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Order Picking

Person-to-goods order picking:
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Overall Idea

m SPRP: Single Picker Routing Problem
m Dynamic program of Ratliff and Rosenthal (1983)
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m SPRP: Single Picker Routing Problem
m Dynamic program of Ratliff and Rosenthal (1983)
m SPRP-SS: Single Picker Routing Problem with Scattered Storage

m Extend the state space of the dynamic program of Ratliff and

Rosenthal (1983)
m Add additional variables and constraints for aspects not

covered by the extended state space
m Solve resulting formulation via MIP solver

m JOBPRP-SS: Joint Order Batching and Picker Routing Problem
with Scattered Storage
m Solution of JOBPRP by branch-price-and-cut algorithm,
column generation/pricing via MIP solver
m Pricing problem is Profitable Single Picker Routing Problem
with Scattered Storage (PSPRP-SS)

Katrin HeBler 17th May 2023 3/21



Single Picker Routing Problem

Given: Set P of picking positions in the warehouse
Task: Find a minimum length picking tour that starts and ends at the
given 1/0 point 0 and traverses all positions P (at least once)

Example: Standard one-block warehouse
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—  m aisle traversal
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Single Picker Routing Problem

Given: Set P of picking positions in the warehouse
Task: Find a minimum length picking tour that starts and ends at the
given 1/0 point 0 and traverses all positions P (at least once)

Can be modeled and solved as a TSP! But there is more structure in it. ..

Example: Standard one-block warehouse

@ Q@ m aisle traversal
H H E¥le = {1pass, 2pass, top,
— — bottom, gap, void},
W L m cross-aisle traversal
(] @
mm 1 E“°* = {00, 11,20, 02,22}
] []@ ]
] @ ]
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Dynamic Program of Ratliff and Rosenthal (1983)

Let J ={1,2,..., m} denotes the aisles set.
Idea of the DP:
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Dynamic Program of Ratliff and Rosenthal (1983)

Ratliff and Rosenthal (1983) have shown that only seven states are
possible for optimal picking tours, namely

S = {UU1c, OE1c, EO1c, EE1c, EE2¢, 000c, 001c}
with

m O=disconnected, U=odd (=uneven), and E=even degree
of aj and b, resp.;

m Oc=empty graph, 1c and 2c=one (two) connected component(s).
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Dynamic Program of Ratliff and Rosenthal (1983)

Ratliff and Rosenthal (1983) have shown that only seven states are

possible for optimal picking tours, namely

S = {UU1c, OE1c, EOlc, EElc, EE2¢, 000c, 001c}

with

m O=disconnected, U=odd (=uneven), and E=even degree

of aj and b, resp.;

m Oc=empty graph, 1c and 2c=one (two) connected component(s).
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Dynamic Program of Ratliff and Rosenthal (1983)

State Space:
States: |
UUic

EO0lc

OElc

EElc

EE2c
000c
001c

Stages: — 1~ 1t 2~ 2+ 3 3t 4

Sequence of states: (o = 001c,UUlc,UUlc,EElc,EElc,001c = d)
Sequence of transitions: (1pass, 11, 1pass,22, top, 00)
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Scattered Storage

When one or several articles are pickable from more than one picking
position, the warehouse is operated as a scattered storage warehouse
a.k.a. mixed shelves warehouse (Weidinger and Boysen, 2018).

Katrin HeRBler 17th May 2023 8 /21



Scattered Storage

When one or several articles are pickable from more than one picking
position, the warehouse is operated as a scattered storage warehouse
a.k.a. mixed shelves warehouse (Weidinger and Boysen, 2018).

m Scattered storage is predominant in modern e-commerce warehouses of
companies like Amazon or Zalando (Weidinger, 2018; Boysen et al., 2019;
Weidinger et al., 2019).

m Main advantage: “items of demanded articles are found close by
irrespective of the position within the warehouse [so that] distance [...]
for order picking is reduced” (Weidinger, 2018, p. 140).
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Scattered Storage

When one or several articles are pickable from more than one picking
position, the warehouse is operated as a scattered storage warehouse
a.k.a. mixed shelves warehouse (Weidinger and Boysen, 2018).

m Scattered storage is predominant in modern e-commerce warehouses of
companies like Amazon or Zalando (Weidinger, 2018; Boysen et al., 2019;
Weidinger et al., 2019).

m Main advantage: “items of demanded articles are found close by
irrespective of the position within the warehouse [so that] distance [...]
for order picking is reduced” (Weidinger, 2018, p. 140).

Theoretical and computational results:

m NP-hard (Weidinger, 2018, Theorem 1)

m Unit-demand case can be modeled and solved as a generalized TSP
(GTSP)

m All exact approaches are MIP-based (model solved with MIP solver)
(Weidinger, 2018; Weidinger et al., 2019; Goeke and Schneider, 2021)

m Best performing approaches by Goeke and Schneider (2021) (GS-Model)
and HeRler and Irnich (2023) (NF-Model)
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Scattered Storage

Different stock keeping units (=articles): S = {1,2,3 4}
Two tasks:

Select picking position(s) for each s € S
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Scattered Storage

Different stock keeping units (=articles): S = {1,2,3 4}
Two tasks:
Select picking position(s) for each s € S

H Find minimal length picker route

Not directly solvable with dynamic
programming! But. ..

=t 2 3 Reuse and extend state space
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Scattered Storage

Different stock keeping units (=articles): S = {1,2,3 4}
Two tasks:
Select picking position(s) for each s € S

H Find minimal length picker route

Not directly solvable with dynamic
programming! But. ..

_J=1 2 3 Reuse and extend state space
10
o 1] oo ] Formulate an IP model:
s || ] — Shortest path with additional
2 ] N covering conditions
6 - — Aisle  Type of additional Transitions
5
— — j= top(7) Cell i =9
4 @ bottom(i)  Cell j =4
3 [ | void
5 [ Jj=2 top(i) Cells i € {4,8}
- bottom(i)  Cells i € {2,4,8}
i=1

B @ gap(i, k) Cells (i, k) € {(2,8),(2,9), (4,9)}
C/:é j=3 bottom(i) Cellie{1,7}
Cells (i, k) = (1,9)

gap(i, k)

Katrin HeRBler 17th May 2023 9/21



New Network-Flow Formulation

Notation:
m Extended state space (V, E)
m Cost c. of a transition e € E is length of the associated part of the tour
m Demand ds for all stock keeping units (SKUs) s € S
m Supply bse, i.€., quantity of SKU s that can be picked with transition e € E
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New Network-Flow Formulation

Notation:

m Extended state space (V, E)

m Cost c. of a transition e € E is length of the associated part of the tour

m Demand ds for all stock keeping units (SKUs) s € S

m Supply bse, i.€., quantity of SKU s that can be picked with transition e € E
IP formulation (network flow, NF-Model):

min Z CeXe (1a)
eck +1, ifo=o
subject to Z Xe — Z xe=¢ -1, ifo=4d Vo eV (1b)
ecst(o) e€s— (o) 0, otherwise
D beexe > ds VseS (lc)
e€E
xe € {0,1} Vee E (1d)

(1a), (1b), and (1d): Shortest path problem
where (1b) can be rewritten as N'x = u, — ug

(1c): Additional covering constraints
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Profitable Single Picker Routing Problem with SS

Given: Set O of orders with:
m Subset S, C S of SKUs requested in an order o € O
m Profit 7, >0
m Weight w, > 0 (in kg, liter, or the number of compartments)
m Picker capacity @

44 31 5 4

46 3 18 37 1 34
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Profitable Single Picker Routing Problem with SS

Given: Set O of orders with:
m Subset S, C S of SKUs requested in an order o € O
m Profit 7, >0

Weight w, > 0 (in kg, liter, or the number of compartments)
m Picker capacity @

Task: Select a capacity-feasible subset of the orders and find a picking
tour that collects the requested SKUs of these orders to minimize the
length of the picker tour minus the collected profit.
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Given: Set O of orders with:
m Subset S, C S of SKUs requested in an order o € O
m Profit 7, >0
Weight w, > 0 (in kg, liter, or the number of compartments)

m Picker capacity @

Task: Select a capacity-feasible subset of the orders and find a picking
tour that collects the requested SKUs of these orders to minimize the
length of the picker tour minus the collected profit.
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Given: Set O of orders with:
m Subset S, C S of SKUs requested in an order o € O
m Profit 7, >0

Weight w, > 0 (in kg, liter, or the number of compartments)
m Picker capacity @

Task: Select a capacity-feasible subset of the orders and find a picking
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Profitable Single Picker Routing Problem with SS

Additional Variables:
m z, € {0,1} selection of order 0 € O
m ys € {0,1} indicator whether SKU s € S must be collected
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Profitable Single Picker Routing Problem with SS

Additional Variables:
m z, € {0,1} selection of order 0 € O
m ys € {0,1} indicator whether SKU s € S must be collected

c(7) = min Z CeXe — Z ToZo (2a)

ecE 0€0
subject to Nx = u, — uy (2b)

Z Xe > Vs Vse S (2¢)

ecE,

Vs > Zo Yoe O,Vs e S, (2d)

> wozo < Q (2e)

0€0

xe € {0,1} Vec E (2f)

ys €{0,1} Vse$S (2g)

z, € {0,1} Yo e O (2h)
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Joint Order Batching and Picker Routing Problem with SS

Given: Set O of orders with:
m Subset S, C S of SKUs requested in an order o € O
m Weight w, > 0 (in kg, liter, or the number of compartments)
m Picker capacity @
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Joint Order Batching and Picker Routing Problem with SS

Given: Set O of orders with:
m Subset S, C S of SKUs requested in an order o € O
m Weight w, > 0 (in kg, liter, or the number of compartments)
m Picker capacity @

Task: Group/partition the orders into capacity-feasible batches and find
for each batch a picking tour that collects the requested SKUs of the
respective batch so that the total length of all picker tours is minimized.
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Given: Set O of orders with:
m Subset S, C S of SKUs requested in an order o € O
m Weight w, > 0 (in kg, liter, or the number of compartments)
m Picker capacity @

Task: Group/partition the orders into capacity-feasible batches and find
for each batch a picking tour that collects the requested SKUs of the
respective batch so that the total length of all picker tours is minimized.
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Joint Order Batching and Picker Routing Problem with SS

Given: Set O of orders with:
m Subset S, C S of SKUs requested in an order o € O
m Weight w, > 0 (in kg, liter, or the number of compartments)
m Picker capacity @

Task: Group/partition the orders into capacity-feasible batches and find
for each batch a picking tour that collects the requested SKUs of the
respective batch so that the total length of all picker tours is minimized.

Tour 1:
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Joint Order Batching and Picker Routing Problem with SS

Given: Set O of orders with:
m Subset S, C S of SKUs requested in an order o € O
m Weight w, > 0 (in kg, liter, or the number of compartments)
m Picker capacity @

Task: Group/partition the orders into capacity-feasible batches and find
for each batch a picking tour that collects the requested SKUs of the
respective batch so that the total length of all picker tours is minimized.

Tour 1:
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m Subset S, C S of SKUs requested in an order o € O
m Weight w, > 0 (in kg, liter, or the number of compartments)
m Picker capacity @

Task: Group/partition the orders into capacity-feasible batches and find
for each batch a picking tour that collects the requested SKUs of the
respective batch so that the total length of all picker tours is minimized.
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Given: Set O of orders with:
m Subset S, C S of SKUs requested in an order o € O
m Weight w, > 0 (in kg, liter, or the number of compartments)
m Picker capacity @

Task: Group/partition the orders into capacity-feasible batches and find
for each batch a picking tour that collects the requested SKUs of the
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Joint Order Batching and Picker Routing Problem (with SS)

JOBPRP (without SS)
m Two-level problem
m Can be modeled and solved as Soft-Clustered VRP

m Recent BPC approach of Wahlen and Gschwind (2023) is
state-of-the-art

- Pricing problem modeled as SPPRC and solved by a labeling
algorithm that relies on strong completion bounds
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JOBPRP (without SS)
m Two-level problem
m Can be modeled and solved as Soft-Clustered VRP

m Recent BPC approach of Wahlen and Gschwind (2023) is
state-of-the-art

- Pricing problem modeled as SPPRC and solved by a labeling
algorithm that relies on strong completion bounds

JOBPRP-SS
m Three-level problem
m Is a "combination’ of the Soft-Clustered VRP and Generalized VRP
m To the best of our knowledge not tackled in the literature yet

m Only known solution for the pricing problem is MIP-based
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Joint Order Batching and Picker Routing Problem with SS

Pure binary model:

minZZcexé,7 (3a)

beB ecE
subject to Z zb=1 Yo e O (3b)

beB

NxP =u, — uy Vbe B (3¢)

> oxb =yt Vbe B,¥seS  (3d)

eckE;

yb >zt Vb e B,Voe O,Vs € S, (3e)

Y wzl < Q VbeB  (3f)

ocO

x? € {0,1} Vbe B,Yec E  (3g)

ybe{o0,1} Vbe B,VscS  (3h)

zb e {0,1} Vb e B,Yoc O (3i)

Remark: Constr. (3¢c)—(3i) are |B|-times those of the profitable

SPRP-SS.
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Joint Order Batching and Picker Routing Problem with SS

Dantzig-Wolfe decomposition according to the order partitioning
conditions (3b) and subsequent aggregation leads to a b-index-free
formulation, which has the advantage of eliminating the inherent
symmetry. Let

(%,¥,2) € {0, 1}\EI+I5\+\O\
be an extreme point of a block. Since all variables are binary, the set of
these extreme points is

W ={(X,¥,2) € {0, 1} EFISHIOL fylfills (3¢)-(3f)}.
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Joint Order Batching and Picker Routing Problem with SS

Dantzig-Wolfe decomposition according to the order partitioning
conditions (3b) and subsequent aggregation leads to a b-index-free
formulation, which has the advantage of eliminating the inherent

symmetry. Let
(X,7,Z) € {0, 1}|EIFISI+IO]

be an extreme point of a block. Since all variables are binary, the set of
these extreme points is

W ={(X,¥,2) € {0, 1} EFISHIOL fylfills (3¢)-(3f)}.

Extensive (=set partitioning, batch-based) formulation:

min Z (cTx)\, (4a)
w=(X,y,Z)EW

subject to Z (Zo)Aw =1 duall [1r,] Voe O (4b)
w=(X,y,Z)EW

Aw € {0,1} YweW  (4c)
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BPC Algorithm for JOBPRP-SS

Components of the BPC algorithm:

m Column Generation:

m Pricing problem is the PSPRP-SS solved by a MIP solver
m Partial pricing hierarchy: (1) Hash table, (2) VND-based
heuristic, and (3) MIP solver on reduced extended state space
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m Partial pricing hierarchy: (1) Hash table, (2) VND-based
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m Branching:

Number of batches (a priori computation of b)
Ryan/Foster (zo, = z,, OF z,, + Z,, < 1; prioritize branching
on large orders)
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BPC Algorithm for JOBPRP-SS

Components of the BPC algorithm:

m Column Generation:

m Pricing problem is the PSPRP-SS solved by a MIP solver
m Partial pricing hierarchy: (1) Hash table, (2) VND-based
heuristic, and (3) MIP solver on reduced extended state space

m Branching:

Number of batches (a priori computation of b)
Ryan/Foster (zo, = z,, OF z,, + Z,, < 1; prioritize branching
on large orders)

m MIP Solver Heuristic: Solve RMP as an integer program with the
MIP solver in a limited number of branch-and-bound nodes

m Cutting: Subset-row inequalities (Jepsen et al., 2008) for subsets
|R| = 3 and 4, capacity cuts (Baldacci et al., 2008)
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New Benchmark Set for JOBPRP-SS

m Picker capacity Q: 20, 50
= Number of orders |O|: 10, 20, 50
m Order size s: uniformly distributed on [3,7], [10,20]

m Class-based storage policies

class A:  20% of articles —  80% of sales
class B: 30% of articles —  15% of sales
class C:  50% of articles — 5% of sales
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New Benchmark Set for JOBPRP-SS

m Picker capacity Q: 20, 50

= Number of orders |O|: 10, 20, 50

m Order size s: uniformly distributed on [3,7], [10,20]
m Class-based storage policies

class A:  20% of articles —  80% of sales
class B: 30% of articles —  15% of sales
class C:  50% of articles — 5% of sales

m Scatter factor a = 2, scattering of (A/B/C) dependent on storage policy
(Korbacher et al., 2022)

uniformly distributed (6/1/1) diagonal (1/1/3) within-aisle (1/1/3)
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Preliminary Results for JOBPRP-SS

across-aisle diagonal perimeter uniform within-aisle

Q 5 |O] #inst Hopt timet Fopt timef  Ftopt timef Hopt timet Fopt timef

20 5 10 10 10 4.2 10 52 10 333 10 59.0 10 17.2
20 10 10 268.2 10 139.1 5 1903.7 7 1385.9 8 12819
50 10 2 3039.0 0 TL 0 TL 0 TL 0 TL
15 10 10 10 1.4 10 1.4 10 1.7 10 29.5 10 1.1
20 10 10 5.1 10 5.2 10 50 10 86.0 10 4.6
50 10 10 77.8 10 935 10 85.4 10 2074 10 80.6
50 5 10 10 10 8.7 10 7.4 10 6.3 10 115.0 10 4.9
20 10 6 22223 7 1643.2 5 2439.6 2 32979 4 2315.6
50 10 0 TL 0 TL 0 TL 0 TL 0 TL
15 10 10 10 6.7 10 73 10 5.3 10 1329 10 13.9
20 10 10 91.5 9 701.0 6 1508.2 9 1676.5 8 8744
50 10 1 35488 1 3359.8 1 35505 0 TL 0 TL
Total 120 89 87 I 78 80
Average 1052.0 1096.9 1394.9 14825 1282.8

m Across-aisle and diagonal are easiest to solve

m Instances with many orders |O| and many orders per tour Q/s are
difficult to solve
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Average Costs for JOBPRP-SS

Q 5 |O] within-aisle diagonal across-aisle perimeter uniform
20 5 10 3324 359.0 378.6 440.4 447.6
20 521.8 596.8 643.6 751.2 780.3

15 10 934.0 1142.0 1242.4 1466.0  1648.2

20 1828.8 23978 2508.4 2830.4 34928

50 5 10 221.6 241.0 247.4 235.8 303.8
20 331.0 370.0 386.7 382.0 502.0

15 10 471.0 544.6 603.0 602.6 822.4

20 769.3 1037.8 1117.4 1090.3  1576.0

Average 1325.8 1664.9 1736.9 1880.8  2628.2

m Within-aisle has on average lowest cost

m Uniformly distributed has on average highest cost
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Conclusions and Outlook for JOBPRP-SS

BPC algorithm for JOBPRP-SS:
m To the best of our knowledge first solution approach
m Instances of medium size can be solved to proven optimality

m Cost comparison between different storage policies
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Conclusions and Outlook for JOBPRP-SS

BPC algorithm for JOBPRP-SS:
m To the best of our knowledge first solution approach
m Instances of medium size can be solved to proven optimality
m Cost comparison between different storage policies

Outlook:

m Refinement of the BPC (strong branching, heuristic pricing, number
of SRIs/CCs, etc.)

m State-space and extended state-space can be modified to restrict
solution to routing policies traversal, midpoint, return,
largest gap, composite (Korbacher et al., 2022)
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Thank you for listening!

Questions?!

Contact:
Katrin HeRler
Operations Research Specialist

katrin.hessler@dbschenker.com
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Subset-Row Inequalities in MIP-based Pricing

Master problem: A SRl is defined by a subset R = {01, 02,...,04} C O
of g > 3 different rows and weights u = (uy, uz,. .., uq) as

q q
Z Zfo,-uoj- A, < Zuf ) dual:  [7(g,u]

w=(%,7,2)eW | j=1 j=1
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Subset-Row Inequalities in MIP-based Pricing

Master problem: A SRl is defined by a subset R = {01, 02,...,04} C O
of g > 3 different rows and weights u = (uy, uz,. .., uq) as

q q
Z Zfo,-uoj- A, < Zuf ) dual:  [7(g,u]

w=(%,y,2)eW | j=1 Jj=

[y

Reduced cost of a variable A, for w = (X,y,Z) € Wis:

= E CeXe — E ZoT o

ecE 0€0

- E E Zo; U, R,u)

(R={o01,02,...,04}, | j=1
u=(uy,uz,..., ug))
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Subset-Row Inequalities in MIP-based Pricing

Master problem: A SRl is defined by a subset R = {01, 02,...,04} C O

of g > 3 different rows and weights u = (uy, uz,. .., uq) as
q q
Z Zzojuoj /\w < ZUJ' . dual: [T(R,u)]
w=(x,y,2)EW | j=1 Jj=1

Reduced cost of a variable A, for w = (X,y,Z) € Wis:

Ew(m,7) = Z CeXe — Z ZoTo

ecE 0€0

q
- Z Z ZOj Uo; | T(R,u)

(R={01,02,...,04}, | /=1
u=(uy,uz,..., ug))

Pricing problem: For each active SRI defined by (R, u), a non-negative
integer variable tz , must be introduced. It models the coefficient of
7(R,u) in the last sum.
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Subset-Row Inequalities in MIP-based Pricing

For R = {01, 02,03} and the unique undominated
weights (u1, Uz, uz) = (1/2,1/2,1/2), the coupling between the z- and the
t-variable can be accomplished via

Zo, + 2o, — tpy <1
Zoy + Zo, + Zoy — 2tpy <1 or  z, + Zoy — tru <1
+ Zo, + Zog — tR,u < 1
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For R = {01, 02,03} and the unique undominated
weights (u1, Uz, uz) = (1/2,1/2,1/2), the coupling between the z- and the
t-variable can be accomplished via

Zo, + 2o, — tpy <1
Zoy + Zo, + Zoy — 2tpy <1 or  z, + Zoy — tru <1
+ Zo, + Zog — tR,u < 1

For R = {01, 02, 03,04} and the unique undominated
weights (uy, up, us, ug) = (2/3,1/3,1/3,1/3),

Zoy + Zoy - tR,u < 1
Z z — tru<1

2z z Z Zog — 3try <2 or o1 3 o=
o + o2 + . + o Rou = Zoy Zog — tR,u S 1

Zo, + Zos + Zog — tR,u < 1
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Subset-Row Inequalities in MIP-based Pricing

For R = {01, 02,03} and the unique undominated
weights (u1, Uz, uz) = (1/2,1/2,1/2), the coupling between the z- and the
t-variable can be accomplished via

Zo, + 2o, — tpy <1
Zoy + Zo, + Zoy — 2tpy <1 or  z, + Zoy — tru <1
+ Zo, + Zog — tR,u < 1

For R = {01, 02, 03,04} and the unique undominated
weights (uy, up, us, ug) = (2/3,1/3,1/3,1/3),

Zoy + Zoy - tR,u < 1
Z z — tru<1

2z z Z Zog — 3try <2 or o1 3 o=
o + o2 + . + o Rou = Zoy Zog — tR,u S 1

Zo, + Zos + Zog — tR,u < 1

Neither of the two formulations is dominating the other. Use both
formulations together (Hintsch et al., 2021).
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