
SMS++: a system for structured optimization,
with applications

Antonio Frangioni1 Rafael Durbano Lobato2 Wim van Ackooij3

1Dipartimento di Informatica, Università di Pisa
2Chamber of Electric Energy Commercialization, Brazil

3EDF R&D OSIRIS

May the 17th 2023, Montréal

Outline

1 A very succinct introduction to SMS++

2 The Seasonal Storage Valuation, its ancestors & descendants

3 Some computational results

4 Some of the (many) missing pieces

5 Conclusions

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 1 / 34

https://gitlab.com/smspp/smspp-project

“For algorithm developers, from algorithm developers”

Open source (LGPL3)

1 “core” repo, 1 “umbrella” repo, 10+ problem and/or

algorithmic-specific repos (public, more in development)

Extensive Doxygen documentation https://smspp.gitlab.io

But no real user manual as yet (except for myself)

https://gitlab.com/smspp/smspp-project
https://smspp.gitlab.io

What SMS++ is

A core set of C++-17 classes implementing a modelling system that:

explicitly supports the notion of Block ≡ nested structure

separately provides “semantic” information from “syntactic” details
(list of constraints / variables ≡ one specific formulation among many)

allows exploiting specialised Solver on Block with specific structure

manages any dynamic change in the Block
beyond “just” generation of constraints/variables

supports reformulation / restriction / relaxation of Block

has built-in parallel processing capabilities

should be able to deal with almost anything (bilevel, PDE, . . .)

A hopefully growing set of specialized Block and Solver

In perspective an ecosystem fostering collaboration and code sharing:
a community-building effort as much as a (suite of) software product(s)

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 2 / 34

What SMS++ is not

An algebraic modelling language: Block are C++ code
(although it provides some modelling-language-like functionalities)

For the faint of heart: primarily written for algorithmic experts
(although users may benefit from having many pre-defined Block)

Stable: only version 0.5.2 (as of tonight), lots of further development
ahead, significant changes in (parts) of interfaces actually expected
(although current Block / Solver very thoroughly tested)

Interfaced with many existing solvers: Cplex, SCIP, MCFClass, StOpt
(although the list is growing, Gurobi and HiGHS in the works)

Ripe with native structure-exploiting solvers: LagrangianDualSolver,
SDDPSolver (although the list should hopefully grow)

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 3 / 34

A Crude Schematic

Objective

Solver

Modification

Block2

...

Block1

Block

Constraint
SC1 SC2

...DC1 DC2

...
Variable

SV1 SV2

...DV1 DV2

...

{ Modificationi }
{ Solveri }

OF

physical representation

 abstract
representation

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 4 / 34

Block

Block = abstract class representing the general concept of
“a (part of a) mathematical model with a well-understood identity”

Each :Block a model with specific structure
(e.g., MCFBlock:Block = a Min-Cost Flow problem)

Physical representation of a Block: whatever data structure is required
to describe the instance (e.g., G , b, c , u)

Possibly alternative abstract representation(s) of a Block:
one Objective (but possibly vector-valued)

any # of groups of static/dynamic Variable / Constraint

a group = a single, std::vector or boost::multi array (of
std::list for dynamic)

(e.g., arc-flow formulation vs. path-flow formulation)

Any # of sub-Blocks (recursively), possibly of specific type
(e.g., MMCFBlock:Block: has k MCFBlock:Block inside)

generate abstract [variables/constraints]() for column/row
generation (with Configuration for options)
A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 5 / 34

Variable, Constraint, Objective

Abstract concepts, thought to be extended (a matrix, a function, . . . , a
matrix constraint, a PDE constraint, a bilevel program, . . .)

Variable does not even have a value, can be fixed and unfixed

Constraint, Objective depends from a set of Variable
(:ThinVarDepInterface), must be compute()-d (possibly costly,
:ThinComputeInterface)

Constraint can be relaxed and enforced

RealObjective:Objective implements “value is an extended real”

Objective of sub-Blocks summed to that of father Block

Anyone knows which Block it belongs to

Fundamental design decision: “name” of anything = its memory address
=⇒ copying something makes a different something
=⇒ dynamic somethings always live in std::lists

:Modification for changes (fix / unfix, relax / enforce, max / min, . . .)

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 6 / 34

Function

Real-valued Function of a set of Variable (:ThinVarDepInterface)

Must be compute()-d w.r.t. the current value of the Variable,
possibly a costly operation (:ThinComputeInterface) =⇒
approximate computation supported in a quite general way

FunctionModification[Variables] for “easy” changes =⇒
reoptimization (shift, adding/removing “quasi separable” Variable)

C05Function/C15Function deal with 1st/2nd order information
(not necessarily continuous)
A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 7 / 34

Closer to the ground

ColVariable:Variable: “value = one single real” (possibly ∈ Z)

RowConstraint:Constraint: “l ≤ a real ≤ u” =⇒
has dual variable (single real) attached to it

OneVarConstraint:RowConstraint: “a real” =

a single ColVariable ≡ bound constraints

FRowConstraint:RowConstraint: “a real” given by a Function

FRealObjective:RealObjective: “value” given by a Function

LinearFunction:Function: a linear form in ColVariable

DQuadFunction:Function: a separable quadratic form

Many things missing (AlgebraicFunction, DenseLinearFunction,
Matrix/VectorVariable, . . .)

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 8 / 34

Solver

Any # of Solver attached to a Block (and its sub-Block) to solve it

Specialised :Solver for specific :Block use the physical representation
=⇒ abstract representation of Block only constructed on demand

General-purpose :Solver rather uses the abstract representation

Variable always present to for Solver to write solution in
(this may change with physical solution concept, under development)

Tries to cater for all the important needs:
optimal and sub-optimal solutions, provably unbounded/unfeasible

time/resource limits for solutions, but restarts (reoptimization)

any # of multiple solutions produced on demand

lazily reacts to changes in the data of the Block via Modification

Slanted towards RealObjective (≈optimality = up/low-er bounds)

CDASolver:Solver: bounds are associated to (multiple) dual solutions

Provides general events mechanism (ThinComputeInterface does)

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 9 / 34

Modification

Any change in Block is communicated to each interested Solver

(attached to the Block or any of its ancestor) via a Modification

Two different kinds of Modification (what changes):

physical Modification, only specialized Solver concerned

abstract Modification, only Solver using it concerned

Abstract Modification used to keep both representations in sync

A Block declares which abstract changes it supports

Heavy stuff can be attached to a Modification

(e.g., added / deleted dynamic Variable / Constraint)
deleted when last Solver finishes (smart pointers)

Solver supposedly reoptimize to improve efficiency, which is
easier if you can see all list of changes at once (lazy update)

GroupModification to (recursively) pack many Modification

together =⇒ different “channels” in Block

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 10 / 34

Support to (coarse-grained) Parallel Computation

Block can be (r/w) lock()-ed and read lock()-ed

[...]lock()-ing a Block recursively [...]lock()s all inner Block

lock() (but not read lock()) sets an owner and records its
std::thread::id; other lock() from the same thread fail

Similar mechanism for read lock(), any # of concurrent reads

Write starvation not handled yet

A Solver can be “lent an ID” (solving an inner Block)

Solver’s set of Modification under “active guard” (std::atomic)

General State of Solver for checkpointing (and reoptimization)

New Change concept: Modification + data, can be de/serialize-d,
undo-Change can be produced when apply()-ed to Block

Distributed computation under development, can exploit general
de/serialize Block / Change capabilities

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 11 / 34

R3Block

Often reformulation crucial, but also relaxation or restriction:
get R3 Block() produces one, possibly using sub-Blocks’

Obvious special case: copy (clone) should always work

Available R3Blocks :Block-specific, a :Configuration needed

R3Block completely independent (new Variable / Constraint),
useful for algorithmic purposes (branch, fix, solve, . . .)

Solution of R3Block useful to Solver for original Block:
map back solution() (best effort in case of dynamic Variable)

Sometimes keeping R3Block in sync with original necessary:
map forward Modification(), task of original Block

map forward solution() and map back Modification() useful, e.g.,
dynamic generation of Variable / Constraint in the R3Block

:Block is in charge of all this, thus decides what it supports

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 12 / 34

A lot of other support stuff

Block produces Solution object, possibly using its sub-Blocks’, that
can be stored and (linearly) combined

[C/O/R]BlockConfiguration and [R]BlockSolverConfiguration:
tree-structured objects (as Block) to configure the Block, register and
configure all its Solver, cleanup everything in one blow

Almost everything (Block, Configuration, Solver, Change, . . .) has
a factory and/or methods to de/serialize themselves to netCDF files

A methods factory for changing the physical representation without
knowing of which :Block it exactly is (standardised interface)

AbstractBlock for constructing a model a-la algebraic language,
can be derived for “general Block + specific part”

PolyhedralFunction[Block], very useful for decomposition

AbstractPath for indexing any Constraint / Variable in a Block

FakeSolver:Solver stashes away all Modification,
UpdateSolver:Solver immediately forwards/R3Bs them

. . .
A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 13 / 34

Main Existing :Block

MCFBlock / MMCFBlock: single/multicommodity flow

BinaryKnapsackBlock (actually mixed-integer)

CapacitatedFacilityLocationBlock (didactic)

UCBlock for UC, several UnitBlock and NetworkBlock for components

LagBFunction:{C05Function,Block} transforms any Block (with
appropriate Objective) into its dual function

BendersBFunction:{C05Function,Block} transforms any Block

(with appropriate Constraint) into its value function

StochasticBlock implements realizations of scenarios into any Block

(using methods factory)

SDDPBlock represents multi-stage stochastic programs suitable for
Stochastic Dual Dynamic Programming

Others under active development (but not released yet)

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 14 / 34

Main “Basic” :Solver

MCFSolver: templated wrapper to MCFClass[1] for MCFBlock

DPBinaryKnapsackSolver, nontrivial support for reoptimizations

ThermalUnitDPSolver for ThermalUnitBlock (state-of-the-art)

MILPSolver: constructs matrix representation of any “MILP” Block +
CPXMILPSolver:MILPSolver and SCIPMILPSolver:MILPSolver

wrappers for Cplex and SCIP (to be improved)

CDASolver:[Parallel]BundleSolver: SMS++-native version of[2] (still
shares some code, dependency to be removed), optimizes any (sum of)
C05Function, several (but not all) state-of-the-art tricks

SDDPSolver: wrapper for SDDP solver StOpt[3] using
StochasticBlock, BendersBFunction and PolyhedralFunction

SDDPGreedySolver: greedy forward simulator for SDDPBlock

[1] https://github.com/frangio68/Min-Cost-Flow-Class

[2] https://gitlab.com/frangio68/ndosolver_fioracle_project

[3] https://gitlab.com/stochastic-control/StOpt

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 15 / 34

https://github.com/frangio68/Min-Cost-Flow-Class
https://gitlab.com/frangio68/ndosolver_fioracle_project
https://gitlab.com/stochastic-control/StOpt

Our Masterpiece: LagrangianDualSolver

Works for any Block with natural block-diagonal structure: no
Objective or Variable, all Constraint linking the inner Block

Using LagBFunction stealthily constructs the Lagrangian Dual
w.r.t. linking Constraint, R3B-ing or “stealing” the inner Block

Solves the Lagrangian Dual with appropriate CDASolver (e.g.,
BundleSolver), stores dual and “convexified” solution in original Block

Can attach LagrangianDualSolver and (say) :MILPSolver to same
Block, solve in parallel!

Weeks of work in days/hours (if Block of the right form already)

Hopefully soon BendersDecompositionSolver (crucial component
BendersBFunction existing and tested)

Multilevel nested parallel heterogeneous decomposition by design
(but I’ll believe it when I’ll see it running)

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 16 / 34

Outline

1 A very succinct introduction to SMS++

2 The Seasonal Storage Valuation, its ancestors & descendants

3 Some computational results

4 Some of the (many) missing pieces

5 Conclusions

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 17 / 34

Unit Commitment

Schedule a set of generating units to satisfy the demand at each node of
the transmission network at each time instant of the horizon

Several types of almost independent blocks + linking constraints

Perfect structure for Lagrangian relaxation

UCBlock + ThermalUnitBlock, HydroUnitBlock, . . . +
DCNetworkBlock, EnergyCommunityNetworkBlock . . .

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 18 / 34

Seasonal Storage Valuation

Mid-term (1y) cost-optimal management of water levels in reservoirs
considering uncertainties (inflows, temperatures, demands, . . .)

Very large size, nested structure

Perfect structure for Stochastic Dual Dynamic Programming

SDDPBlock with as many sub-Block as periods, a StochasticBlock

inside each LagBFunction, dynamic PolyhedralFunction to represent
the (approximate) value-of-water function, one UCBlock inside each one

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 19 / 34

Investment Layer

Long-term (30y) optimal (cost, pollution, CO2 emissions, . . .) planning
of production/transmission investments considering multi-level
uncertainties scenarios (technology, economy, politics, . . .)

Many scenarios, huge size, multiple nested structure =⇒
multiple nested Benders’ or Lagrangian decomposition and/or SDDP

Ad-hoc concept for “multiple copies of a Block”, could be generalised

Rather nasty with SMS++, at all doable without?

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 20 / 34

Outline

1 A very succinct introduction to SMS++

2 The Seasonal Storage Valuation, its ancestors & descendants

3 Some computational results

4 Some of the (many) missing pieces

5 Conclusions

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 21 / 34

Unit Commitment – some results

ThermalUnitBlock provides 6 different formulations, one “exact”

ThermalUnitDPSolver provides efficient solution of 1-UC problems

LagrangianDualSolver (using BundleSolver) +
ThermalUnitDPSolver provides best trade-off between bound tightness
and computational cost as size of the instance grows

3bin DP pt LR

units time gap time gap time gap time gap

10 0.21 1.03 78.56 0.67 1.00 0.53 0.46 0.67
20 0.90 0.93 480.02 0.51 2.58 0.27 0.83 0.51
50 4.18 0.81 3836.78 0.08 9.92 0.09 1.19 0.08

Perspective Cuts always included (bounds too much worse if not)

Obvious trade-off between root bound and LP cost, DP impractical

Cplex cuts effective for small n / weaker formulation, less otherwise

|T | = 24, pt scales worse than 3bin for larger T (but bounds ≈ same)

LR very competitive, but Lagrangian-based B&B still in the works

Just changing few lines in the BlockConfig and BlockSolverConfig

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 22 / 34

Sample computational results: overall B&C

3-bin DP pt
n time opt nodes gap time opt nodes gap time opt nodes gap
10 28 5 275 0.01 832 5 599 0.01 5 5 41 0.01
20 7036 2 3561 0.08 7902 2 1961 0.05 1066 5 1234 0.01
50 10000 0 1619 0.12 10000 0 695 0.14 8095 1 2303 0.03

10 21 5 163 0.09 500 5 444 0.10 2 5 1 0.08
20 6002 2 1980 0.11 5490 4 1237 0.11 37 5 74 0.10
50 6052 2 1042 0.14 6927 3 504 0.11 160 5 148 0.08

Above stop gap 1e-4, below stop gap 1e-3 (even less in practice)

pt formulation promising: maybe smaller exact formulation?

|T | = 24, again pt suffers more than 3bin for larger T

Stabilised Structured DW may make DP / pht (more) competitive

(but 10 years in the making and still a lot of work to do)

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 23 / 34

Seasonal Storage Valuation – some results I

SDDPSolver requires convex problem: any of the above

Brazilian hydro-heavy system:
53 hydro (3 cascade), 98 thermal
(coal, gas, nuclear), stochastic
inflows (20 scenarios)

Out-of-sample simulation:
1000 scenarios

Cont. relax. Lag. relax.

Cost: Avg. / Std. 4.6023e+9 / 1.3608e+9 4.5860e+9 / 1.3556e+9

Only 0.4% better, but just changing a few lines in the Configuration
(Lagrangian about 4 times slower, but can be improved)

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 24 / 34

Seasonal Storage Valuation – some results II

Single node (Switzerland)

60 stages (1+ year), 37 scenarios, 168 time instants (weekly UC)

Units: 3 intermittent, 5 thermals, 1 hydro

Out-of-sample simulation: all 37 scenarios to integer optimality

Cont. relax. Lag. relax.

Cost: Avg. / Std. 1.3165e+11 / 2.194e+10 1.2644e+11 / 2.167e+10

Time: 25m 7h30m

Much longer, but:

simulation cost ≈ 30m per scenario, largely dominant

save 4% just changing a few lines in the configuration

LR time can be improved (ParallelBundleSolver not used)

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 25 / 34

Seasonal Storage Valuation – some results III

A different single node (France)

60 stages (1+ year), 37 scenarios, 168 time instants (weekly UC)

83 thermals, 3 intermittent, 2 batteries, 1 hydro

Out-of-sample simulation: all 37 scenarios to integer optimality

Cont. relax. Lag. relax.

Cost: Avg. / Std. 3.951e+11 / 1.608e+11 3.459e+11 / 8.903e+10

Time: 5h43m 7h54m

Time not so bad (and 3h20m on average simulation per scenario)
using ParallelBundleSolver with 5 threads per scenario

That’s 14% just changing a few lines in the configuration

Starts happening regularly enough (and lower variance) to be believable

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 26 / 34

Investment Layer – some results I

Simplified version: solve SDDP only once, run optimization with fixed
value-of-water function + simulation (SDDPGreedySolver)

EdF EU scenario: 11 nodes (France, Germany, Italy, Switzerland, Eastern
Europe, Benelux, Iberia, Britain, Balkans, Baltics, Scandinavia), 20 lines

Units: 1183 battery, 7 hydro, 518 thermal, 40 intermittent

78 weeks hourly (168h), 37 scenarios (demand, inflow, RES generation)

Investments: 3 thermal units + 2 transmission lines.

Average cost: original (operational) 6.510e+12
optimized (investment + operational) 5.643e+12

This is ≈ 1 Trillion Euro, 15%

Running time: ??? hours for value-of-water functions (EdF provided)
+ 10 hours (4 scenarios in parallel + ParallelBundleSolver with 6
threads) for the investment problem
A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 27 / 34

Investment Layer – some results II

Simplified version (fixed value-of-water with continuous relaxation)

Same 11 nodes, 19 lines

Less units: 7 hydros, 44 thermals, 24 batteries, and 42 intermittent

More investments: 82 units + 19 transmission lines.

78 weeks hourly (168h), 37 scenarios (demand, inflow, RES generation)

Average cost: original (operational) 3.312e+12
optimized (investment + operational) 1.397e+12

This is ≈ 2 Trillion Euro, 137%

Running time: 48 hours for value-of-water functions (2 nodes = 96 cores)
+ 5h 20m to solve the investment problem (1 nodes = 48 core)

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 28 / 34

Investment Layer – some results III

Same simplified version as above

EdF EU scenario: 14 nodes (France, Germany, Italy, Switzerland, Eastern
Europe, Benelux, Iberia, Britain, Balkans, Baltics, Denmark, Finland,
Sweden, Norway), 28 lines

Units: 62 thermals, 54 intermittent, 8 hydros, 39 batteries

78 weeks hourly (168h), 37 scenarios (demand, inflow, RES generation)

Investments: 99 units of all kinds + all transmission lines

Average cost: original (operational) 3.465e+12
optimized (investment + operational) 4.708e+11

one order of magnitude saving (suspect most value of lost load)
636% better investing on just 4 lines and 10 hydrogen power plants
(and run stopped early on for a numerical error in Cplex)

Running time: 7 hours on 48 cores, 375GB of RAM

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 29 / 34

Investment Layer – the (Little-)Big Kahuna results

The true version: value-of-water recomputed anew for each investment

But still simplified: only one scenario (long way to go)

As usual, SDDP with Continuous or Lagrangian

One node (48 core, 375Gb) not enough, must either MPI-distribute
over many or run on larger nodes (48 core, 800Gb of RAM suffice)

After ≈648h (several time-outs&resumes, maintenance breaks, . . .)
simulation-based: investment + operational 4.708e+11
SDDP-based: investment + operational 4.537e+11 (17 billione saving)

Perhaps better idea: warm-start SDDP-based from simulation-based,
got an even better 4.325e+11 to start with in 24h (avoid Cplex)

warm-started SDDP-based currently running, no more results to show

Two small-ish (≈10000h) CINECA grants to debug&test, a much bigger
one needed to run the real Big Kahuna (one more decomposition level)

But we are getting there, thanks to SMS++

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 30 / 34

Outline

1 A very succinct introduction to SMS++

2 The Seasonal Storage Valuation, its ancestors & descendants

3 Some computational results

4 Some of the (many) missing pieces

5 Conclusions

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 31 / 34

The many things that we do not have (yet)

A relaxation-agnostic Branch-and-X Solver

Many other forms of (among many other things):

Variable (Vector/MatrixVariable, FunctionVariable, . . .)

Constraint (SOCConstraint, SDPConstraint, PDEConstraint,
BilevelConstraint, EquilibriumConstraint, . . .)

Objective (RealVectorObjective, . . .)

Function (AlgebraicFunction, . . .)

Better handling of many things (groups of stuff, Modification, . . .)

Interfaces with many other general-purpose solvers (GuRoBi,
OSISolverInterface, Couenne, OR-tools CP-SAT Solver, . . .)

Many many many more :Block and their specialised :Solver

Translation layers from “real” modelling languages (AMPL, JuMP, . . .)

In a word: users/mindshare – chicken-and-egg problem

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 32 / 34

Outline

1 A very succinct introduction to SMS++

2 The Seasonal Storage Valuation, its ancestors & descendants

3 Some computational results

4 Some of the (many) missing pieces

5 Conclusions

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 33 / 34

Conclusions and (a lot of) future work

SMS++ is there, actively developed

Allows exploiting multiple nested heterogeneous structure, ≈ the
only system designed for huge-scale (in particular, stochastic) problems

Could become really useful after having attracted mindshare,
self-reinforcing loop (very hard to start)

Hefty, very likely rather unrealistic, sough-after impacts:

improve collaboration and code reuse, reduce huge code waste

significantly increase the addressable market of decomposition

a much-needed step towards higher uptake of parallel methods

the missing marketplace for specialised solution methods

a step towards a reformulation-aware modelling system[4]

As much a community-building effort as an actual software project

Lots of fun to be had, all contributions welcome

[4] F., Perez Sanchez “Transforming Mathematical Models Using Declarative Reformulation Rules” LNCS, 2011

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 34 / 34

Conclusions and (a lot of) future work

SMS++ is there, actively developed

Allows exploiting multiple nested heterogeneous structure, ≈ the
only system designed for huge-scale (in particular, stochastic) problems

Could become really useful after having attracted mindshare,
self-reinforcing loop (very hard to start)

Hefty, very likely rather unrealistic, sough-after impacts:

improve collaboration and code reuse, reduce huge code waste

significantly increase the addressable market of decomposition

a much-needed step towards higher uptake of parallel methods

the missing marketplace for specialised solution methods

a step towards a reformulation-aware modelling system[4]

As much a community-building effort as an actual software project

Lots of fun to be had, all contributions welcome

[4] F., Perez Sanchez “Transforming Mathematical Models Using Declarative Reformulation Rules” LNCS, 2011

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 34 / 34

Conclusions and (a lot of) future work

SMS++ is there, actively developed

Allows exploiting multiple nested heterogeneous structure, ≈ the
only system designed for huge-scale (in particular, stochastic) problems

Could become really useful after having attracted mindshare,
self-reinforcing loop (very hard to start)

Hefty, very likely rather unrealistic, sough-after impacts:

improve collaboration and code reuse, reduce huge code waste

significantly increase the addressable market of decomposition

a much-needed step towards higher uptake of parallel methods

the missing marketplace for specialised solution methods

a step towards a reformulation-aware modelling system[4]

As much a community-building effort as an actual software project

Lots of fun to be had, all contributions welcome

[4] F., Perez Sanchez “Transforming Mathematical Models Using Declarative Reformulation Rules” LNCS, 2011

A. Frangioni (DI — UniPi) SMS++ @ ColGen23 ColGen23 34 / 34

	A very succinct introduction to SMS++
	The Seasonal Storage Valuation, its ancestors & descendants
	Some computational results
	Some of the (many) missing pieces
	Conclusions

