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Takeaway 1:

Spliet (2023):
“Complexity result for pricing not enough for a CG talk”
(paraphrased)

Conclusion:
I shouldn’t be giving this talk!
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The two-stage vehicle routing problem

depot

G = (V ,E)

V = {0} ∪ V+

Edge lengths ℓe , e ∈ E

K vehicles, capacity C

Client demands Di , ∀i ∈ V+

are random variables.

Let Sj be the set of clients
served by route j .
Then
E[D(Sj)] :=

∑
u∈Sj

E[Du] ≤ C
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Two-stage stochastic VRP: Costs

Routes are decided a-priori (first stage): Incur a First stage cost

After demand realization, truck will follow route and pay second stage cost if
capacity is exceeded

Goal: Minimize expected cost (=first + expected second stage)
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Recourse actions

Simple recourse: C = 10
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The 2-stage VRPSD: Problem definition
Given:

G = (V ,E), V = {0} ∪ V+ (assume complete graph)

Edge lengths ℓe , e ∈ E

K vehicles, capacity C

Random demands Dj , ∀j ∈ V+

Given a route r = (0, v1, . . . , vk , 0), with v0 = vk+1 = 0.

It is feasible if
k∑

j=1

E[Dvj ] ≤ C

Its first-stage cost c ′r is the sum of the edge lengths, i.e. c ′r :=
k∑

j=0

ℓvj ,vj+1

Its second-stage cost c ′′r is the expected cost due to failures

▶ Let D(r , i) :=
i∑

j=1
Dvj

▶ The expected failure cost at the i-th vertex vi is

EFC(r , i) :=
∞∑
u=1

2ℓ0,vi (P[D(r , i − 1) ≤ uC and D(r , i) > uC ])

▶ c ′′r =
k∑

j=1
EFC(r , j)

Total expected cost: c̃r := c ′r + c ′′r
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Literature review

VRPSD (2-stage)

Heuristics: Stewart & Golden (1983), Dror & Trudeau (1986), Savelsbergh & Goetschalckx (1995),
Novoa et al. (2006), Secomandi and Margot (2009), . . .

Integer L-Shaped: Gendreau et al. (1994), Laporte et al. (2002), . . .

Branch-and-cut: Laporte et al. (1989), . . .

Branch-and-price: Christiansen et al. (2007)

Branch-and-cut-and-price: Gauvin et al. (2014)

Complex recourse policies: Florio et al. (2020, 2021, 2022), Salavati-Khoshghalb et al. (2019), Louveaux
and Salazar-González (2018).

Note: All approaches rely on strong assumptions on demands (independent random variables and/or particular
distribution, like normal)

Stochastic IP:

Sample average approximation approach widely used (Shultz 1996, Ahmed and Shapiro 2002, Wang and
Ahmed 2008, ...)

Idea: Sample true distribution and use these samples as “proxy” for it

Reduces problem to finite discrete distribution

Goal:

Develop models assuming that we are given a finite discrete distribution (scenarios).
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Set partitioning with q-routes IP formulation (Balinsky and Quandt(1964),
Christofides, Mingozzi and Toth, 1981)

Definition: A q-route is a walk that starts at the depot, traverses a sequence of
customers with total demand at most C, and returns to the depot.
One binary variable (zr ) per possible q-route:

min
∑
r∈R

c̃rzr

s.t.
∑
r∈R

zr = k∑
r∈R

airzr = 1 , ∀i ∈ V

zr ∈ {0, 1}

where:

R: set of all possible vehicle q-routes

air number of times q-route r goes through customer i .
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Pricing problem

After incorporating dual variables in costs, pricing problem amounts to solving a problem
of the form:

min
r∈R

c̃r (2SQ)

Main question

Can (2SQ) be solved in pseudo-polynomial time? NO

Observations:

Hardness of pricing q-routes implies hardness of pricing ng-routes

Hardness of pricing with “simple recourse” indicates hardness of pricing with more
complex recourse (though not necessarily implies it)
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The scenarios case
Consider a graph G = (V+ ∪ {0},E ′). Construct G ′ as follows:

0

and scenarios s ∈ {1, . . . , n = |V+|} with ps =
1
n
:

Ds
j =

{
n, if j = s
1, otherwise.

with C = 2n − 1.
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and scenarios s ∈ {1, . . . , n = |V+|} with ps =
1
n
:

Ds
j =

{
n, if j = s
1, otherwise.

with C = 2n − 1.

Lemma (F. and Gunter ’22)

Elementary routes r have c ′′r = 0. Nonelementary routes r have c ′′r ≥ n2.
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The scenarios case
Consider a graph G = (V+ ∪ {0},E ′). Construct G ′ as follows:

0 0

and scenarios s ∈ {1, . . . , n = |V+|} with ps =
1
n
:

Ds
j =

{
n, if j = s
1, otherwise.

with C = 2n − 1.

Theorem (F. and Gunter ’22)

G has a Hamiltonian-cycle if and only if the minimum 2-stage cost q-route is a
Hamiltonian cycle.
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Independent normal

Theorem (F. and Gunter ’22)

Suppose one can solve (2SQ) under the following assumptions:

1 Demands are independent and identically distributed normal N(µ, σ2)

2 µ and σ2 are constant integers which do not grow in n.

3 C polynomially bounded in n.

4 All elementary operations can be performed in O(1) time.

5 RF (µ, σ2) is computable in polynomial time.

Then there exists an algorithm using polynomially many operations that solves the
Hamiltonian cycle problem with polynomially many calls to this algorithm.

Comments:

Indicates strong NP-hardness but does not prove it

Knapsack is polytime solvable with either small weights or small costs
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P=NP?
Christiansen and Lysgaard (2007), Gauvin et al (2014):
Propose a pseudo-polynomial time algorithm for pricing for independent normal demands
N(µi , σ

2
i ), with µi , σ

2
i integers.

Issue:

What is the probability distribution of the total demand of r? (Assume µi = σ2
i = 1)

0

1

2

3

Figure: Route r = (0, 1, 2, 1, 0).

Our work (Customer independence):
Calculates second stage cost c̃ based on 2D1 + D2 ∼ N(3, 5)

Christiansen and Lysgaard (2007) (Route independence):
Calculates a different cost ĉ, based on N(3, 3) - Sum of three independent N(1, 1)
random variables:

On elementary routes, both approaches calculate the same expected cost.
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Can this idea help with scenarios?

What if we solve

min
r∈R

ĉr (2SQ’)

where ĉr = c̃r for all elementary r .

Theorem (F. and Ota ’23)

(2SQ’) is strongly NP-hard when demands are given as scenarios
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Proof idea:

Given G = (V ,E) with n vertices, m edges, we wish to find maximum cardinality
independent set.
Solve (2SQ’) on the following graph:

0

Observations:

Graph above is independent of G

All routes are elementary, thus (2SQ’) and (2SQ) are the same
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Proof idea:

C = 2m − 1, and create m = |E | scenarios:
Scenario for edge e = ij is:

De(w) =

{
m, if w = i or j
0, otherwise.

0

If a route goes through both i and j , then in scenario D ij , capacity is exceeded, so
total cost will be positive

There exists a route of cost 0

Negative cost route goes through a subset of vertices S that form an independent
set in G

R. Fukasawa VRPSD 19 / 21



Conclusion

Main takeaway

Pricing with correlations is hard
(also pointed out in Gendreau, Jabali and Rey 2016)

Future work:

Can specific reduced cost structure help?

Do we need to solve (2SQ)?

Branch-and-cut and branch-and-price for the problem (and other variants)
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THANK YOU!
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