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Takeaway 1:

@ Spliet (2023):
“Complexity result for pricing not enough for a CG talk”
(paraphrased)
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Takeaway 1:

@ Spliet (2023):
“Complexity result for pricing not enough for a CG talk”
(paraphrased)

@ Conclusion:
| shouldn't be giving this talk!
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The two-stage vehicle routing problem

G=(V,E)
d o V= {0} @] V+
Edge lengths {., e € E

K vehicles, capacity C

Client demands D;,Vi € V4
are random variables.

Let S; be the set of clients
served by route j.
. . * Then

. E[D(5)]:= > E[D,] < C

. u€es;
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K vehicles, capacity C

Client demands D;,Vi € V.
are random variables.

Let S; be the set of clients
served by route j.

Then

E[D(5)]:= > E[D,] < C

u€es;

depot
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Two-stage stochastic VRP: Costs

o Routes are decided a-priori (first stage): Incur a First stage cost

o After demand realization, truck will follow route and pay second stage cost if
capacity is exceeded

@ Goal: Minimize expected cost (=first 4 expected second stage)
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The 2-stage VRPSD: Problem definition

Given:
o G=(V,E), V={0}U V, (assume complete graph)
o Edge lengths {., e € E
@ K vehicles, capacity C
@ Random demands D;,Vj € V4

Given a route r = (0, v1, ..., v, 0), with vo = vk41 = 0.

K
o It is feasible if Y E[D,] < C
=1

J
K
o Its first-stage cost ¢; is the sum of the edge lengths, i.e. ¢/ := > Ly v,
j=0
@ Its second-stage cost ¢’ is the expected cost due to failures
i
> Let D(r,i):= > Dy,
j=1
> The expected failure cost at the i-th vertex v; is
o0
EFC(r,i):= > 20o,,(P[D(r,i — 1) < uC and D(r,i) > uC])
u=1
k
> ¢/ = > EFC(r,j))
j=1

o Total expected cost: & :=c, + ¢/
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Literature review

VRPSD (2-stage)

Heuristics: Stewart & Golden (1983), Dror & Trudeau (1986), Savelsbergh & Goetschalckx (1995),
Novoa et al. (2006), Secomandi and Margot (2009), . . .

Integer L-Shaped: Gendreau et al. (1994), Laporte et al. (2002), ...
Branch-and-cut: Laporte et al. (1989), ...

Branch-and-price: Christiansen et al. (2007)
Branch-and-cut-and-price: Gauvin et al. (2014)

Complex recourse policies: Florio et al. (2020, 2021, 2022), Salavati-Khoshghalb et al. (2019), Louveaux
and Salazar-Gonzélez (2018).

Note: All approaches rely on strong assumptions on demands (independent random variables and/or particular

distribution, like normal)
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Complex recourse policies: Florio et al. (2020, 2021, 2022), Salavati-Khoshghalb et al. (2019), Louveaux
and Salazar-Gonzélez (2018).

Note: All approaches rely on strong assumptions on demands (independent random variables and/or particular
distribution, like normal)

Stochastic IP:

@ Sample average approximation approach widely used (Shultz 1996, Ahmed and Shapiro 2002, Wang and
Ahmed 2008, ...)

@ |dea: Sample true distribution and use these samples as “proxy” for it

@ Reduces problem to finite discrete distribution

Goal:
Develop models assuming that we are given a finite discrete distribution (scenarios). J
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Set partitioning with g-routes IP formulation (Balinsky and Quandt(1964),
Christofides, Mingozzi and Toth, 1981)

Definition: A g-route is a walk that starts at the depot, traverses a sequence of
customers with total demand at most C, and returns to the depot.
One binary variable (z;) per possible g-route:

min Y &z

rerR
s.t. >z = k
rer
Soawze = 1 VieV
rerR
zz € {0,1}

where:
@ R: set of all possible vehicle g-routes

@ a;j number of times g-route r goes through customer i.
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Pricing problem

After incorporating dual variables in costs, pricing problem amounts to solving a problem
of the form:

min & (2SQ)

reR
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Pricing problem

After incorporating dual variables in costs, pricing problem amounts to solving a problem
of the form:

min & (2SQ)
Main question
Can (2SQ) be solved in pseudo-polynomial time? NO J

Observations:
@ Hardness of pricing g-routes implies hardness of pricing ng-routes

o Hardness of pricing with “simple recourse” indicates hardness of pricing with more
complex recourse (though not necessarily implies it)
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The scenarios case
Consider a graph G = (V4 U {0}, E').

and scenarios s € {1,...,n= |V, |} with p; = 1:

s_Jon ifj=s
b; _{ 1, otherwise.
with C =2n— 1.
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The scenarios case
Consider a graph G = (V4 U {0}, E’). Construct G’ as follows:

_—— = 0

—_— = 341
and scenarios s € {1,...,n= |V, |} with p; = 1:
s _ | n ifj=s
bj _{ 1, otherwise.
with € =2n— 1.
Lemma (F. and Gunter '22)
Elementary routes r have ¢/ = 0. Nonelementary routes r have ¢/’ > n®. J
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The scenarios case

Consider a graph G = (V4 U {0}, E’). Construct G’ as follows:

— 1.

and scenarios s € {1,...,n = |V,|} with p; = +:

D?:{ n, ifj=s

1, otherwise.
with € =2n— 1.

Lemma (F. and Gunter '22)
A g-route is feasible if and only if it has length < n.

_—— = 0

—— - — nd+1
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The scenarios case

Consider a graph G = (V4 U {0}, E’). Construct G’ as follows:

— 1.

and scenarios s € {1,...,n = |V,|} with p; = +:

Df:{ n, ifj=s

1, otherwise.
with € =2n— 1.

Lemma (F. and Gunter '22)

A minimum 2-stage cost g-route must be elementary.

_—— = 0

—— - — nd+1
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The scenarios case
Consider a graph G = (V4 U {0}, E’). Construct G’ as follows:

_—— = 0

—-—— = ¥+l

and scenarios s € {1,...,n= |V, |} with p; = 1:

Df:{ n, ifj=s

1, otherwise.
with € =2n—1.
Theorem (F. and Gunter '22)

G has a Hamiltonian-cycle if and only if the minimum 2-stage cost g-route is a
Hamiltonian cycle.

R. Fukasawa VRPSD 12 /21



Outline

© Introduction

@ Pricing complexity results

@ Independent normal

© Conclusion

R. Fukasawa VRPSD



Independent normal

Theorem (F. and Gunter '22)

Suppose one can solve (2SQ) under the following assumptions:
@ Demands are independent and identically distributed normal N(u,o?)
@ 1 and o are constant integers which do not grow in n.
© C polynomially bounded in n.
@ All elementary operations can be performed in O(1) time.
@ RF(u,0°) is computable in polynomial time.

Then there exists an algorithm using polynomially many operations that solves the
Hamiltonian cycle problem with polynomially many calls to this algorithm.
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Independent normal

Theorem (F. and Gunter '22)

Suppose one can solve (2SQ) under the following assumptions:
@ Demands are independent and identically distributed normal N(u,o?)
@ 1 and o are constant integers which do not grow in n.
© C polynomially bounded in n.
@ All elementary operations can be performed in O(1) time.
@ RF(u,0°) is computable in polynomial time.

Then there exists an algorithm using polynomially many operations that solves the
Hamiltonian cycle problem with polynomially many calls to this algorithm.

Comments:
@ Indicates strong NP-hardness but does not prove it

@ Knapsack is polytime solvable with either small weights or small costs
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P=NP?
Christiansen and Lysgaard (2007), Gauvin et al (2014):

Propose a pseudo-polynomial time algorithm for pricing for independent normal demands
N(ui,0?), with p;, o? integers.

R. Fukasawa VRPSD 15 /21



P=NP?
Christiansen and Lysgaard (2007), Gauvin et al (2014):

Propose a pseudo-polynomial time algorithm for pricing for independent normal demands

N(ui,0?), with p;, o? integers.

Issue:
What is the probability distribution of the total demand of r? (Assume pu; = o7 = 1) J

A

o,

Figure: Route r = (0,1,2,1,0).
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P=NP?
Christiansen and Lysgaard (2007), Gauvin et al (2014):

Propose a pseudo-polynomial time algorithm for pricing for independent normal demands
N(ui,0?), with i, o? integers.

Issue:
What is the probability distribution of the total demand of r? (Assume pu; = o7 = 1) J

A

°;

Figure: Route r = (0,1,2,1,0).

@ Our work (Customer independence):
Calculates second stage cost ¢ based on 2Dy + D> ~ N(3,5)

o Christiansen and Lysgaard (2007) (Route independence):
Calculates a different cost ¢, based on N(3,3) - Sum of three independent N(1,1)
random variables:

@ On elementary routes, both approaches calculate the same expected cost.
15 / 21
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Can this idea help with scenarios?

What if we solve
min & (25Q")

where & = & for all elementary r.
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Can this idea help with scenarios?

What if we solve

min & (2sQ’)
where & = & for all elementary r.
Theorem (F. and Ota '23)
(25Q’) is strongly NP-hard when demands are given as scenarios J
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Proof idea:

Given G = (V, E) with n vertices, m edges, we wish to find maximum cardinality
independent set.
Solve (25Q’) on the following graph:

Observations:
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Proof idea:

Given G = (V, E) with n vertices, m edges, we wish to find maximum cardinality
independent set.
Solve (25Q’) on the following graph:

<> m(n+1)
—_—

Observations:

@ Graph above is independent of G
@ All routes are elementary, thus (2SQ’) and (25SQ) are the same
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Proof idea:

C =2m — 1, and create m = |E| scenarios:

@ Scenario for edge e = jj is:
R _fm, ifw=iorj
D(w) = { 0, otherwise.

<> mn+l)
—_

o If a route goes through both / and j, then in scenario DY, capacity is exceeded, so
total cost will be positive

@ There exists a route of cost 0

o Negative cost route goes through a subset of vertices S that form an independent
setin G
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Conclusion

Main takeaway

Pricing with correlations is hard
(also pointed out in Gendreau, Jabali and Rey 2016)
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Conclusion

Main takeaway

Pricing with correlations is hard
(also pointed out in Gendreau, Jabali and Rey 2016)

Future work:
o Can specific reduced cost structure help?
@ Do we need to solve (25Q)?

@ Branch-and-cut and branch-and-price for the problem (and other variants)
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THANK YOU!
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