A Branch-Price-and-Cut Algorithm for the Joint Order Batching and Picker Routing Problem with Scattered Storage Column Generation 2023: Montréal

Katrin Heßler and Stefan Irnich
katrin.hessler@dbschenker.com

JG/U
נohannes GUTENBERG
UNIVERSITÄT MAINZ

Order Picking

Person-to-goods order picking:

https://www.schoeler-gabelstapler.de/media/Global-Content/03_Solutions_Loesungen/Applications/
Order_picker-N20-Series_Moving-Warehouse-4540_8304_16x9w1920.jpg

Overall Idea

- SPRP: Single Picker Routing Problem

■ Dynamic program of Ratliff and Rosenthal (1983)

Overall Idea

- SPRP: Single Picker Routing Problem
- Dynamic program of Ratliff and Rosenthal (1983)
- SPRP-SS: Single Picker Routing Problem with Scattered Storage
- Extend the state space of the dynamic program of Ratliff and Rosenthal (1983)
- Add additional variables and constraints for aspects not covered by the extended state space
- Solve resulting formulation via MIP solver

Overall Idea

- SPRP: Single Picker Routing Problem
- Dynamic program of Ratliff and Rosenthal (1983)
- SPRP-SS: Single Picker Routing Problem with Scattered Storage
- Extend the state space of the dynamic program of Ratliff and Rosenthal (1983)
- Add additional variables and constraints for aspects not covered by the extended state space
- Solve resulting formulation via MIP solver
- JOBPRP-SS: Joint Order Batching and Picker Routing Problem with Scattered Storage
- Solution of JOBPRP by branch-price-and-cut algorithm, column generation/pricing via MIP solver
- Pricing problem is Profitable Single Picker Routing Problem with Scattered Storage (PSPRP-SS)

Single Picker Routing Problem

Given: Set P of picking positions in the warehouse
Task: Find a minimum length picking tour that starts and ends at the given I/O point 0 and traverses all positions P (at least once)

Example: Standard one-block warehouse

\square
\square
\square
-
\square
\square
-
-

Given: Set P of picking positions in the warehouse
Task: Find a minimum length picking tour that starts and ends at the given I/O point 0 and traverses all positions P (at least once)

Can be modeled and solved as a TSP!
Example: Standard one-block warehouse

Given: Set P of picking positions in the warehouse
Task: Find a minimum length picking tour that starts and ends at the given I/O point 0 and traverses all positions P (at least once)

Can be modeled and solved as a TSP! But there is more structure in it. . .
Example: Standard one-block warehouse

Given: Set P of picking positions in the warehouse
Task: Find a minimum length picking tour that starts and ends at the given I/O point 0 and traverses all positions P (at least once)

Can be modeled and solved as a TSP! But there is more structure in it. . .
Example: Standard one-block warehouse

\square
$\#$
$\#$
$\#$
$\#$
\square

Single Picker Routing Problem

Given: Set P of picking positions in the warehouse
Task: Find a minimum length picking tour that starts and ends at the given I/O point 0 and traverses all positions P (at least once)

Can be modeled and solved as a TSP! But there is more structure in it. . .
Example: Standard one-block warehouse

- aisle traversal

$$
E^{\text {aisle }}=\{1 \text { pass, } 2 \text { pass, top }
$$

bottom, gap, void\},

Single Picker Routing Problem

Given: Set P of picking positions in the warehouse
Task: Find a minimum length picking tour that starts and ends at the given I/O point 0 and traverses all positions P (at least once)

Can be modeled and solved as a TSP! But there is more structure in it. . .
Example: Standard one-block warehouse

■ aisle traversal

$$
\begin{aligned}
E^{\text {aisle }}= & \{1 \text { pass, } 2 \text { pass, top } \\
& \text { bottom, gap, void }\}
\end{aligned}
$$

- cross-aisle traversal

$$
E^{\text {cross }}=\{00,11,20,02,22\}
$$

Dynamic Program of Ratliff and Rosenthal (1983)

Let $J=\{1,2, \ldots, m\}$ denotes the aisles set.
Idea of the DP:

Dynamic Program of Ratliff and Rosenthal (1983)

Let $J=\{1,2, \ldots, m\}$ denotes the aisles set.

Idea of the DP:

■ The DP uses partial tour subgraphs (PTSs) with vertices a_{j} and b_{j} located at the top and bottom of each aisle $j \in J$, respectively.

Dynamic Program of Ratliff and Rosenthal (1983)

Let $J=\{1,2, \ldots, m\}$ denotes the aisles set.

Idea of the DP:

■ The DP uses partial tour subgraphs (PTSs) with vertices a_{j} and b_{j} located at the top and bottom of each aisle $j \in J$, respectively.

- The PTSs comprise those parts of the picking tour that belong to the aisles 1 to j, either before the traversal of aisle j is included (stage j^{-}) or after its inclusion (stage j^{+}).

Dynamic Program of Ratliff and Rosenthal (1983)

Let $J=\{1,2, \ldots, m\}$ denotes the aisles set.

Idea of the DP:

■ The DP uses partial tour subgraphs (PTSs) with vertices a_{j} and b_{j} located at the top and bottom of each aisle $j \in J$, respectively.

- The PTSs comprise those parts of the picking tour that belong to the aisles 1 to j, either before the traversal of aisle j is included (stage j^{-}) or after its inclusion (stage j^{+}).

Dynamic Program of Ratliff and Rosenthal (1983)

Let $J=\{1,2, \ldots, m\}$ denotes the aisles set.

Idea of the DP:

■ The DP uses partial tour subgraphs (PTSs) with vertices a_{j} and b_{j} located at the top and bottom of each aisle $j \in J$, respectively.

- The PTSs comprise those parts of the picking tour that belong to the aisles 1 to j, either before the traversal of aisle j is included (stage j^{-}) or after its inclusion (stage j^{+}).

Dynamic Program of Ratliff and Rosenthal (1983)

Let $J=\{1,2, \ldots, m\}$ denotes the aisles set.

Idea of the DP:

■ The DP uses partial tour subgraphs (PTSs) with vertices a_{j} and b_{j} located at the top and bottom of each aisle $j \in J$, respectively.

- The PTSs comprise those parts of the picking tour that belong to the aisles 1 to j, either before the traversal of aisle j is included (stage j^{-}) or after its inclusion (stage j^{+}).

Dynamic Program of Ratliff and Rosenthal (1983)

Let $J=\{1,2, \ldots, m\}$ denotes the aisles set.

Idea of the DP:

■ The DP uses partial tour subgraphs (PTSs) with vertices a_{j} and b_{j} located at the top and bottom of each aisle $j \in J$, respectively.

- The PTSs comprise those parts of the picking tour that belong to the aisles 1 to j, either before the traversal of aisle j is included (stage j^{-}) or after its inclusion (stage j^{+}).

Dynamic Program of Ratliff and Rosenthal (1983)

Let $J=\{1,2, \ldots, m\}$ denotes the aisles set.

Idea of the DP:

■ The DP uses partial tour subgraphs (PTSs) with vertices a_{j} and b_{j} located at the top and bottom of each aisle $j \in J$, respectively.

- The PTSs comprise those parts of the picking tour that belong to the aisles 1 to j, either before the traversal of aisle j is included (stage j^{-}) or after its inclusion (stage j^{+}).

Dynamic Program of Ratliff and Rosenthal (1983)

Ratliff and Rosenthal (1983) have shown that only seven states are possible for optimal picking tours, namely

$$
\mathcal{S}=\{\mathrm{UU} 1 \mathrm{c}, 0 \mathrm{E} 1 \mathrm{c}, \mathrm{E01c}, \mathrm{EE} 1 \mathrm{c}, \mathrm{EE} 2 \mathrm{c}, 000 \mathrm{c}, 001 \mathrm{c}\}
$$

with

- $0=$ disconnected, $\mathrm{U}=$ odd (=uneven), and $\mathrm{E}=$ even degree of a_{j} and b_{j}, resp.;
- $0 c=e m p t y ~ g r a p h, 1 c$ and $2 c=o n e ~(t w o) ~ c o n n e c t e d ~ c o m p o n e n t(s) . ~$

Dynamic Program of Ratliff and Rosenthal (1983)

Ratliff and Rosenthal (1983) have shown that only seven states are possible for optimal picking tours, namely

$$
\mathcal{S}=\{\mathrm{UU} 1 \mathrm{c}, 0 \mathrm{E} 1 \mathrm{c}, \mathrm{EO1c}, \mathrm{EE} 1 \mathrm{c}, \mathrm{EE} 2 \mathrm{c}, 000 \mathrm{c}, 001 \mathrm{c}\}
$$

with

- $0=$ disconnected, $\mathrm{U}=$ odd (=uneven), and $\mathrm{E}=$ even degree of a_{j} and b_{j}, resp.;
- $0 c=$ empty graph, 1 c and $2 \mathrm{c}=$ one (two) connected component(s).

Dynamic Program of Ratliff and Rosenthal (1983)

Ratliff and Rosenthal (1983) have shown that only seven states are possible for optimal picking tours, namely

$$
\mathcal{S}=\{\mathrm{UU} 1 \mathrm{c}, 0 \mathrm{E} 1 \mathrm{c}, \mathrm{EO1c}, \mathrm{EE} 1 \mathrm{c}, \mathrm{EE} 2 \mathrm{c}, 000 \mathrm{c}, 001 \mathrm{c}\}
$$

with

- $0=$ disconnected, $\mathrm{U}=$ odd (=uneven), and $\mathrm{E}=$ even degree of a_{j} and b_{j}, resp.;
- $0 c=$ empty graph, 1 c and $2 \mathrm{c}=$ one (two) connected component(s).

Dynamic Program of Ratliff and Rosenthal (1983)

Ratliff and Rosenthal (1983) have shown that only seven states are possible for optimal picking tours, namely

$$
\mathcal{S}=\{\mathrm{UU} 1 \mathrm{c}, 0 \mathrm{E} 1 \mathrm{c}, \mathrm{EO} 1 \mathrm{c}, \mathrm{EE} 1 \mathrm{c}, \mathrm{EE} 2 \mathrm{c}, 000 \mathrm{c}, 001 \mathrm{c}\}
$$

with

- $0=$ disconnected, $\mathrm{U}=$ odd (=uneven), and $\mathrm{E}=$ even degree of a_{j} and b_{j}, resp.;
- $0 c=$ empty graph, 1 c and $2 \mathrm{c}=$ one (two) connected component(s).

Dynamic Program of Ratliff and Rosenthal (1983)

Ratliff and Rosenthal (1983) have shown that only seven states are possible for optimal picking tours, namely

$$
\mathcal{S}=\{\mathrm{UU} 1 \mathrm{c}, 0 \mathrm{E} 1 \mathrm{c}, \mathrm{EO1c}, \mathrm{EE} 1 \mathrm{c}, \mathrm{EE} 2 \mathrm{c}, 000 \mathrm{c}, 001 \mathrm{c}\}
$$

with

- $0=$ disconnected, $\mathrm{U}=$ odd (=uneven), and $\mathrm{E}=$ even degree of a_{j} and b_{j}, resp.;
- $0 c=$ empty graph, 1 c and $2 \mathrm{c}=$ one (two) connected component(s).

Dynamic Program of Ratliff and Rosenthal (1983)

Ratliff and Rosenthal (1983) have shown that only seven states are possible for optimal picking tours, namely

$$
\mathcal{S}=\{\mathrm{UU} 1 \mathrm{c}, 0 \mathrm{E} 1 \mathrm{c}, \mathrm{EO} 1 \mathrm{c}, \mathrm{EE} 1 \mathrm{c}, \mathrm{EE} 2 \mathrm{c}, 000 \mathrm{c}, 001 \mathrm{c}\}
$$

with

- $0=$ disconnected, $\mathrm{U}=$ odd (=uneven), and $\mathrm{E}=$ even degree of a_{j} and b_{j}, resp.;
- $0 c=$ empty graph, 1 c and $2 \mathrm{c}=$ one (two) connected component(s).

Dynamic Program of Ratliff and Rosenthal (1983)

Ratliff and Rosenthal (1983) have shown that only seven states are possible for optimal picking tours, namely

$$
\mathcal{S}=\{\mathrm{UU} 1 \mathrm{c}, 0 \mathrm{E} 1 \mathrm{c}, \mathrm{EO} 1 \mathrm{c}, \mathrm{EE} 1 \mathrm{c}, \mathrm{EE} 2 \mathrm{c}, 000 \mathrm{c}, 001 \mathrm{c}\}
$$

with

- $0=$ disconnected, $\mathrm{U}=$ odd (=uneven), and $\mathrm{E}=$ even degree of a_{j} and b_{j}, resp.;
- $0 c=$ empty graph, 1 c and $2 \mathrm{c}=$ one (two) connected component(s).

Dynamic Program of Ratliff and Rosenthal (1983)

Ratliff and Rosenthal (1983) have shown that only seven states are possible for optimal picking tours, namely

$$
\mathcal{S}=\{\mathrm{UU} 1 \mathrm{c}, 0 \mathrm{E} 1 \mathrm{c}, \mathrm{EO} 1 \mathrm{c}, \mathrm{EE} 1 \mathrm{c}, \mathrm{EE} 2 \mathrm{c}, 000 \mathrm{c}, 001 \mathrm{c}\}
$$

with

- $0=$ disconnected, $\mathrm{U}=$ odd (=uneven), and $\mathrm{E}=$ even degree of a_{j} and b_{j}, resp.;
- $0 c=$ empty graph, 1 c and $2 \mathrm{c}=$ one (two) connected component(s).

Dynamic Program of Ratliff and Rosenthal (1983)

State Space:

(b1)
(b2)
(22) (3)

Sequence of states: $(o=001 c$, UU1c, UU1c, EE1c, EE1c, 001c $=d)$
Sequence of transitions: (1 pass, 11,1 pass, 22 , top, 00)

Dynamic Program of Ratliff and Rosenthal (1983)

State Space:

(b1)
(b2)
(a) a a_{3}

States: \downarrow
UU1c

Sequence of states: $(o=001 c, \mathrm{UU} 1 \mathrm{c}, \mathrm{UU} 1 \mathrm{c}, \mathrm{EE} 1 \mathrm{c}, \mathrm{EE} 1 \mathrm{c}, 001 \mathrm{c}=\mathrm{d})$
Sequence of transitions: (1 pass, 11,1 pass, 22 , top, 00)

Dynamic Program of Ratliff and Rosenthal (1983)

State Space:

Sequence of states: $(o=001 c$, UU1c, UU1c, EE1c, EE1c, 001c $=d)$
Sequence of transitions: (1 pass, 11,1 pass, 22 , top, 00)

Dynamic Program of Ratliff and Rosenthal (1983)

State Space:

Sequence of states: $(o=001 c, \mathrm{UU} 1 \mathrm{c}, \mathrm{UU} 1 \mathrm{c}, \mathrm{EE} 1 \mathrm{c}, \mathrm{EE} 1 \mathrm{c}, 001 \mathrm{c}=\mathrm{d})$
Sequence of transitions: (1 pass, 11,1 pass, 22 , top, 00)

Dynamic Program of Ratliff and Rosenthal (1983)

State Space:

Sequence of states: $(o=001 c, \mathrm{UU} 1 \mathrm{c}, \mathrm{UU} 1 \mathrm{c}, \mathrm{EE} 1 \mathrm{c}, \mathrm{EE} 1 \mathrm{c}, 001 \mathrm{c}=\mathrm{d})$
Sequence of transitions: (1 pass, 11,1 pass, 22 , top, 00)

Dynamic Program of Ratliff and Rosenthal (1983)

State Space:

Sequence of states: $(o=001 c, \mathrm{UU} 1 \mathrm{c}, \mathrm{UU} 1 \mathrm{c}, \mathrm{EE} 1 \mathrm{c}, \mathrm{EE} 1 \mathrm{c}, 001 \mathrm{c}=\mathrm{d})$
Sequence of transitions: (1 pass, 11,1 pass, 22 , top, 00)

Dynamic Program of Ratliff and Rosenthal (1983)

State Space:

Sequence of states: $(o=001 c, \mathrm{UU} 1 \mathrm{c}, \mathrm{UU} 1 \mathrm{c}, \mathrm{EE} 1 \mathrm{c}, \mathrm{EE} 1 \mathrm{c}, 001 \mathrm{c}=\mathrm{d})$
Sequence of transitions: (1 pass, 11,1 pass, 22 , top, 00)

Scattered Storage

When one or several articles are pickable from more than one picking position, the warehouse is operated as a scattered storage warehouse a.k.a. mixed shelves warehouse (Weidinger and Boysen, 2018).

Scattered Storage

When one or several articles are pickable from more than one picking position, the warehouse is operated as a scattered storage warehouse a.k.a. mixed shelves warehouse (Weidinger and Boysen, 2018).

- Scattered storage is predominant in modern e-commerce warehouses of companies like Amazon or Zalando (Weidinger, 2018; Boysen et al., 2019; Weidinger et al., 2019).
- Main advantage: "items of demanded articles are found close by irrespective of the position within the warehouse [so that] distance [...] for order picking is reduced" (Weidinger, 2018, p. 140).

Scattered Storage

When one or several articles are pickable from more than one picking position, the warehouse is operated as a scattered storage warehouse a.k.a. mixed shelves warehouse (Weidinger and Boysen, 2018).

- Scattered storage is predominant in modern e-commerce warehouses of companies like Amazon or Zalando (Weidinger, 2018; Boysen et al., 2019; Weidinger et al., 2019).
- Main advantage: "items of demanded articles are found close by irrespective of the position within the warehouse [so that] distance [...] for order picking is reduced" (Weidinger, 2018, p. 140).

Theoretical and computational results:

■ NP-hard (Weidinger, 2018, Theorem 1)

- Unit-demand case can be modeled and solved as a generalized TSP (GTSP)
- All exact approaches are MIP-based (model solved with MIP solver) (Weidinger, 2018; Weidinger et al., 2019; Goeke and Schneider, 2021)
- Best performing approaches by Goeke and Schneider (2021) (GS-Model) and Heßler and Irnich (2023) (NF-Model)

Scattered Storage

Different stock keeping units (=articles): $S=\{1,2,3,4\}$
Two tasks:
1 Select picking position(s) for each $s \in S$

Scattered Storage

Different stock keeping units (=articles): $S=\{1,2,3,4\}$
Two tasks:
1 Select picking position(s) for each $s \in S$

Scattered Storage

Different stock keeping units (=articles): $S=\{1,2,3,4\}$
Two tasks:
1 Select picking position(s) for each $s \in S$
2 Find minimal length picker route

Scattered Storage

Different stock keeping units (=articles): $S=\{1,2,3,4\}$
Two tasks:
1 Select picking position(s) for each $s \in S$
2 Find minimal length picker route
Not directly solvable with dynamic programming! But. . .

1 Reuse and extend state space

Scattered Storage

Different stock keeping units (=articles): $S=\{1,2,3,4\}$
Two tasks:
1 Select picking position(s) for each $s \in S$
2 Find minimal length picker route
Not directly solvable with dynamic programming! But. . .

1 Reuse and extend state space
2 Formulate an IP model:
\rightarrow Shortest path with additional covering conditions

Scattered Storage

Different stock keeping units (=articles): $S=\{1,2,3,4\}$
Two tasks:
1 Select picking position(s) for each $s \in S$
2 Find minimal length picker route
Not directly solvable with dynamic programming! But. . .

1 Reuse and extend state space
2 Formulate an IP model:
\rightarrow Shortest path with additional covering conditions

Aisle	Type of	additional Transitions
$j=1$	top (i) bottom (i) void	Cell $i=9$ Cell $i=4$
$j=2$	top (i) bottom (i) gap (i, k)	Cells $i \in\{4,8\}$ Cells $i \in\{2,4,8\}$ $j=3$
	bottom $(i, k) \in\{(2,8),(2,9),(4,9)\}$ $\operatorname{gap}(i, k)$	Cell $i \in\{1,7\}$ Cells $(i, k)=(1,9)$

New Network-Flow Formulation

Notation:

- Extended state space (V, E)
- Cost c_{e} of a transition $e \in E$ is length of the associated part of the tour
- Demand d_{s} for all stock keeping units (SKUs) $s \in S$
- Supply $b_{\text {se }}$, i.e., quantity of $\operatorname{SKU} s$ that can be picked with transition $e \in E$

New Network-Flow Formulation

Notation:

- Extended state space (V, E)
- Cost c_{e} of a transition $e \in E$ is length of the associated part of the tour
- Demand d_{s} for all stock keeping units (SKUs) $s \in S$
- Supply $b_{s e}$, i.e., quantity of SKU s that can be picked with transition $e \in E$

IP formulation (network flow, NF-Model):

$$
\begin{equation*}
\min \sum_{e \in E} c_{e} x_{e} \tag{1a}
\end{equation*}
$$

subject to $\sum_{e \in \delta^{+}(\sigma)} x_{e}-\sum_{e \in \delta^{-}(\sigma)} x_{e}=\left\{\begin{array}{ll}+1, & \text { if } \sigma=0 \\ -1, & \text { if } \sigma=\mathrm{d} \\ 0, & \text { otherwise }\end{array} \quad \forall \sigma \in V\right.$
$\sum_{e \in E} b_{s e} x_{e} \geq d_{s}$

$$
\begin{equation*}
\forall s \in S \tag{1c}
\end{equation*}
$$

$$
\begin{equation*}
x_{e} \in\{0,1\} \tag{1d}
\end{equation*}
$$

$$
\forall e \in E
$$

(1a), (1b), and (1d): Shortest path problem where (1b) can be rewritten as $\mathcal{N} \boldsymbol{x}=\boldsymbol{u}_{\circ}-\boldsymbol{u}_{\mathrm{d}}$ (1c): Additional covering constraints

Profitable Single Picker Routing Problem with SS

Given: Set O of orders with:

- Subset $S_{o} \subset S$ of SKUs requested in an order $o \in O$
- Profit $\pi_{0}>0$
- Weight $w_{o}>0$ (in kg, liter, or the number of compartments)
- Picker capacity Q

Given: Set O of orders with:

- Subset $S_{o} \subset S$ of SKUs requested in an order $o \in O$
- Profit $\pi_{0}>0$
- Weight $w_{o}>0$ (in kg, liter, or the number of compartments)
- Picker capacity Q

Task: Select a capacity-feasible subset of the orders and find a picking tour that collects the requested SKUs of these orders to minimize the length of the picker tour minus the collected profit.

Given: Set O of orders with:

- Subset $S_{o} \subset S$ of SKUs requested in an order $o \in O$
- Profit $\pi_{0}>0$
- Weight $w_{o}>0$ (in kg, liter, or the number of compartments)
- Picker capacity Q

Task: Select a capacity-feasible subset of the orders and find a picking tour that collects the requested SKUs of these orders to minimize the length of the picker tour minus the collected profit.

Given: Set O of orders with:

- Subset $S_{o} \subset S$ of SKUs requested in an order $o \in O$
- Profit $\pi_{0}>0$
- Weight $w_{o}>0$ (in kg, liter, or the number of compartments)
- Picker capacity Q

Task: Select a capacity-feasible subset of the orders and find a picking tour that collects the requested SKUs of these orders to minimize the length of the picker tour minus the collected profit.

Profitable Single Picker Routing Problem with SS

Additional Variables:

- $z_{o} \in\{0,1\}$ selection of order $o \in O$
- $y_{s} \in\{0,1\}$ indicator whether SKU $s \in S$ must be collected

Additional Variables:

- $z_{o} \in\{0,1\}$ selection of order $o \in O$
- $y_{s} \in\{0,1\}$ indicator whether SKU $s \in S$ must be collected

$$
\begin{array}{lr}
c(\pi)=\min \sum_{e \in E} c_{e} x_{e}-\sum_{o \in O} \pi_{o} z_{o} & \\
\text { subject to } & \mathcal{N} \boldsymbol{x}=\boldsymbol{u}_{o}-\boldsymbol{u}_{\mathrm{d}} \\
& \sum_{e \in E_{s}} x_{e} \geq y_{s} \\
y_{s} \geq z_{o} & \forall s \in S \\
\sum_{o \in O} w_{o} z_{o} \leq Q & \forall o \in O, \forall s \in S_{o} \\
x_{e} \in\{0,1\} & \\
y_{s} \in\{0,1\} & \forall e \in E \\
z_{o} \in\{0,1\} & \forall s \in S \\
& \forall o \in O \tag{2h}
\end{array}
$$

Joint Order Batching and Picker Routing Problem with SS

Given: Set O of orders with:

- Subset $S_{o} \subset S$ of SKUs requested in an order $o \in O$

■ Weight $w_{o}>0$ (in kg, liter, or the number of compartments)

- Picker capacity Q

Joint Order Batching and Picker Routing Problem with SS

Given: Set O of orders with:

- Subset $S_{o} \subset S$ of SKUs requested in an order $o \in O$

■ Weight $w_{o}>0$ (in kg, liter, or the number of compartments)

- Picker capacity Q

Task: Group/partition the orders into capacity-feasible batches and find for each batch a picking tour that collects the requested SKUs of the respective batch so that the total length of all picker tours is minimized.

Joint Order Batching and Picker Routing Problem with SS

Given: Set O of orders with:

- Subset $S_{o} \subset S$ of SKUs requested in an order $o \in O$

■ Weight $w_{o}>0$ (in kg, liter, or the number of compartments)

- Picker capacity Q

Task: Group/partition the orders into capacity-feasible batches and find for each batch a picking tour that collects the requested SKUs of the respective batch so that the total length of all picker tours is minimized.

Joint Order Batching and Picker Routing Problem with SS

Given: Set O of orders with:

- Subset $S_{o} \subset S$ of SKUs requested in an order $o \in O$

■ Weight $w_{o}>0$ (in kg, liter, or the number of compartments)

- Picker capacity Q

Task: Group/partition the orders into capacity-feasible batches and find for each batch a picking tour that collects the requested SKUs of the respective batch so that the total length of all picker tours is minimized.

Tour 1:

Joint Order Batching and Picker Routing Problem with SS

Given: Set O of orders with:

- Subset $S_{o} \subset S$ of SKUs requested in an order $o \in O$

■ Weight $w_{o}>0$ (in kg, liter, or the number of compartments)

- Picker capacity Q

Task: Group/partition the orders into capacity-feasible batches and find for each batch a picking tour that collects the requested SKUs of the respective batch so that the total length of all picker tours is minimized.

Tour 1:

Joint Order Batching and Picker Routing Problem with SS

Given: Set O of orders with:

- Subset $S_{o} \subset S$ of SKUs requested in an order $o \in O$

■ Weight $w_{o}>0$ (in kg, liter, or the number of compartments)

- Picker capacity Q

Task: Group/partition the orders into capacity-feasible batches and find for each batch a picking tour that collects the requested SKUs of the respective batch so that the total length of all picker tours is minimized.

Tour 2:

Joint Order Batching and Picker Routing Problem with SS

Given: Set O of orders with:

- Subset $S_{o} \subset S$ of SKUs requested in an order $o \in O$

■ Weight $w_{o}>0$ (in kg, liter, or the number of compartments)

- Picker capacity Q

Task: Group/partition the orders into capacity-feasible batches and find for each batch a picking tour that collects the requested SKUs of the respective batch so that the total length of all picker tours is minimized.

Tour 2:

Joint Order Batching and Picker Routing Problem (with SS)

JOBPRP (without SS)

- Two-level problem
- Can be modeled and solved as Soft-Clustered VRP
- Recent BPC approach of Wahlen and Gschwind (2023) is state-of-the-art
- Pricing problem modeled as SPPRC and solved by a labeling algorithm that relies on strong completion bounds

Joint Order Batching and Picker Routing Problem (with SS)

JOBPRP (without SS)

- Two-level problem
- Can be modeled and solved as Soft-Clustered VRP
- Recent BPC approach of Wahlen and Gschwind (2023) is state-of-the-art
- Pricing problem modeled as SPPRC and solved by a labeling algorithm that relies on strong completion bounds

JOBPRP-SS

- Three-level problem
- Is a 'combination' of the Soft-Clustered VRP and Generalized VRP
- To the best of our knowledge not tackled in the literature yet

■ Only known solution for the pricing problem is MIP-based

Pure binary model:

$$
\begin{array}{lr}
\min \sum_{b \in B} \sum_{e \in E} c_{e} x_{e}^{b} & \\
\text { subject to } & \\
\sum_{b \in B} z_{o}^{b}=1 & \forall o \in O \\
\mathcal{N} \boldsymbol{x}^{b}=\boldsymbol{u}_{o}-\boldsymbol{u}_{\mathrm{d}} & \forall b \in B \\
\sum_{e \in E_{s}} x_{e}^{b} \geq y_{s}^{b} & \forall b \in B, \forall s \in S \\
y_{s}^{b} \geq z_{o}^{b} & \forall b \in B, \forall o \in O, \forall s \in S_{o} \\
\sum_{o \in O} w_{o} z_{o}^{b} \leq Q & \forall b \in B \\
x_{e}^{b} \in\{0,1\} & \forall b \in B, \forall e \in E \\
y_{s}^{b} \in\{0,1\} & \forall b \in B, \forall s \in S \\
z_{o}^{b} \in\{0,1\} & \forall b \in B, \forall o \in O
\end{array}
$$

Remark: Constr. (3c)-(3i) are $|B|$-times those of the profitable SPRP-SS.

Joint Order Batching and Picker Routing Problem with SS

Dantzig-Wolfe decomposition according to the order partitioning conditions (3b) and subsequent aggregation leads to a b-index-free formulation, which has the advantage of eliminating the inherent symmetry. Let

$$
(\bar{x}, \overline{\boldsymbol{y}}, \bar{z}) \in\{0,1\}^{|E|+|S|+|O|}
$$

be an extreme point of a block. Since all variables are binary, the set of these extreme points is

$$
\mathcal{W}=\left\{(\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}}, \overline{\boldsymbol{z}}) \in\{0,1\}^{|E|+|S|+|O|}: \text { fulfills }(3 \mathrm{c})-(3 \mathrm{f})\right\}
$$

Joint Order Batching and Picker Routing Problem with SS

Dantzig-Wolfe decomposition according to the order partitioning conditions (3b) and subsequent aggregation leads to a b-index-free formulation, which has the advantage of eliminating the inherent symmetry. Let

$$
(\bar{x}, \bar{y}, \bar{z}) \in\{0,1\}^{|E|+|S|+|O|}
$$

be an extreme point of a block. Since all variables are binary, the set of these extreme points is

$$
\mathcal{W}=\left\{(\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}}, \overline{\boldsymbol{z}}) \in\{0,1\}^{|E|+|S|+|O|}: \text { fulfills }(3 \mathrm{c})-(3 \mathrm{f})\right\}
$$

Extensive (=set partitioning, batch-based) formulation:

$$
\begin{array}{clll}
\min & \sum_{w=(\bar{x}, \bar{y}, \bar{z}) \in \mathcal{W}}\left(\boldsymbol{c}^{\top} \overline{\boldsymbol{x}}\right) \lambda_{w} & & \\
\text { subject to } \sum_{w=(\overline{\bar{x}, \bar{y}, \bar{z}) \in \mathcal{W}}}\left(\bar{z}_{o}\right) \lambda_{w}=1 & \text { dual: }\left[\pi_{o}\right] \quad & \forall o \in O \\
\lambda_{w} \in\{0,1\} & & \forall w \in \mathcal{W} \tag{4c}
\end{array}
$$

BPC Algorithm for JOBPRP-SS

Components of the BPC algorithm:

- Column Generation:
- Pricing problem is the PSPRP-SS solved by a MIP solver
- Partial pricing hierarchy: (1) Hash table, (2) VND-based heuristic, and (3) MIP solver on reduced extended state space

BPC Algorithm for JOBPRP-SS

Components of the BPC algorithm:

- Column Generation:
- Pricing problem is the PSPRP-SS solved by a MIP solver
- Partial pricing hierarchy: (1) Hash table, (2) VND-based heuristic, and (3) MIP solver on reduced extended state space
- Branching:

1 Number of batches (a priori computation of \underline{b})
2 Ryan/Foster $\left(z_{o_{1}}=z_{o_{2}}\right.$ or $z_{o_{1}}+z_{o_{2}} \leq 1$; prioritize branching on large orders)

BPC Algorithm for JOBPRP-SS

Components of the BPC algorithm:

- Column Generation:
- Pricing problem is the PSPRP-SS solved by a MIP solver

■ Partial pricing hierarchy: (1) Hash table, (2) VND-based heuristic, and (3) MIP solver on reduced extended state space

- Branching:

1 Number of batches (a priori computation of \underline{b})
2 Ryan/Foster ($z_{o_{1}}=z_{o_{2}}$ or $z_{o_{1}}+z_{o_{2}} \leq 1$; prioritize branching on large orders)

- MIP Solver Heuristic: Solve RMP as an integer program with the MIP solver in a limited number of branch-and-bound nodes

BPC Algorithm for JOBPRP-SS

Components of the BPC algorithm:

- Column Generation:
- Pricing problem is the PSPRP-SS solved by a MIP solver

■ Partial pricing hierarchy: (1) Hash table, (2) VND-based heuristic, and (3) MIP solver on reduced extended state space

- Branching:

1 Number of batches (a priori computation of \underline{b})
2 Ryan/Foster $\left(z_{O_{1}}=z_{O_{2}}\right.$ or $z_{O_{1}}+z_{O_{2}} \leq 1$; prioritize branching on large orders)

- MIP Solver Heuristic: Solve RMP as an integer program with the MIP solver in a limited number of branch-and-bound nodes

■ Cutting: Subset-row inequalities (Jepsen et al., 2008) for subsets $|R|=3$ and 4, capacity cuts (Baldacci et al., 2008)

New Benchmark Set for JOBPRP-SS

- Picker capacity $Q: 20,50$
- Number of orders $|O|: 10,20,50$
- Order size s: uniformly distributed on [3, 7], [10, 20]
- Class-based storage policies

$$
\begin{array}{lllr}
\text { class A: } & 20 \% \text { of articles } & \rightarrow & 80 \% \text { of sales } \\
\text { class B: } & 30 \% \text { of articles } & \rightarrow & 15 \% \text { of sales } \\
\text { class C: } & 50 \% \text { of articles } & \rightarrow & 5 \% \text { of sales }
\end{array}
$$

New Benchmark Set for JOBPRP-SS

- Picker capacity $Q: 20,50$
- Number of orders $|O|: 10,20,50$
- Order size s : uniformly distributed on [3, 7], [10, 20]
- Class-based storage policies

class $\mathrm{A}:$	20% of articles	\rightarrow	80% of sales
class B:	30% of articles	\rightarrow	15% of sales
class $\mathrm{C}:$	50% of articles	\rightarrow	5% of sales

- Scatter factor $\alpha=2$, scattering of (A/B/C) dependent on storage policy (Korbacher et al., 2022)

Preliminary Results for JOBPRP-SS

				acro	s-aisle		gonal		meter		orm	with	-aisle
Q	\bar{s}	\|O		\#inst	\#opt	time \bar{t}							
20	5	10	10	10	4.2	10	5.2	10	33.3	10	59.0	10	17.2
		20	10	10	268.2	10	139.1	5	1903.7	7	1385.9	8	1281.9
		50	10	2	3039.0	0	TL	0	TL	0	TL	0	TL
	15	10	10	10	1.4	10	1.4	10	1.7	10	29.5	10	1.1
		20	10	10	5.1	10	5.2	10	5.0	10	86.0	10	4.6
		50	10	10	77.8	10	93.5	10	85.4	10	207.4	10	80.6
50	5	10	10	10	8.7	10	7.4	10	6.3	10	115.0	10	4.9
		20	10	6	2222.3	7	1643.2	5	2439.6	2	3297.9	4	2315.6
		50	10	0	TL								
	15	10	10	10	6.7	10	7.3	10	5.3	10	132.9	10	13.9
		20	10	10	91.5	9	701.0	6	1508.2	9	1676.5	8	874.4
		50	10	1	3548.8	1	3359.8	1	3550.5	0	TL	0	TL
Total Average			120	89	1052.0	87	1096.9	77	1394.9	78	1482.5	80	1282.8

- Across-aisle and diagonal are easiest to solve
- Instances with many orders $|\mathrm{O}|$ and many orders per tour Q / \bar{s} are difficult to solve

Average Costs for JOBPRP-SS

Q	\bar{s}	$\|\mathrm{O}\|$	within-aisle	diagonal	across-aisle	perimeter	uniform
20	$\mathbf{5}$	10	$\mathbf{3 3 2 . 4}$	359.0	378.6	440.4	447.6
		20	$\mathbf{5 2 1 . 8}$	596.8	643.6	751.2	780.3
	$\mathbf{1 5}$	10	$\mathbf{9 3 4 . 0}$	1142.0	1242.4	1466.0	1648.2
		20	$\mathbf{1 8 2 8 . 8}$	2397.8	2508.4	2830.4	3492.8
50	5	10	$\mathbf{2 2 1 . 6}$	241.0	247.4	235.8	303.8
		20	$\mathbf{3 3 1 . 0}$	370.0	386.7	382.0	502.0
	15	10	$\mathbf{4 7 1 . 0}$	544.6	603.0	602.6	822.4
		20	$\mathbf{7 6 9 . 3}$	1037.8	1117.4	1090.3	1576.0
Average		$\mathbf{1 3 2 5 . 8}$	1664.9	$\mathbf{1 7 3 6 . 9}$	1880.8	2628.2	

- Within-aisle has on average lowest cost
- Uniformly distributed has on average highest cost

Conclusions and Outlook for JOBPRP-SS

BPC algorithm for JOBPRP-SS:

- To the best of our knowledge first solution approach
- Instances of medium size can be solved to proven optimality
- Cost comparison between different storage policies

Conclusions and Outlook for JOBPRP-SS

BPC algorithm for JOBPRP-SS:

- To the best of our knowledge first solution approach
- Instances of medium size can be solved to proven optimality
- Cost comparison between different storage policies

Outlook:

- Refinement of the BPC (strong branching, heuristic pricing, number of SRIs/CCs, etc.)
- State-space and extended state-space can be modified to restrict solution to routing policies traversal, midpoint, return, largest gap, composite (Korbacher et al., 2022)

Thank you for listening!

Questions?!

Contact:
Katrin Heßler
Operations Research Specialist
katrin.hessler@dbschenker.com

Baldacci, R., Christofides, N., and Mingozzi, A. (2008). An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts. Mathematical Programming, 115(2), 351-385.
Boysen, N., de Koster, R., and Weidinger, F. (2019). Warehousing in the e-commerce era: A survey. European Journal of Operational Research, 277(2), 396-411.

Goeke, D. and Schneider, M. (2021). Modeling single-picker routing problems in classical and modern warehouses. INFORMS Journal on Computing, 33(2), 436-451.

Heßler, K. and Irnich, S. (2023). Exact solution of the single picker routing problem with scattered storage. Technical Report LM-2023-02, Chair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz, Mainz, Germany.
Hintsch, T., Irnich, S., and Kiilerich, L. (2021). Branch-price-and-cut for the soft-clustered capacitated arc-routing problem. Transportation Science, 55(3), 687-705.

Jepsen, M., Petersen, B., Spoorendonk, S., and Pisinger, D. (2008). Subset-row inequalities applied to the vehicle-routing problem with time windows. Operations Research, 56(2), 497-511.
Korbacher, L., Heßler, K., and Irnich, S. (2022). An evaluation of several heuristic routing policies for the single picker routing problem with scattered storage. Technical Report LM-2022-0x, Chair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz, Mainz, Germany. In preparation.

Ratliff, H. D. and Rosenthal, A. S. (1983). Order-picking in a rectangular warehouse: A solvable case of the traveling salesman problem. Operations Research, 31(3), 507-521.
Wahlen, J. and Gschwind, T. (2023). Branch-price-and-cut-based solution of order batching problems. Transportation Science.
Weidinger, F. (2018). Picker routing in rectangular mixed shelves warehouses. Computers \& Operations Research, 95, 139-150.
Weidinger, F. and Boysen, N. (2018). Scattered storage: How to distribute stock keeping units all around a mixed-shelves warehouse. Transportation Science, 52(6), 1412-1427.
Weidinger, F., Boysen, N., and Schneider, M. (2019). Picker routing in the mixed-shelves warehouses of e-commerce retailers. European Journal of Operational Research, 274(2), 501-515.

Subset-Row Inequalities in MIP-based Pricing

Master problem: A SRI is defined by a subset $R=\left\{o_{1}, o_{2}, \ldots, o_{q}\right\} \subseteq O$ of $q \geq 3$ different rows and weights $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{q}\right)$ as

$$
\sum_{w=(\bar{x}, \bar{y}, \bar{z}) \in \mathcal{W}}\left\lfloor\sum_{j=1}^{q} \bar{z}_{o_{j}} u_{o_{j}}\right\rfloor \lambda_{w} \leq\left\lfloor\sum_{j=1}^{q} u_{j}\right\rfloor . \quad \text { dual: }[\tau(R, u)]
$$

Subset-Row Inequalities in MIP-based Pricing

Master problem: A SRI is defined by a subset $R=\left\{o_{1}, o_{2}, \ldots, o_{q}\right\} \subseteq O$ of $q \geq 3$ different rows and weights $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{q}\right)$ as

$$
\sum_{w=(\bar{x}, \bar{y}, \bar{z}) \in \mathcal{W}}\left\lfloor\sum_{j=1}^{q} \bar{z}_{o_{j}} u_{o_{j}}\right\rfloor \lambda_{w} \leq\left\lfloor\sum_{j=1}^{q} u_{j}\right\rfloor . \quad \text { dual: }[\tau(R, u)]
$$

Reduced cost of a variable λ_{w} for $w=(\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}}, \overline{\mathbf{z}}) \in \mathcal{W}$ is:

$$
\begin{aligned}
\tilde{c}_{w}(\pi, \tau)=\sum_{e \in E} c_{e} \bar{x}_{e}- & \sum_{o \in O} \bar{z}_{o} \pi_{o} \\
& \left.\left.-\sum_{\substack{\left(R=\left\{o_{\mathbf{1}}, o_{\mathbf{2}}, \ldots, o_{q}\right\}, u=\left(u_{\mathbf{1}}, u_{\mathbf{2}}, \ldots, u_{q}\right)\right)}} \mid \sum_{j=1}^{q} \bar{z}_{o_{j}} u_{o_{j}}\right\rfloor \tau_{(R, u)}\right\rfloor
\end{aligned}
$$

Subset-Row Inequalities in MIP-based Pricing

Master problem: A SRI is defined by a subset $R=\left\{o_{1}, o_{2}, \ldots, o_{q}\right\} \subseteq O$ of $q \geq 3$ different rows and weights $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{q}\right)$ as

$$
\sum_{w=(\bar{x}, \bar{y}, \bar{z}) \in \mathcal{W}}\left\lfloor\sum_{j=1}^{q} \bar{z}_{o_{j}} u_{o_{j}}\right\rfloor \lambda_{w} \leq\left\lfloor\sum_{j=1}^{q} u_{j}\right\rfloor . \quad \text { dual: }[\tau(R, u)]
$$

Reduced cost of a variable λ_{w} for $w=(\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}}, \overline{\mathbf{z}}) \in \mathcal{W}$ is:

$$
\begin{aligned}
\tilde{c}_{w}(\pi, \tau)=\sum_{e \in E} c_{e} \bar{x}_{e}- & \sum_{o \in O} \bar{z}_{o} \pi_{o} \\
& -\sum_{\substack{\left(R=\left\{o_{\mathbf{1}}, o_{2}, \ldots, o_{q}\right\}, u=\left(u_{\mathbf{1}}, u_{2}, \ldots, u_{q}\right)\right)}}\left\lfloor\sum_{j=1}^{q} \bar{z}_{o_{j}} u_{o_{j}}\right\rfloor \tau_{(R, u)}
\end{aligned}
$$

Pricing problem: For each active SRI defined by (R, u), a non-negative integer variable $t_{R, u}$ must be introduced. It models the coefficient of $\tau_{(R, u)}$ in the last sum.

Subset-Row Inequalities in MIP-based Pricing

For $R=\left\{o_{1}, o_{2}, o_{3}\right\}$ and the unique undominated weights $\left(u_{1}, u_{2}, u_{3}\right)=(1 / 2,1 / 2,1 / 2)$, the coupling between the z - and the t-variable can be accomplished via

$$
z_{O_{1}}+z_{O_{2}}+z_{O_{3}}-2 t_{R, u} \leq 1 \quad \text { or } \quad \begin{aligned}
& z_{O_{1}}+z_{O_{2}} \\
& z_{O_{1}} \\
& \\
& \\
& \\
& +z_{O_{2}}+t_{R, u} \leq t_{O_{3}}-t_{R, u} \leq 1 \\
& \leq 1
\end{aligned}
$$

Subset-Row Inequalities in MIP-based Pricing

For $R=\left\{o_{1}, o_{2}, o_{3}\right\}$ and the unique undominated weights $\left(u_{1}, u_{2}, u_{3}\right)=(1 / 2,1 / 2,1 / 2)$, the coupling between the z - and the t-variable can be accomplished via

$$
z_{o_{1}}+z_{O_{2}}+z_{O_{3}}-2 t_{R, u} \leq 1 \quad \text { or } \quad \begin{aligned}
& z_{o_{1}}+z_{o_{2}} \\
& z_{o_{1}} \\
& \\
& \\
& +z_{O_{2}}+t_{o_{3}}-t_{R, u} \leq 1 \\
& o_{R, u} \leq t_{R, u} \leq 1
\end{aligned}
$$

For $R=\left\{o_{1}, o_{2}, o_{3}, o_{4}\right\}$ and the unique undominated weights $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=(2 / 3,1 / 3,1 / 3,1 / 3)$,

Subset-Row Inequalities in MIP-based Pricing

For $R=\left\{o_{1}, o_{2}, o_{3}\right\}$ and the unique undominated weights $\left(u_{1}, u_{2}, u_{3}\right)=(1 / 2,1 / 2,1 / 2)$, the coupling between the z - and the t-variable can be accomplished via

$$
z_{O_{1}}+z_{O_{2}}+z_{O_{3}}-2 t_{R, u} \leq 1 \quad \text { or } \quad \begin{aligned}
& z_{o_{1}}+z_{O_{2}} \\
& z_{O_{1}} \\
& \\
& \\
& \\
& +z_{O_{O_{2}}}-t_{R, u} \leq t_{R, u} \leq 1 \\
&
\end{aligned}
$$

For $R=\left\{o_{1}, o_{2}, o_{3}, o_{4}\right\}$ and the unique undominated weights $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=(2 / 3,1 / 3,1 / 3,1 / 3)$,

$$
2 z_{O_{1}}+z_{O_{2}}+z_{O_{3}}+z_{O_{4}}-3 t_{R, u} \leq 2 \text { or } \quad \begin{aligned}
& z_{O_{1}}+z_{O_{2}} \\
& z_{O_{1}}
\end{aligned} \quad \begin{aligned}
& -t_{R, u} \leq 1 \\
& z_{O_{1}}
\end{aligned} \quad \begin{aligned}
& \quad-t_{R, u} \leq 1 \\
& z_{O_{O_{2}}}+z_{O_{3}}+z_{O_{4}}-t_{R, u} \leq 1
\end{aligned}
$$

Neither of the two formulations is dominating the other. Use both formulations together (Hintsch et al., 2021).

