31

Results for VRPTW

The following seven computational settings are analyzed:
AF: arc fixing (AF), no resource-window reduction;

this is the baseline setting;

AF/LD: AF and resource-window reduction for the l õad-attribute;

AF/TW: AF and time-window reduction, i.e., for the time-attribute;

AF/LD.TW: AF and resource-window reduction for l õad and time;

LD: w/o AF, but with resource-window reduction for the
l õad-attribute;

TW: w/o AF, but with time-window reduction, i.e., for the
time-attribute;

LD.TW: w/o AF, but with resource-window reduction for l õad and time

Stefan Irnich May 16–19, 2023 16 / 31

Results for VRPTW

Computational Settings

AF AF/LD AF/TW AF/LD.TW LD TW LD.TW

Geometric mean time ratios 1.00 1.02 1.04 1.05 2.33 2.33 2.11
#Opt 78 78 77 78 72 73 75
#Unsolved 2 2 3 2 8 7 5

arcs eliminated (%) min. 60.51 59.42 60.51 59.42
avg. 88.70 88.69 88.68 88.70
max. 96.67 96.43 96.49 96.43

l õad-window reduction (%) min. 2.00 2.00 2.00 2.00
avg. 12.80 12.91 13.10 13.06
max. 33.92 35.74 38.70 36.40

time-window reduction (%) min. 0.00 0.08 0.08 1.12
avg. 14.50 14.67 14.26 14.20
max. 30.25 32.04 31.80 32.57

Stefan Irnich May 16–19, 2023 17 / 31

Results for VRPTW

Computational Settings

AF AF/LD AF/TW AF/LD.TW LD TW LD.TW

Geometric mean time ratios 1.00 1.02 1.04 1.05 2.33 2.33 2.11
#Opt 78 78 77 78 72 73 75
#Unsolved 2 2 3 2 8 7 5

arcs eliminated (%) min. 60.51 59.42 60.51 59.42
avg. 88.70 88.69 88.68 88.70
max. 96.67 96.43 96.49 96.43

l õad-window reduction (%) min. 2.00 2.00 2.00 2.00
avg. 12.80 12.91 13.10 13.06
max. 33.92 35.74 38.70 36.40

time-window reduction (%) min. 0.00 0.08 0.08 1.12
avg. 14.50 14.67 14.26 14.20
max. 30.25 32.04 31.80 32.57

Stefan Irnich May 16–19, 2023 17 / 31

Results for VRPTW

Computational Settings

AF AF/LD AF/TW AF/LD.TW LD TW LD.TW

Geometric mean time ratios 1.00 1.02 1.04 1.05 2.33 2.33 2.11
#Opt 78 78 77 78 72 73 75
#Unsolved 2 2 3 2 8 7 5

arcs eliminated (%) min. 60.51 59.42 60.51 59.42
avg. 88.70 88.69 88.68 88.70
max. 96.67 96.43 96.49 96.43

l õad-window reduction (%) min. 2.00 2.00 2.00 2.00
avg. 12.80 12.91 13.10 13.06
max. 33.92 35.74 38.70 36.40

time-window reduction (%) min. 0.00 0.08 0.08 1.12
avg. 14.50 14.67 14.26 14.20
max. 30.25 32.04 31.80 32.57

Stefan Irnich May 16–19, 2023 17 / 31

Arc-Specific Resource Windows

Redefine the time-related parts of forward and backward REFs with the
four arc-specific attributes e iji , e

ij
j , `

ij
i , and `

ij
j in the following way:

T time
j = ftime

ij (Ti) = max{e ijj ,T
time
i + τij}

feasible if T time
j ≤ `ijj

T time
i = btime

ij (Tj) = min{`iji ,T
time
j − τij} feasible if T time

i ≥ e iji

0 i

F ∈ F i

[

e iji

,

`iji

]

j

B ∈ Bj

[e ijj ,

`ijj

]

0′
fw part. path → fw REF fij

bw REF bij ←
bw part. path

Stefan Irnich May 16–19, 2023 18 / 31

Arc-Specific Resource Windows

Redefine the time-related parts of forward and backward REFs with the
four arc-specific attributes e iji , e

ij
j , `

ij
i , and `

ij
j in the following way:

T time
j = ftime

ij (Ti) = max{e ijj ,T
time
i + τij} feasible if T time

j ≤ `ijj

T time
i = btime

ij (Tj) = min{`iji ,T
time
j − τij} feasible if T time

i ≥ e iji

0 i

F ∈ F i

[

e iji

,

`iji

]

j

B ∈ Bj

[e ijj , `
ij
j]

0′
fw part. path → fw REF fij

bw REF bij ←
bw part. path

Stefan Irnich May 16–19, 2023 18 / 31

Arc-Specific Resource Windows

Redefine the time-related parts of forward and backward REFs with the
four arc-specific attributes e iji , e

ij
j , `

ij
i , and `

ij
j in the following way:

T time
j = ftime

ij (Ti) = max{e ijj ,T
time
i + τij} feasible if T time

j ≤ `ijj
T time
i = btime

ij (Tj) = min{`iji ,T
time
j − τij}

feasible if T time
i ≥ e iji

0 i

F ∈ F i

[

e iji

, `iji]

j

B ∈ Bj

[e ijj , `
ij
j]

0′
fw part. path → fw REF fij

bw REF bij ←
bw part. path

Stefan Irnich May 16–19, 2023 18 / 31

Arc-Specific Resource Windows

Redefine the time-related parts of forward and backward REFs with the
four arc-specific attributes e iji , e

ij
j , `

ij
i , and `

ij
j in the following way:

T time
j = ftime

ij (Ti) = max{e ijj ,T
time
i + τij} feasible if T time

j ≤ `ijj
T time
i = btime

ij (Tj) = min{`iji ,T
time
j − τij} feasible if T time

i ≥ e iji

0 i

F ∈ F i

[e iji , `
ij
i]

j

B ∈ Bj

[e ijj , `
ij
j]

0′
fw part. path → fw REF fij

bw REF bij ←
bw part. path

Stefan Irnich May 16–19, 2023 18 / 31

Arc-Specific Resource Windows
New properties:

[T time
i < t, ij]: All paths that include arc (i , j) and allow a start of

service at vertex i before time t followed by the traversal
of arc (i , j);

[ij ,T time
j < t]: All paths that include arc (i , j) and allow a start of

service at vertex j before time t after the traversal of
arc (i , j).

Likewise for > t.

c̃[T time
i < t, ij](π) = min

F∈F i :F
time<t

B∈Bj

m(F , bij(B))

c̃[T time
i > t, ij](π) = min

F∈F i ,

B∈Bj :b
time
ij (B)>t

m(F , bij(B))

c̃[ij ,T time
j < t](π) = min

F∈F i :f
time
ij (F)<t

B∈Bj

m(fij(F),B)

c̃[ij ,T time
j > t](π) = min

F∈F i ,

B∈Bj :B
time>t

m(fij(F),B)

Stefan Irnich May 16–19, 2023 19 / 31

Arc-Specific Resource Windows
New properties:

[T time
i < t, ij]: All paths that include arc (i , j) and allow a start of

service at vertex i before time t followed by the traversal
of arc (i , j);

[ij ,T time
j < t]: All paths that include arc (i , j) and allow a start of

service at vertex j before time t after the traversal of
arc (i , j).

Likewise for > t.

c̃[T time
i < t, ij](π) = min

F∈F i :F
time<t

B∈Bj

m(F , bij(B))

c̃[T time
i > t, ij](π) = min

F∈F i ,

B∈Bj :b
time
ij (B)>t

m(F , bij(B))

c̃[ij ,T time
j < t](π) = min

F∈F i :f
time
ij (F)<t

B∈Bj

m(fij(F),B)

c̃[ij ,T time
j > t](π) = min

F∈F i ,

B∈Bj :B
time>t

m(fij(F),B)

Stefan Irnich May 16–19, 2023 19 / 31

Arc-Specific Resource Windows
New properties:

[T time
i < t, ij]: All paths that include arc (i , j) and allow a start of

service at vertex i before time t followed by the traversal
of arc (i , j);

[ij ,T time
j < t]: All paths that include arc (i , j) and allow a start of

service at vertex j before time t after the traversal of
arc (i , j).

Likewise for > t.

c̃[T time
i < t, ij](π) = min

F∈F i :F
time<t

B∈Bj

m(F , bij(B))

c̃[T time
i > t, ij](π) = min

F∈F i ,

B∈Bj :b
time
ij (B)>t

m(F , bij(B))

c̃[ij ,T time
j < t](π) = min

F∈F i :f
time
ij (F)<t

B∈Bj

m(fij(F),B)

c̃[ij ,T time
j > t](π) = min

F∈F i ,

B∈Bj :B
time>t

m(fij(F),B)

Stefan Irnich May 16–19, 2023 19 / 31

Arc-Specific Resource Windows

Proposition 5

The following four rules are valid for all t ∈ R:

(i) If LB[T time
i < t, ij](π) > UB, the value e iji can be updated to

max{e iji , t}.

(ii) If LB[T time
i > t, ij](π) > UB, the value `iji can be updated to

min{t, `iji }.

(iii) If LB[ij ,T time
j < t](π) > UB, the value e ijj can be updated to

max{e ijj , t}.

(iv) If LB[ij ,T time
j > t](π) > UB, the value `ijj can be updated to

min{t, `ijj }.

Stefan Irnich May 16–19, 2023 20 / 31

Arc-Specific Resource Windows

Algorithm 1: Reduction Procedure for Arc-specific TWs
Input: Label sets F i and Bi for all i ∈ V , upper bound UB, and arc-specific

TWs [e iji , `
ij
i] and [e ijj , `

ij
j] for all (i , j) ∈ A

1 for (i , j) ∈ A do

2 ei = ej ←∞, `i = `j ← −∞;

3 for F ∈ F i do

4 for B ∈ Bj do

5 if m(fij(F),B) ≤ UB then

6 ei ← min{F time , ei}, ej ← min{ftime
ij (F), ej};

7 `i ← max{btime
ij (B), `i}, `j ← max{B time , `j};

8 e iji ← max{e iji , ei}, e
ij
j ← max{e ijj , ej};

9 `iji ← min{`iji , `i}, `
ij
j ← min{`ijj , `j};

Output: Updated arc-specific TWs [e iji , `
ij
i] and [e ijj , `

ij
j] for all (i , j) ∈ A

Stefan Irnich May 16–19, 2023 21 / 31

Arc-Specific Resource Windows
Redefine the load-related parts of forward and backward REFs with the
four arc-specific attributes d ij

i , d
ij
j ,Q

ij
i , and Q ij

j in the following way:

T l õad
j = fl õad

ij (Ti) = max{d ij
j ,T

l õad
i + dj}

feasible if T l õad
j ≤ Q ij

j

T l õad
i = bl õad

ij (Tj) = min{Q ij
i ,T

l õad
j − dj} feasible if T l õad

i ≥ d ij
i

0 i

F ∈ F i

[

d ij
i

,

Q ij
i

]

j

B ∈ Bj

[d ij
j ,

Q ij
j

]

0′
fw part. path → fw REF fij

bw REF bij ←
bw part. path

Initialization:

[d ij
i ,Q

ij
i] := [di ,Q − dj] and [d ij

j ,Q
ij
j] := [di + dj ,Q].

Stefan Irnich May 16–19, 2023 22 / 31

Arc-Specific Resource Windows
Redefine the load-related parts of forward and backward REFs with the
four arc-specific attributes d ij

i , d
ij
j ,Q

ij
i , and Q ij

j in the following way:

T l õad
j = fl õad

ij (Ti) = max{d ij
j ,T

l õad
i + dj} feasible if T l õad

j ≤ Q ij
j

T l õad
i = bl õad

ij (Tj) = min{Q ij
i ,T

l õad
j − dj} feasible if T l õad

i ≥ d ij
i

0 i

F ∈ F i

[

d ij
i

,

Q ij
i

]

j

B ∈ Bj

[d ij
j ,Q

ij
j]

0′
fw part. path → fw REF fij

bw REF bij ←
bw part. path

Initialization:

[d ij
i ,Q

ij
i] := [di ,Q − dj] and [d ij

j ,Q
ij
j] := [di + dj ,Q].

Stefan Irnich May 16–19, 2023 22 / 31

Arc-Specific Resource Windows
Redefine the load-related parts of forward and backward REFs with the
four arc-specific attributes d ij

i , d
ij
j ,Q

ij
i , and Q ij

j in the following way:

T l õad
j = fl õad

ij (Ti) = max{d ij
j ,T

l õad
i + dj} feasible if T l õad

j ≤ Q ij
j

T l õad
i = bl õad

ij (Tj) = min{Q ij
i ,T

l õad
j − dj}

feasible if T l õad
i ≥ d ij

i

0 i

F ∈ F i

[

d ij
i

,Q ij
i]

j

B ∈ Bj

[d ij
j ,Q

ij
j]

0′
fw part. path → fw REF fij

bw REF bij ←
bw part. path

Initialization:

[d ij
i ,Q

ij
i] := [di ,Q − dj] and [d ij

j ,Q
ij
j] := [di + dj ,Q].

Stefan Irnich May 16–19, 2023 22 / 31

Arc-Specific Resource Windows
Redefine the load-related parts of forward and backward REFs with the
four arc-specific attributes d ij

i , d
ij
j ,Q

ij
i , and Q ij

j in the following way:

T l õad
j = fl õad

ij (Ti) = max{d ij
j ,T

l õad
i + dj} feasible if T l õad

j ≤ Q ij
j

T l õad
i = bl õad

ij (Tj) = min{Q ij
i ,T

l õad
j − dj} feasible if T l õad

i ≥ d ij
i

0 i

F ∈ F i

[d ij
i ,Q

ij
i]

j

B ∈ Bj

[d ij
j ,Q

ij
j]

0′
fw part. path → fw REF fij

bw REF bij ←
bw part. path

Initialization:

[d ij
i ,Q

ij
i] := [di ,Q − dj] and [d ij

j ,Q
ij
j] := [di + dj ,Q].

Stefan Irnich May 16–19, 2023 22 / 31

Arc-Specific Resource Windows
Redefine the load-related parts of forward and backward REFs with the
four arc-specific attributes d ij

i , d
ij
j ,Q

ij
i , and Q ij

j in the following way:

T l õad
j = fl õad

ij (Ti) = max{d ij
j ,T

l õad
i + dj} feasible if T l õad

j ≤ Q ij
j

T l õad
i = bl õad

ij (Tj) = min{Q ij
i ,T

l õad
j − dj} feasible if T l õad

i ≥ d ij
i

0 i

F ∈ F i

[d ij
i ,Q

ij
i]

j

B ∈ Bj

[d ij
j ,Q

ij
j]

0′
fw part. path → fw REF fij

bw REF bij ←
bw part. path

Initialization:

[d ij
i ,Q

ij
i] := [di ,Q − dj] and [d ij

j ,Q
ij
j] := [di + dj ,Q].

Stefan Irnich May 16–19, 2023 22 / 31

Arc-Specific Resource Windows
Results are grouped according to computation times, where ≥ rt
indicates that only instances with a computation time tAF of at least rt
are considered.

Remarks:

Arc fixing (AF) is by-product of (i , j)-specific resource-window
reduction: If the window of an arc (i , j) ∈ A for some resource
becomes an empty interval (LHS > RHS), the arc (i , j) is
redundant (can be removed from the network).

No explicit AF needed.
Stefan Irnich May 16–19, 2023 23 / 31

Arc-Specific Resource Windows
Results are grouped according to computation times, where ≥ rt
indicates that only instances with a computation time tAF of at least rt
are considered.

Remarks:

Arc fixing (AF) is by-product of (i , j)-specific resource-window
reduction: If the window of an arc (i , j) ∈ A for some resource
becomes an empty interval (LHS > RHS), the arc (i , j) is
redundant (can be removed from the network).

No explicit AF needed.
Stefan Irnich May 16–19, 2023 23 / 31

Arc-Specific Resource Windows

Performance profile:

Stefan Irnich May 16–19, 2023 24 / 31

Results for VRPTW and Simultaneous D&P
In the VRPTW with simultaneous deliveries and pickups, each customer i ∈ N
has to be visited exactly once. The service consists of

a delivery of a non-negative quantity di

a pickup of a non-negative quantity ui .

For the resource pick, the resource windows can be initialized with the values

[qij
i ,Q

ij
i] := [ui ,Q − uj] and [qij

j ,Q
ij
j] := [ui + uj ,Q]

and for the resource ml with

[mij
i ,M

ij
i] := [max{ui , di},Q−dj] and [mij

j ,M
ij
j] := [max{di+dj , ui+dj , ui+uj},Q].

The forward propagation of the resources pick and ml is performed with

T pick
j = fpickij (Ti) = max{qij

j ,T
pick
i + uj } feasible if T pick

j ≤ Q ij
j

Tml
j = fml

ij (Ti) = max{mij
j ,T

pick
i + uj ,T

ml
i + dj} feasible if Tml

j ≤ M ij
j ,

while the backward propagation is performed with

T pick
i = bpick

ij (Tj) = min{Q ij
i ,T

pick
j − uj ,T

ml
j − uj} feasible if T pick

i ≥ qij
i

Tml
i = bml

ij (Tj) = min{M ij
i , Tml

j − dj} feasible if Tml
i ≥ mij

i .

Stefan Irnich May 16–19, 2023 25 / 31

Results for VRPTW and Simultaneous D&P
In the VRPTW with simultaneous deliveries and pickups, each customer i ∈ N
has to be visited exactly once. The service consists of

a delivery of a non-negative quantity di

a pickup of a non-negative quantity ui .

For the resource pick, the resource windows can be initialized with the values

[qij
i ,Q

ij
i] := [ui ,Q − uj] and [qij

j ,Q
ij
j] := [ui + uj ,Q]

and for the resource ml with

[mij
i ,M

ij
i] := [max{ui , di},Q−dj] and [mij

j ,M
ij
j] := [max{di+dj , ui+dj , ui+uj},Q].

The forward propagation of the resources pick and ml is performed with

T pick
j = fpickij (Ti) = max{qij

j ,T
pick
i + uj } feasible if T pick

j ≤ Q ij
j

Tml
j = fml

ij (Ti) = max{mij
j ,T

pick
i + uj ,T

ml
i + dj} feasible if Tml

j ≤ M ij
j ,

while the backward propagation is performed with

T pick
i = bpick

ij (Tj) = min{Q ij
i ,T

pick
j − uj ,T

ml
j − uj} feasible if T pick

i ≥ qij
i

Tml
i = bml

ij (Tj) = min{M ij
i , Tml

j − dj} feasible if Tml
i ≥ mij

i .

Stefan Irnich May 16–19, 2023 25 / 31

Results for VRPTW and Simultaneous D&P
In the VRPTW with simultaneous deliveries and pickups, each customer i ∈ N
has to be visited exactly once. The service consists of

a delivery of a non-negative quantity di

a pickup of a non-negative quantity ui .

For the resource pick, the resource windows can be initialized with the values

[qij
i ,Q

ij
i] := [ui ,Q − uj] and [qij

j ,Q
ij
j] := [ui + uj ,Q]

and for the resource ml with

[mij
i ,M

ij
i] := [max{ui , di},Q−dj] and [mij

j ,M
ij
j] := [max{di+dj , ui+dj , ui+uj},Q].

The forward propagation of the resources pick and ml is performed with

T pick
j = fpickij (Ti) = max{qij

j ,T
pick
i + uj } feasible if T pick

j ≤ Q ij
j

Tml
j = fml

ij (Ti) = max{mij
j ,T

pick
i + uj ,T

ml
i + dj} feasible if Tml

j ≤ M ij
j ,

while the backward propagation is performed with

T pick
i = bpick

ij (Tj) = min{Q ij
i ,T

pick
j − uj ,T

ml
j − uj} feasible if T pick

i ≥ qij
i

Tml
i = bml

ij (Tj) = min{M ij
i , Tml

j − dj} feasible if Tml
i ≥ mij

i .

Stefan Irnich May 16–19, 2023 25 / 31

Results for VRPTW and Simultaneous D&P

The following additional computational settings are analyzed:
AF/PI: AF and resource-window reduction for the pick;

AF/ML: AF and resource-window reduction for ml ;

AF/All3: AF and resource-window reduction for pick, ml , and time;

PI: w/o AF, but with resource-window reduction for the pick;

ML: w/o AF, but with resource-window reduction for ml ;

All3: w/o AF, but with resource-window reduction for pick, ml , and
time;

We use the VRPSDPTW instances of Hof and Schneider (2019):
43 instances in testset (not solved in root node; 12 instances with
unknown objective value opt).

Stefan Irnich May 16–19, 2023 26 / 31

Results for VRPTW and Simultaneous D&P

Computational Settings

AF AF/PI AF/ML AF/TW AF/All3 PI ML TW All3

Geometric mean time ratios 1.00 0.95 1.00 0.98 1.00 1.74 1.67 1.67 1.54
#Opt 38 39 37 38 39 36 36 36 35
#Unsolved 5 4 6 5 4 7 7 7 8

arcs eliminated (%) min. 46.50 46.76 46.50 46.50 46.63
avg. 87.89 88.01 87.96 87.80 87.78
max. 96.79 96.85 96.59 96.68 96.49

pick-window reduction (%) min. 0.03 0.02 0.02 0.02
avg. 14.79 14.45 14.16 14.03
max. 57.87 62.59 61.10 60.83

ml-window reduction (%) min. 0.07 0.07 0.09 0.07
avg. 16.70 16.29 15.84 15.94
max. 66.48 66.83 65.03 66.52

time-window reduction (%) min. 0.00 0.00 0.00 0.00
avg. 10.72 10.80 10.49 9.89
max. 32.51 32.65 29.63 29.37

Stefan Irnich May 16–19, 2023 27 / 31

Arc-Specific Resource Windows
Results are grouped according to computation times, where ≥ rt
indicates that only instances with a computation time tAF of at least rt
are considered.

Remarks:

Arc fixing (AF) is by-product of (i , j)-specific resource-window
reduction: If the window of an arc (i , j) ∈ A for some resource
becomes an empty interval (LHS > RHS), the arc (i , j) is
redundant (can be removed from the network).

No explicit AF needed.
Stefan Irnich May 16–19, 2023 28 / 31

Arc-Specific Resource Windows
Results are grouped according to computation times, where ≥ rt
indicates that only instances with a computation time tAF of at least rt
are considered.

Remarks:

Arc fixing (AF) is by-product of (i , j)-specific resource-window
reduction: If the window of an arc (i , j) ∈ A for some resource
becomes an empty interval (LHS > RHS), the arc (i , j) is
redundant (can be removed from the network).

No explicit AF needed.
Stefan Irnich May 16–19, 2023 28 / 31

Conclusions

Findings:

For resource-window reduction, forward and backward resource
variables should provide lower and upper bounds, respectively.

Possible also for interdependent resource values (for simultaneous
delivery and pickup, tour duration [=travel plus waiting time], etc.).

Arc-specific properties that simultaneously consider a given arc (i , j)
and two resource windows at the endpoints i and j lead to more
effective resource-window reduction procedures.

Stefan Irnich May 16–19, 2023 29 / 31

Conclusions

Findings:

For resource-window reduction, forward and backward resource
variables should provide lower and upper bounds, respectively.

Possible also for interdependent resource values (for simultaneous
delivery and pickup, tour duration [=travel plus waiting time], etc.).

Arc-specific properties that simultaneously consider a given arc (i , j)
and two resource windows at the endpoints i and j lead to more
effective resource-window reduction procedures.

Stefan Irnich May 16–19, 2023 29 / 31

Conclusions

Findings:

For resource-window reduction, forward and backward resource
variables should provide lower and upper bounds, respectively.

Possible also for interdependent resource values (for simultaneous
delivery and pickup, tour duration [=travel plus waiting time], etc.).

Arc-specific properties that simultaneously consider a given arc (i , j)
and two resource windows at the endpoints i and j lead to more
effective resource-window reduction procedures.

Stefan Irnich May 16–19, 2023 29 / 31

x

Thank you for listening!

Questions?!

Stefan Irnich May 16–19, 2023 30 / 31

References
Baldacci, R., Mingozzi, A., and Roberti, R. (2011). New route relaxation and pricing

strategies for the vehicle routing problem. Operations Research, 59(5), 1269–1283.
Desaulniers, G., Lessard, F., and Hadjar, A. (2008). Tabu search, partial elementarity,

and generalized k-path inequalities for the vehicle routing problem with time
windows. Transportation Science, 42(3), 387–404.

Desaulniers, G., Gschwind, T., and Irnich, S. (2018). Variable fixing based on two arc
sequences in branch-price-and-cut algorithms. Presentation at 7th International
Workshop on Freight Transportation and Logistics, ODYSSEUS 2018.

Desrochers, M., Desrosiers, J., and Solomon, M. (1992). A new optimization
algorithm for the vehicle routing problem with time windows. Operations Research,
40(2), 342–354.

Hof, J. and Schneider, M. (2019). An adaptive large neighborhood search with path
relinking for a class of vehicle-routing problems with simultaneous pickup and
delivery. Networks, 74(3), 207–250.

Irnich, S., Desaulniers, G., Desrosiers, J., and Hadjar, A. (2010). Path-reduced costs
for eliminating arcs in routing and scheduling. INFORMS Journal on Computing,
22(2), 297–313.

Nemhauser, G. and Wolsey, L. (1988). Integer and Combinatorial Optimization. John
Wiley & Sons, Inc.

Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017). Improved
branch-cut-and-price for capacitated vehicle routing. Mathematical Programming
Computation, 9(1), 61–100.

Stefan Irnich May 16–19, 2023 31 / 31

References

Tilk, C., Rothenbächer, A.-K., Gschwind, T., and Irnich, S. (2017). Asymmetry
matters: Dynamic half-way points in bidirectional labeling for solving shortest path
problems with resource constraints faster. European Journal of Operational
Research, 261(2), 530–539.

Villeneuve, D. and Desaulniers, G. (2005). The shortest path problem with forbidden
paths. European Journal of Operational Research, 165(1), 97–107.

Stefan Irnich May 16–19, 2023 32 / 31

	References

