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Order Picking

Person-to-goods order picking:
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Overall Idea

SPRP: Single Picker Routing Problem

Dynamic program of Ratli� and Rosenthal (1983)

SPRP-SS: Single Picker Routing Problem with Scattered Storage

Extend the state space of the dynamic program of Ratli� and
Rosenthal (1983)
Add additional variables and constraints for aspects not
covered by the extended state space
Solve resulting formulation via MIP solver

JOBPRP-SS: Joint Order Batching and Picker Routing Problem
with Scattered Storage

Solution of JOBPRP by branch-price-and-cut algorithm,
column generation/pricing via MIP solver
Pricing problem is Pro�table Single Picker Routing Problem
with Scattered Storage (PSPRP-SS)
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Single Picker Routing Problem

Given: Set P of picking positions in the warehouse
Task: Find a minimum length picking tour that starts and ends at the
given I/O point 0 and traverses all positions P (at least once)

Can be modeled and solved as a TSP! But there is more structure in it. . .

Example: Standard one-block warehouse
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aisle traversal

E aisle = {1pass, 2pass, top,
bottom, gap, void},

cross-aisle traversal

E cross = {00, 11, 20, 02, 22}
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Dynamic Program of Ratli� and Rosenthal (1983)
Let J = {1, 2, . . . ,m} denotes the aisles set.

Idea of the DP:

The DP uses partial tour subgraphs (PTSs) with vertices aj and bj
located at the top and bottom of each aisle j ∈ J, respectively.

The PTSs comprise those parts of the picking tour that belong to
the aisles 1 to j , either before the traversal of aisle j is included
(stage j−) or after its inclusion (stage j+).
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Dynamic Program of Ratli� and Rosenthal (1983)
Ratli� and Rosenthal (1983) have shown that only seven states are
possible for optimal picking tours, namely

S = {UU1c, 0E1c, E01c, EE1c, EE2c, 000c, 001c}

with

0=disconnected, U=odd (=uneven), and E=even degree
of aj and bj , resp.;

0c=empty graph, 1c and 2c=one (two) connected component(s).
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Dynamic Program of Ratli� and Rosenthal (1983)

State Space:
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Sequence of states: (o = 001c, UU1c, UU1c, EE1c, EE1c, 001c = d)

Sequence of transitions: (1pass, 11, 1pass, 22, top, 00)
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Scattered Storage

When one or several articles are pickable from more than one picking
position, the warehouse is operated as a scattered storage warehouse
a.k.a. mixed shelves warehouse (Weidinger and Boysen, 2018).

Scattered storage is predominant in modern e-commerce warehouses of
companies like Amazon or Zalando (Weidinger, 2018; Boysen et al., 2019;
Weidinger et al., 2019).

Main advantage: �items of demanded articles are found close by
irrespective of the position within the warehouse [so that] distance [. . . ]
for order picking is reduced� (Weidinger, 2018, p. 140).

Theoretical and computational results:

NP-hard (Weidinger, 2018, Theorem 1)

Unit-demand case can be modeled and solved as a generalized TSP
(GTSP)

All exact approaches are MIP-based (model solved with MIP solver)
(Weidinger, 2018; Weidinger et al., 2019; Goeke and Schneider, 2021)

Best performing approaches by Goeke and Schneider (2021) (GS-Model)
and Heÿler and Irnich (2023) (NF-Model)
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Scattered Storage
Di�erent stock keeping units (=articles): S = {1, 2, 3, 4}
Two tasks:

1 Select picking position(s) for each s ∈ S

2 Find minimal length picker route

1

2

2

3

1

3

2

1

4

10

9

8

7

6

5

4

3

2

i = 1

j = 1 2 3

Not directly solvable with dynamic
programming! But. . .

1 Reuse and extend state space

2 Formulate an IP model:
→Shortest path with additional
covering conditions

Aisle Type of additional Transitions

j = 1 top(i) Cell i = 9
bottom(i) Cell i = 4
void

j = 2 top(i) Cells i ∈ {4, 8}
bottom(i) Cells i ∈ {2, 4, 8}
gap(i , k) Cells (i , k) ∈ {(2, 8), (2, 9), (4, 9)}

j = 3 bottom(i) Cell i ∈ {1, 7}
gap(i , k) Cells (i , k) = (1, 9)
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New Network-Flow Formulation
Notation:

Extended state space (V ,E)

Cost ce of a transition e ∈ E is length of the associated part of the tour

Demand ds for all stock keeping units (SKUs) s ∈ S

Supply bse , i.e., quantity of SKU s that can be picked with transition e ∈ E

IP formulation (network �ow, NF-Model):

min
∑
e∈E

cexe (1a)

subject to
∑

e∈δ+(σ)

xe −
∑

e∈δ−(σ)

xe =


+1, if σ = o

−1, if σ = d

0, otherwise
∀σ ∈ V (1b)

∑
e∈E

bsexe ≥ ds ∀s ∈ S (1c)

xe ∈ {0, 1} ∀e ∈ E (1d)

(1a), (1b), and (1d): Shortest path problem
where (1b) can be rewritten as N x = uo − ud

(1c): Additional covering constraints
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Pro�table Single Picker Routing Problem with SS
Given: Set O of orders with:

Subset So ⊂ S of SKUs requested in an order o ∈ O

Pro�t πo > 0

Weight wo > 0 (in kg, liter, or the number of compartments)

Picker capacity Q

Task: Select a capacity-feasible subset of the orders and �nd a picking
tour that collects the requested SKUs of these orders to minimize the
length of the picker tour minus the collected pro�t.
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Pro�table Single Picker Routing Problem with SS
Additional Variables:

zo ∈ {0, 1} selection of order o ∈ O

ys ∈ {0, 1} indicator whether SKU s ∈ S must be collected

c(π) = min
∑
e∈E

cexe −
∑
o∈O

πozo (2a)

subject to Nx = uo − ud (2b)∑
e∈Es

xe ≥ ys ∀s ∈ S (2c)

ys ≥ zo ∀o ∈ O,∀s ∈ So (2d)∑
o∈O

wozo ≤ Q (2e)

xe ∈ {0, 1} ∀e ∈ E (2f)

ys ∈ {0, 1} ∀s ∈ S (2g)

zo ∈ {0, 1} ∀o ∈ O (2h)
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Joint Order Batching and Picker Routing Problem with SS
Given: Set O of orders with:

Subset So ⊂ S of SKUs requested in an order o ∈ O

Weight wo > 0 (in kg, liter, or the number of compartments)

Picker capacity Q

Task: Group/partition the orders into capacity-feasible batches and �nd
for each batch a picking tour that collects the requested SKUs of the
respective batch so that the total length of all picker tours is minimized.

Tour 1:Tour 2:
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for each batch a picking tour that collects the requested SKUs of the
respective batch so that the total length of all picker tours is minimized.
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Joint Order Batching and Picker Routing Problem (with SS)

JOBPRP (without SS)

Two-level problem

Can be modeled and solved as Soft-Clustered VRP

Recent BPC approach of Wahlen and Gschwind (2023) is
state-of-the-art

- Pricing problem modeled as SPPRC and solved by a labeling
algorithm that relies on strong completion bounds

JOBPRP-SS

Three-level problem

Is a 'combination' of the Soft-Clustered VRP and Generalized VRP

To the best of our knowledge not tackled in the literature yet

Only known solution for the pricing problem is MIP-based
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Joint Order Batching and Picker Routing Problem with SS
Pure binary model:

min
∑
b∈B

∑
e∈E

cex
b
e (3a)

subject to
∑
b∈B

zbo = 1 ∀o ∈ O (3b)

Nx
b = uo − ud ∀b ∈ B (3c)∑

e∈Es

xbe ≥ yb
s ∀b ∈ B,∀s ∈ S (3d)

yb
s ≥ zbo ∀b ∈ B,∀o ∈ O,∀s ∈ So (3e)∑
o∈O

woz
b
o ≤ Q ∀b ∈ B (3f)

xbe ∈ {0, 1} ∀b ∈ B,∀e ∈ E (3g)

yb
s ∈ {0, 1} ∀b ∈ B,∀s ∈ S (3h)

zbo ∈ {0, 1} ∀b ∈ B,∀o ∈ O (3i)

Remark: Constr. (3c)�(3i) are |B|-times those of the pro�table
SPRP-SS.
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Joint Order Batching and Picker Routing Problem with SS

Dantzig-Wolfe decomposition according to the order partitioning
conditions (3b) and subsequent aggregation leads to a b-index-free
formulation, which has the advantage of eliminating the inherent
symmetry. Let

(x̄ , ȳ , z̄) ∈ {0, 1}|E |+|S|+|O|

be an extreme point of a block. Since all variables are binary, the set of
these extreme points is

W = {(x̄ , ȳ , z̄) ∈ {0, 1}|E |+|S|+|O| : ful�lls (3c)�(3f)}.

Extensive (=set partitioning, batch-based) formulation:

min
∑

w=(x̄,ȳ ,z̄)∈W

(cT
x̄)λw (4a)

subject to
∑

w=(x̄,ȳ ,z̄)∈W

(z̄o)λw = 1 dual: [πo ] ∀o ∈ O (4b)

λw ∈ {0, 1} ∀w ∈ W (4c)
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(x̄ , ȳ , z̄) ∈ {0, 1}|E |+|S|+|O|

be an extreme point of a block. Since all variables are binary, the set of
these extreme points is
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BPC Algorithm for JOBPRP-SS

Components of the BPC algorithm:

Column Generation:

Pricing problem is the PSPRP-SS solved by a MIP solver
Partial pricing hierarchy: (1) Hash table, (2) VND-based
heuristic, and (3) MIP solver on reduced extended state space

Branching:

1 Number of batches (a priori computation of b)
2 Ryan/Foster (zo1 = zo2 or zo1 + zo2 ≤ 1; prioritize branching

on large orders)

MIP Solver Heuristic: Solve RMP as an integer program with the
MIP solver in a limited number of branch-and-bound nodes

Cutting: Subset-row inequalities (Jepsen et al., 2008) for subsets
|R| = 3 and 4, capacity cuts (Baldacci et al., 2008)
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New Benchmark Set for JOBPRP-SS

Picker capacity Q: 20, 50

Number of orders |O|: 10, 20, 50

Order size s: uniformly distributed on [3, 7], [10, 20]

Class-based storage policies

class A: 20% of articles → 80% of sales
class B: 30% of articles → 15% of sales
class C: 50% of articles → 5% of sales

Scatter factor α = 2, scattering of (A/B/C) dependent on storage policy
(Korbacher et al., 2022)
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Preliminary Results for JOBPRP-SS

across-aisle diagonal perimeter uniform within-aisle

Q s̄ |O| #inst #opt time t̄ #opt time t̄ #opt time t̄ #opt time t̄ #opt time t̄

20 5 10 10 10 4.2 10 5.2 10 33.3 10 59.0 10 17.2
20 10 10 268.2 10 139.1 5 1903.7 7 1385.9 8 1281.9
50 10 2 3039.0 0 TL 0 TL 0 TL 0 TL

15 10 10 10 1.4 10 1.4 10 1.7 10 29.5 10 1.1
20 10 10 5.1 10 5.2 10 5.0 10 86.0 10 4.6
50 10 10 77.8 10 93.5 10 85.4 10 207.4 10 80.6

50 5 10 10 10 8.7 10 7.4 10 6.3 10 115.0 10 4.9
20 10 6 2222.3 7 1643.2 5 2439.6 2 3297.9 4 2315.6
50 10 0 TL 0 TL 0 TL 0 TL 0 TL

15 10 10 10 6.7 10 7.3 10 5.3 10 132.9 10 13.9
20 10 10 91.5 9 701.0 6 1508.2 9 1676.5 8 874.4
50 10 1 3548.8 1 3359.8 1 3550.5 0 TL 0 TL

Total 120 89 87 77 78 80
Average 1052.0 1096.9 1394.9 1482.5 1282.8

Across-aisle and diagonal are easiest to solve

Instances with many orders |O| and many orders per tour Q/s̄ are
di�cult to solve
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Average Costs for JOBPRP-SS

Q s̄ |O| within-aisle diagonal across-aisle perimeter uniform

20 5 10 332.4 359.0 378.6 440.4 447.6
20 521.8 596.8 643.6 751.2 780.3

15 10 934.0 1142.0 1242.4 1466.0 1648.2
20 1828.8 2397.8 2508.4 2830.4 3492.8

50 5 10 221.6 241.0 247.4 235.8 303.8
20 331.0 370.0 386.7 382.0 502.0

15 10 471.0 544.6 603.0 602.6 822.4
20 769.3 1037.8 1117.4 1090.3 1576.0

Average 1325.8 1664.9 1736.9 1880.8 2628.2

Within-aisle has on average lowest cost

Uniformly distributed has on average highest cost
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Conclusions and Outlook for JOBPRP-SS

BPC algorithm for JOBPRP-SS:

To the best of our knowledge �rst solution approach

Instances of medium size can be solved to proven optimality

Cost comparison between di�erent storage policies

Outlook:

Re�nement of the BPC (strong branching, heuristic pricing, number
of SRIs/CCs, etc.)

State-space and extended state-space can be modi�ed to restrict
solution to routing policies traversal, midpoint, return,
largest gap, composite (Korbacher et al., 2022)
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Thank you for listening!

Questions?!

Contact:
Katrin Heÿler
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Subset-Row Inequalities in MIP-based Pricing
Master problem: A SRI is de�ned by a subset R = {o1, o2, . . . , oq} ⊆ O
of q ≥ 3 di�erent rows and weights u = (u1, u2, . . . , uq) as

∑
w=(x̄,ȳ ,z̄)∈W

 q∑
j=1

z̄ojuoj

λw ≤

 q∑
j=1

uj

 . dual: [τ (R,u)]

Reduced cost of a variable λw for w = (x̄ , ȳ , z̄) ∈ W is:

c̃w (π, τ) =
∑
e∈E

ce x̄e −
∑
o∈O

z̄oπo

−
∑

(R={o1,o2,...,oq},
u=(u1,u2,...,uq))

 q∑
j=1

z̄ojuoj

 τ (R,u)

Pricing problem: For each active SRI de�ned by (R, u), a non-negative
integer variable tR,u must be introduced. It models the coe�cient of
τ (R,u) in the last sum.
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w=(x̄,ȳ ,z̄)∈W

 q∑
j=1

z̄ojuoj

λw ≤

 q∑
j=1

uj

 . dual: [τ (R,u)]

Reduced cost of a variable λw for w = (x̄ , ȳ , z̄) ∈ W is:

c̃w (π, τ) =
∑
e∈E

ce x̄e −
∑
o∈O

z̄oπo

−
∑

(R={o1,o2,...,oq},
u=(u1,u2,...,uq))

 q∑
j=1

z̄ojuoj

 τ (R,u)

Pricing problem: For each active SRI de�ned by (R, u), a non-negative
integer variable tR,u must be introduced. It models the coe�cient of
τ (R,u) in the last sum.

Katrin Heÿler 17th May 2023 20 / 21



Subset-Row Inequalities in MIP-based Pricing
For R = {o1, o2, o3} and the unique undominated
weights (u1, u2, u3) = (1/2, 1/2, 1/2), the coupling between the z- and the
t-variable can be accomplished via

zo1 + zo2 + zo3 − 2tR,u ≤ 1 or
zo1 + zo2 − tR,u ≤ 1
zo1 + zo3 − tR,u ≤ 1

+ zo2 + zo3 − tR,u ≤ 1

For R = {o1, o2, o3, o4} and the unique undominated
weights (u1, u2, u3, u4) = (2/3, 1/3, 1/3, 1/3),

2zo1 + zo2 + zo3 + zo4 − 3tR,u ≤ 2 or

zo1 + zo2 − tR,u ≤ 1
zo1 zo3 − tR,u ≤ 1
zo1 zo4 − tR,u ≤ 1

zo2 + zo3 + zo4 − tR,u ≤ 1

Neither of the two formulations is dominating the other. Use both
formulations together (Hintsch et al., 2021).
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