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Fractional bin packing problem
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The bin packing problem (BPP)

Given:

I a set N = {1, . . . , n} of n items with positive integer weights w1, . . . ,wn

I an unlimited number of bins with a positive integer capacity C

the bin packing problem (BPP) asks to compute the minimum number of
bins that are necessary to pack all the items.
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A set-covering model for the BPP

A feasible (cutting) pattern is any subset of items respecting the bin capacity:

S ⊆ N with
∑
j∈S

wj ≤ C

Let S be the collection of all feasible cutting patterns:

S =

S ⊆ N :
∑
j∈S

wj ≤ C

 and S (j) = {S ∈ S : j ∈ S}

The set-covering model for the BPP reads as follows:

min
y∈{0,1}|S |

∑
S∈S

yS :
∑

S∈S (j)

yS ≥ 1, ∀j ∈ N


A very strong ILP model with an exponential number of binary variables!
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The fractional bin packing problem

The lower bound ζ provided by the optimal solution value of the LP
relaxation is called the fractional bin packing number:

ζ = min
y≥0

∑
S∈S

yS :
∑

S∈S (j)

yS ≥ 1, ∀j ∈ N


The difference between the optimal solution values of the set-covering model
and those of the its LP relaxation is, typically, smaller or equal to 1:

modified integer round-up property (MIRUP) conjecture

The dual model reads as follows:

ζ = max
π≥0

∑
j∈N

πj :
∑
i∈S

πj ≤ 1, ∀S ∈ S


A LP model with an exponential number of constraints!
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Primal-column generation – dual-constraint separation

The dual model containing a subset constraints is called restricted master
problem (RMP):

max
π≥0

∑
j∈N

πj :
∑
i∈S

πj ≤ 1, ∀S ∈ S̃


Let π∗ be an optimal dual solution, the pricing problem is:

find S∗ ∈ S such that
∑
j∈S∗

π∗j > 1

It is equivalent to the following knapsack problem (KP):

max
x∈{0,1}n

∑
j∈N

π∗j xj :
∑
j∈N

wj xj ≤ C

 .

If its optimal solution value is > 1 then a violated dual constraint is found and
added to the RMP.
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Separation of dual constraints

[1] Edited by Martin Grötschel.
The Sharpest Cut: The Impact of Manfred Padberg and His Work.
SIAM Series on Optimization, 2004.
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Example of dual constraints

{
π ∈ R3

+ : π1 + π2 ≤ 1
}

π1

π2

π3

{
π ∈ R3

+ : π1 + π3 ≤ 1
}

π1

π2

π3
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Maximum dual-constraint violation

An optimal RMP solution:

π∗1 =
7
10
, π∗2 = 1, π∗3 = 0

The pricing problem:

max
7
10

x1 + x2

3 x1 + 2 x2 + x3 ≤ 5

x1, x2, x3 ∈ {0, 1}

S∗ = {1, 2} and the dual
constraint:

π1 + π2 ≤ 1
0 7

10
1

0

1

( 7
10 , 1, 0

)

π1

π2
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Geometrical interpretation of the maximum violation

The constraint violation is the minimum distance of the point π∗ ∈ Rn

from the supporting hyper-plane of the dual constraint multiplied by the
2-norm of its coefficients.

A dual constraint:∑
j∈N

xj πj ≤ 1 with xj ∈ {0, 1},∀j ∈ N

its supporting hyperplane:∑
j∈N

xj πj − 1 = 0

the euclidean distance:

d(π∗, x) =

∣∣∣∑j∈N xj π
∗
j − 1

∣∣∣
||x||2

0 7
10

1

0

1

( 7
10 , 1, 0

)
1√
2
· 7

10

x1 = 1
x2 = 1
x3 = 0

π1

π2



fractional bin packing problem sharp BPP columns computational experience references

Geometrical interpretation of the maximum violation

The constraint violation is the minimum distance of the point π∗ ∈ Rn

from the supporting hyper-plane of the dual constraint multiplied by the
2-norm of its coefficients.

A dual constraint:∑
j∈N

xj πj ≤ 1 with xj ∈ {0, 1},∀j ∈ N

its supporting hyperplane:∑
j∈N

xj πj − 1 = 0

the euclidean distance:

d(π∗, x) =

∣∣∣∑j∈N xj π
∗
j − 1

∣∣∣
||x||2

0 7
10

1

0

1

( 7
10 , 1, 0

)
1√
2
· 7

10

x1 = 1
x2 = 1
x3 = 0

π1

π2



fractional bin packing problem sharp BPP columns computational experience references

Geometrical interpretation of the maximum violation

The constraint violation is the minimum distance of the point π∗ ∈ Rn

from the supporting hyper-plane of the dual constraint multiplied by the
2-norm of its coefficients.

A dual constraint:∑
j∈N

xj πj ≤ 1 with xj ∈ {0, 1},∀j ∈ N

its supporting hyperplane:∑
j∈N

xj πj − 1 = 0

the euclidean distance:

d(π∗, x) =

∣∣∣∑j∈N xj π
∗
j − 1

∣∣∣
||x||2

0 7
10

1

0

1

( 7
10 , 1, 0

)
1√
2
· 7

10

x1 = 1
x2 = 1
x3 = 0

π1

π2



fractional bin packing problem sharp BPP columns computational experience references

Sharp BPP columns
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Sharp BPP columns – basic concepts

Rule of thumb

I The pricing problems are solved
very efficiently by specialized
dynamic programming algorithms

I Pattern of maximum violation
correspond to columns with the
largest reduced costs

I Maximal patterns lead to
non-dominated dual constraints

... but we can do a bit more to speed up the convergence!
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Maximal columns – non-dominated constraints

The pricing problem very often admit many different
maximal columns even when restricting ourselves to

columns of maximum reduced cost/violation.

I This is clear when π∗ is sparse, which is often the case as, due to
complementary slackness:

π∗j = 0 whenever
∑

S∈S (j)

yS > 1

The natural question is then:

should some of these maximal columns be preferred to
the other ones?
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Three measures of maximality
1. Item-Weight

The total weight of the items in the pattern S ⊆ N:

gw (x) =
∑
j∈N

wj xj

maximum weight
∑

j∈S wj implies minimum waste C −
∑

j∈S wj

2. Item-Diversity

The 1-norm distance ||x − s̃||1 between the column and the average s̃ of
the previously generated columns plus a trade-off with the density:

gc(x) := ||x − s̃||1 + δ||x ||1 =
∑
j∈N

(3− 2s̃j) xj +
∑
j∈N

s̃j

Since the columns are binary and setting δ = 2 (see Amaldi et al. 2014.)

3. Item-Density

gd(x) = ||x ||1 =
∑
j∈N

xj = |S|
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Example of different maximal columns
I Consider the following instance with n = 6 items and C = 100:

j 1 2 3 4 5 6

wj 50 8 9 49 26 25

The RMP contains Sj = {j},∀j ∈ N and S7 = {1, 2, 3, 6}.

π∗j 1 0 0 1 1 0

s̃j
2
7

2
7

2
7

1
7

1
7

2
7

3− 2 s̃j
17
7

17
7

17
7

19
7

19
7

17
7

I Maximal patterns of maximum reduced cost equal to 1:

pattern density gd weight gw diversity gc

S8 = {1, 2, 3, 5} 4 93 10

S9 = {2, 3, 4, 5} 4 92 72
7 ≈ 10.28

S10 = {4, 5, 6} 3 100 55
7 ≈ 7.85
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Lexicographic dynamic programming pricing (LPP)

Multi-objective pricing problem with two objectives: the maximum reduced
cost and one of the three maximality measures gd , gw and gc .

max lex
x∈{0,1}n

(f (x), g(x)) :∑
j∈N

wj xj ≤ C

 where f (x) =
∑
j∈N

π∗j xj

Lexicographic recursive formula (φ represents f and γ represents g):

(
φj(s)
γj(s)

)
=



(
φj−1(s)
γj−1(s)

)
if

(
φj−1(s)
γj−1(s)

)
�

(
φj−1(s − wj) + π∗j
γj−1(s − wj) + cj

)
(
φj−1(s − wj) + π∗j
γj−1(s − wj) + cj

)
if

(
φj−1(s)
γj−1(s)

)
≺

(
φj−1(s − wj) + π∗j
γj−1(s − wj) + cj

)

φj(s) and γj(s) are the values in terms of, respectively, f and g, of an optimal
solution to the problem restricted to items in {1, . . . , j} and capacity s ≤ C
(cj = 1, cj = wj , and cj = 3− 2s̃j for gd , gw , and gc).

Pseudopolynomial time complexity O(n C) as the standard DP!
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Computational experience
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Testbed BPP instances

n C
class # inst min max min max

Falkenauer T 80 60 501 1000 1000
Falkenauer U 80 120 1000 150 150
Hard 28 28 160 200 1000 1000
School 1 720 50 500 100 150
School 2 480 50 500 1000 1000
School 3 10 200 200 100000 100000
Schwerin 1 100 100 100 1000 1000
Schwerin 2 100 120 120 1000 1000
Wäscher 17 57 239 10000 10000

We discard 130 easy and small instances of class School 1 since they are
all solved by generating less that 100 columns, thus obtaining a testbed of:

1475 instances
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School 2 480 50 500 1000 1000
School 3 10 200 200 100000 100000
Schwerin 1 100 100 100 1000 1000
Schwerin 2 100 120 120 1000 1000
Wäscher 17 57 239 10000 10000

We discard 130 easy and small instances of class School 1 since they are
all solved by generating less that 100 columns, thus obtaining a testbed of:

1475 instances
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Configurations
The four CG algorithms are:

1. DP-STD: it employs the non-lexicographic DP algorithm by which the PP
is solved so to guarantee the maximality of the resulting column.

2. LEX-DENS: it employs the novel LEX-DP algorithm for solving the LPP
with g(x) = gd (x) (i.e., using Density as second-level objective function).

3. LEX-WEIGHT: it employs the novel LEX-DP algorithm for solving the
LPP with g(x) = gw (x) (i.e., using Weight as second-level objective
function).

4. LEX-DIVER: it employs the novel LEX-DP algorithm for solving the LPP
with g(x) = gc(x) (i.e., using Diversity as second-level objective
function).

They are all designed to guarantee the generation of a column
of minimum reduced cost which is maximal.
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Different optimal solutions?

different solutions [%] last iter. diff. sol. [%]
class Min Avg Max Min Avg Max

Falkenauer T 39.17 57.63 71.34 40.83 69.94 99.16
Falkenauer U 9.08 21.46 52.03 58.22 83.85 99.52
Hard 28 16.48 25.42 41.85 45.16 86.14 99.85
School 1 0.00 46.71 100.00 0.00 80.25 99.96
School 2 1.19 22.43 93.42 14.00 42.80 99.87
School 3 28.00 30.54 32.98 38.25 87.02 98.82
Schwerin 1 14.00 18.30 22.22 22.11 32.92 99.48
Schwerin 2 11.57 18.29 25.69 21.63 36.24 98.62
Wäscher 3.01 10.81 25.48 12.74 37.62 99.45

Estimate of the number of times the pricing problem admits two different
optimal solutions and of the last iteration in which two different optimal
solutions are found.
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Variation in the number of generated columns

# Cols Percentage Column Variation
class DP-STD LEX-DIVER LEX-WEIGHT LEX-DENS

Falkenauer T 596.5 -4.0 -44.4 0.1
Falkenauer U 1117.0 0.6 -6.5 0.8
Hard 28 760.0 1.8 -5.7 3.8
School 1 611.1 -12.0 -4.2 4.3
School 2 485.1 -1.9 -12.7 -0.2
School 3 618.6 -4.9 -22.7 0.0
Schwerin 1 213.7 1.1 -9.2 -0.1
Schwerin 2 248.0 -5.0 -7.9 -0.1
Wäscher 540.2 0.0 -5.1 2.4

Average number of columns for DP-STD and percentage variation for
LEX-DIVER, LEX-WEIGHT, and LEX-DENS per class of instances.
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Variation in the computing time

Time (s) Percentage Time Variation
class DP-STD LEX-DIVER LEX-WEIGHT LEX-DENS

Falkenauer T 90.2 1.0 -58.2 2.5
Falkenauer U 766.7 -5.3 -4.2 -0.4
Hard 28 18.1 5.4 -4.6 7.0
School 1 508.0 0.6 -0.9 6.5
School 2 1672.2 -3.1 -14.8 0.9
School 3 405.9 -16.5 -35.3 0.4
Schwerin 1 12.7 7.7 -12.5 0.7
Schwerin 2 18.2 -6.1 -11.0 2.7
Wäscher 83.5 -1.6 -5.2 1.7

Total computing time (in seconds) for DP-STD and percentage variation for
LEX-DIVER, LEX-WEIGHT, and LEX-DENS per class of instances.
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Performance profile (columns)
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Performance profile (computing time)
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Average filling of basic columns
For a given BPP instance and a given CG iteration, we compute the total item
weight of the basic columns divided by the bin capacity, which we then
average over the basic columns.
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The basic-column item-weight index as a function of the number of iterations,
subdivided into ten (percentage) intervals, obtained by running DP-STD.
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Combination with a smoothing stabilization technique

Perc. Column Variation Perc. Time Variation
DP-STD LEX-WEIGHT DP-STD LEX-WEIGHT

class +SMOOTH +SMOOTH +SMOOTH +SMOOTH

Falkenauer T -2.3 -44.7 -3.0 -51.8
Falkenauer U -8.1 -14.6 -19.0 -25.7
Hard 28 -11.7 -16.4 -14.1 -19.0
School 1 -11.8 -15.5 -16.5 -20.2
School 2 -5.1 -16.4 -8.3 -21.1
School 3 -5.3 -26.9 -15.1 -38.3
Schwerin 1 -4.7 -11.9 -6.9 -15.3
Schwerin 2 -4.6 -10.7 -6.6 -14.7
Wäscher -7.8 -11.2 -13.9 -16.1

Average number of columns and time percentage variation w.r.t. DP-STD
obtained with DP-STD+SMOOTH and LEX-WEIGHT+SMOOTH per class of
instances (see, e.g., Pessoa at al. 2018).
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Conclusions

I We have proposed a lexicographic pricing problem for the FBPP which,
among all the maximal columns of minimum reduced cost, generates
one which maximizes one of three measures of maximality (density,
weight, and diversity).

I Computational results on a large testbed of instances from the literature
suggest that solving a lexicographic pricer is indeed advantageous, and
that the adoption of the weight measure allows for a substantial
reduction in the number of columns and computing time.

Open questions:

I Why the weight maximality measure works so well for the FBBP?

I Does this approach can be successfully used for other problems?
Especially for problems in which the pricing problem is very time
consuming.
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Proposition
The optimal solutions of the FBPP and those of the following alternative
problem coincide:

argmin
y≥0

∑
S∈S

(C −
∑
j∈S

wj) yS :
∑

S∈S (j)

yS = 1, ∀j ∈ N

 .

Proof.
Due to the packing constraint, the objective function of the alternative problem
is obtained by affine transformation of the objective function of the FBPP:∑

S∈S

(C −
∑
j∈S

wj)yS = C
∑

S∈S

yS −
∑

S∈S

∑
j∈S

wjyS =

= C
∑

S∈S

yS −
∑
j∈S

wj

∑
S∈S :j∈S

yS︸ ︷︷ ︸
=1

=

= C
∑

S∈S

yS −
∑
j∈N

wj .

In an optimal FBBP solution the cover. constr. is satisfied as an equation.



fractional bin packing problem sharp BPP columns computational experience references

Proposition
Given any two patterns S1,S2 each of waste greater or equal than C

2 , a
solution to the FBPP with yS1 > 0 and yS2 > 0 cannot be optimal.

Proof.
The reason why such solution cannot be optimal is that, having waste greater
or equal than C

2 , the two patterns can be merged into a new pattern
S′ := S1 ∪ S2.

Indeed, letting

yS′ = max{yS1 , yS2}, yS1 = 0 and yS2 = 0

we obtain another feasible solution with an objective function value smaller
than that of the original one by

yS1 + yS2 −max{yS1 , yS2} > 0
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