

Local center cutting plane methods (LCCPM)

Issmail El Hallaoui (presenter), Mohamed El Fassi

Polytechnique Montreal and GERAD Department of Maths and Industrial Engineering issmail.elhallaoui@polymtl.ca

May 17, 2023, Column Generation 2023

Introduction ●○○○○

Literature review

ocal center cutting plane framework

Research trends

References

1 Introduction

2 Literature review

- Center methods
- Improved Primal Simplex (IPS)

3 Local center cutting plane framework

- Motivation
- Center Methods Unified Framework
- Generic local center cutting plane method
- Illustrative example
- Summary

4 Research trends

ocal center cutting plane framework

Research trends

References

Linear programming

$$(LP) \quad z^{LP} = \min_{x} \quad c^{\top}x \tag{1}$$

s.t.:
$$Ax = b$$
 (2)

$$x \ge 0$$
 (3)

where $c \in \mathbb{R}^n$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, and $A \in \mathbb{R}^{m \times n}$ (has a very large number of columns). The dual variable vector associated with constraint set (2) is denoted by π .

Literature review

ocal center cutting plane framework

Research trends

References

Linear programming

$$(LP) \quad z^{LP} = \min_{x} \quad c^{\top}x \tag{1}$$

s.t.:
$$Ax = b$$
 (2)

$$x \ge 0$$
 (3)

where $c \in \mathbb{R}^n$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, and $A \in \mathbb{R}^{m \times n}$ (has a very large number of columns). The dual variable vector associated with constraint set (2) is denoted by π .

 Large-scale optimization problems from industrial applications, especially in the field of transportation, are often solved by the method of Column Generation (CG) (Desrosiers et al., 1984; Barnhart et al., 1998; Desaulniers et al., 2002).

ocal center cutting plane framework

Research trends

References

Standard Column Generation (SCG) scheme

Local center cutting plane framework

Research trends

References

Standard Column Generation (SCG) scheme

^{4 / 25}

Literature review

ocal center cutting plane framework

Research trends

References

Column generation : methods to solve RMP

ocal center cutting plane framework

Research trends

References

Column generation : methods to solve RMP

Primal simplex method

イロン イロン イヨン イヨン

Column generation : methods to solve RMP

- Primal simplex method
 - \rightarrow Pros:
 - ✓ Is better for re-optimization (no or low degeneracy).
 - → Cons:
 - ✓ Unstable due to the use of extreme dual variables in case of high degeneracy.
 - ✓ Poor columns in the initial stage (the head-in effect).
 - ✓ Slow convergence (the tailing-off effect).

ocal center cutting plane framework

Research trends

イロン イロン イヨン イヨン

References

Column generation : methods to solve RMP

- Primal simplex method
 - \rightarrow Pros:
 - ✓ Is better for re-optimization (no or low degeneracy).
 - → Cons:
 - Unstable due to the use of extreme dual variables in case of high degeneracy.
 - ✓ Poor columns in the initial stage (the head-in effect).
 - ✓ Slow convergence (the tailing-off effect).
- Primal-dual interior point method

Introduction ○○○●○

Literature review

ocal center cutting plane framework

Research trends

References

Column generation : methods to solve RMP

- Primal simplex method
 - \rightarrow Pros:
 - ✓ Is better for re-optimization (no or low degeneracy).
 - → Cons:
 - Unstable due to the use of extreme dual variables in case of high degeneracy.
 - ✓ Poor columns in the initial stage (the head-in effect).
 - ✓ Slow convergence (the tailing-off effect).

Primal-dual interior point method

- → Pros:
 - ✓ Get stable dual solution.
 - No degeneracy issues.
- → Cons:
 - Highly fractional solutions which have a negative impact on the branching process.
 - ✓ Crossover is exponential for large problems.

Introduction ○○○○●

Literature review

ocal center cutting plane framework

Research trends

References

Cutting plane methods

Research trends

References

Cutting plane methods

 From a dual viewpoint, adding columns to the RMP is equivalent to adding rows (cuts) to its dual. Consequently, CG is a special case of the classical method of cutting planes of Kelley (Kelley, 1960).

Research trends

References

Cutting plane methods

- From a dual viewpoint, adding columns to the RMP is equivalent to adding rows (cuts) to its dual. Consequently, CG is a special case of the classical method of cutting planes of Kelley (Kelley, 1960).
- Several methods have been proposed to improve the convergence of the Kelley method, the most popular ones are known as center methods.

Research trends

References

Cutting plane methods

- From a dual viewpoint, adding columns to the RMP is equivalent to adding rows (cuts) to its dual. Consequently, CG is a special case of the classical method of cutting planes of Kelley (Kelley, 1960).
- Several methods have been proposed to improve the convergence of the Kelley method, the most popular ones are known as center methods.
- Global vs local center method? unified framework?

∽ < (~ 6 / 25

စ္ဂံဝဝ

ocal center cutting plane framework

Research trends

References

1 Introduction

2 Literature review

- Center methods
- Improved Primal Simplex (IPS)

3 Local center cutting plane framework

- Motivation
- Center Methods Unified Framework
- Generic local center cutting plane method
- Illustrative example
- Summary

4 Research trends

Introduction 00000	Literature review	Local center cutting plane framework OO OOOOO O O O O	Research trends 00	
Center methods				

• The center methods determine a localization set (bounded, convex and closed set) and compute a point inside (x^k) this set called **query point**.

The center methods determine a localization set (bounded, convex and closed set) and compute a point inside (x^k) this set called query point.

(日) (四) (三) (三) (三)

8 / 25

1 The Elzinga-Moore method (Elzinga and Moore, 1975). The query point x^{k+1} is chosen as the **Chebyshev center** of \mathcal{L}_k , i.e., the center of the largest Euclidean ball that lies in \mathcal{L}_k (simple linear program).

- **1** The Elzinga-Moore method (Elzinga and Moore, 1975). The query point x^{k+1} is chosen as the **Chebyshev center** of \mathcal{L}_k , i.e., the center of the largest Euclidean ball that lies in \mathcal{L}_k (simple linear program).
- **2** The analytic center cutting plane method (ACCPM) (Goffin et al., 1992). The query point x^{k+1} is chosen as the **analytic center** of the inequalities defining \mathcal{L}_k .

- **1** The Elzinga-Moore method (Elzinga and Moore, 1975). The query point x^{k+1} is chosen as the **Chebyshev center** of \mathcal{L}_k , i.e., the center of the largest Euclidean ball that lies in \mathcal{L}_k (simple linear program).
- **2** The analytic center cutting plane method (ACCPM) (Goffin et al., 1992). The query point x^{k+1} is chosen as the **analytic center** of the inequalities defining \mathcal{L}_k .
- **3** The center of gravity method (Levin, 1965). The query point x^{k+1} is chosen as the **center of gravity** of \mathcal{L}_k .

- **1** The Elzinga-Moore method (Elzinga and Moore, 1975). The query point x^{k+1} is chosen as the **Chebyshev center** of \mathcal{L}_k , i.e., the center of the largest Euclidean ball that lies in \mathcal{L}_k (simple linear program).
- **2** The analytic center cutting plane method (ACCPM) (Goffin et al., 1992). The query point x^{k+1} is chosen as the **analytic center** of the inequalities defining \mathcal{L}_k .
- **3** The center of gravity method (Levin, 1965). The query point x^{k+1} is chosen as the **center of gravity** of \mathcal{L}_k .
- 4 The volumetric center method (Vaidya, 1989). The query point x^{k+1} is chosen as the **volumetric center**, i.e., the point that minimizes the determinant of the Hessian of the logarithmic barrier of \mathcal{L}_k .

Research trends

References

Center methods

Method	Analytical complexity	Issues
Kelley	$\frac{1}{\epsilon^n}$	 convergence rate is disas- trous (worst-case).
Center of gravity	$nln(rac{1}{\epsilon})$	🖌 not practical.
Volumetric center	$nln(rac{1}{\epsilon})$	🖌 not practical.
Analytic center	$\frac{n^2}{\epsilon^2}$ (Goffin et al., 1996)	 non-linear program. "needs" solving the sub- problem to optimality.

စ္ဂဝဝ

ocal center cutting plane framework

Research trends

References

Center methods

Method	Analytical complexity	Issues
Kelley	$\frac{1}{\epsilon^n}$	 convergence rate is disas- trous (worst-case).
Center of gravity	$nln(rac{1}{\epsilon})$	🖌 not practical.
Volumetric center	$nln(rac{1}{\epsilon})$	🖌 not practical.
Analytic center	$\frac{n^2}{\epsilon^2}$ (Goffin et al., 1996)	 non-linear program. "needs" solving the sub- problem to optimality.

The big issue : not guarantee a "significant" improvement of the (primal) objective value at each iteration (or even in a fixed number of iterations).

■ IPS decomposition (Elhallaoui et al., 2011)

■ IPS decomposition (Elhallaoui et al., 2011)

→ Increases the efficiency of the primal simplex method when solving **degenerate** linear programs.

うくで 11/25

■ A variant of IPS, called Polynomial IPS (Emine et al., 2021), can ensure a significant improvement of the objective function at each iteration and finds an *e*-approximation of the optimal solution in a polynomial number of iterations.

Is IPS a center method?

Literature review

Local center cutting plane framework

Research trends

References

1 Introduction

2 Literature review

- Center methods
- Improved Primal Simplex (IPS)

3 Local center cutting plane framework

- Motivation
- Center Methods Unified Framework
- Generic local center cutting plane method
- Illustrative example
- Summary

4 Research trends

Literature review

Local center cutting plane framework

Research trends

References

Preliminaries

<ロ> 4日> 4日> 4日> 4日> 4日> 日 のQで 13/25

Local center cutting plane framework $\bigcirc \bullet$

Research trends

References

Preliminaries

$$(CP_P) \quad z_P = \max_{\pi, y} \quad y \tag{4}$$

s.t.:
$$c_j - \pi^T A_j = 0 \quad \forall j \in P$$
 (5)

$$c_j - \pi^T A_j \ge y \quad \forall j \in I_P$$
 (6)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへぐ

Local center cutting plane framework

Research trend

References

Preliminaries

Complementary problem (IPS)

$$(CP_P) \quad z_P = \max_{\pi, y} \quad y \tag{4}$$

s.t.:
$$c_j - \pi^T A_j = 0 \quad \forall j \in P$$
 (5)

$$c_j - \pi^T A_j \ge y \quad \forall j \in I_P \tag{6}$$

イロン イヨン イヨン イヨン

We introduce the local dual polyhedron approximation

$$\mathcal{D} := \{ \pi \in \mathbb{R}^m \mid A_P^\top \pi = c_P \text{ and } A_{I_P}^\top \pi \leq c_{I_P} \}$$

 If π satisfies (5), any compatible column will have non negative reduced cost (Elhallaoui et al. (2011)).

 \Rightarrow The set $\mathcal D$ is a subset of feasible dual solutions.

3

Literature review

Local center cutting plane framework

Research trends

References

Motivation

Local center cutting plane method (LCCPM): motivation

Literature review

Local center cutting plane framework

Research trends

References

Motivation

Local center cutting plane method (LCCPM): motivation

Geometrical insight,

∽ へ (~ 14 / 25

Literature review

Local center cutting plane framework

Research trends

References

Motivation

Local center cutting plane method (LCCPM): motivation

Geometrical insight,

 Advantages: primal exact approach, we reduce the number of calls to the procedure that finds centers, avoids degeneracy.

Local center cutting plane framework

0000

Research trends

References

Center Methods Unified Framework

Center Methods Unified Framework

 Mathematically speaking, center methods solve the following family of local center programs:

$$\max_{\pi,s} g(s) \tag{7}$$

s.t.:
$$A_q^{\top} \pi + F(s) = c_q,$$
 (8)

$$\pi \in \mathbb{S},$$
 (9)

$$s_j > 0, \quad j \in \{1, \ldots, q\}$$
 (10)

where the submatrix A_q is composed of q columns of A, c_q is the subvector of c composed q dimension, the function $g : \mathbb{R}^q \to \mathbb{R}$ is concave in s, $F : \mathbb{R}^q \to \mathbb{R}^q$ is linear in s, and the set \mathbb{S} is a polyhedron defined by some linear equalities.

Research trends

References

Center Methods Unified Framework

Some functions g and F

Analytic center :
$$g(s) = \sum_{j=1}^{n} \ln(s_j)$$
 and $F(s) = s$.
Chebyshev center: $g(s) = \min_{j \in \{1, \dots, n\}} s_j$ and $F_j(s) = ||A_j||_* s_j$ (¹).
Harmonic center : $g(s) = \frac{n}{\sum_{j=1}^{n} \frac{1}{s_j}}$ (or $-\sum_{j=1}^{n} \frac{1}{s_j}$) et $F(s) = s$ (new center).

ŏ•oo

 $\|A_j\|_*$: any norm of vector A_j

Research trends

References

Center Methods Unified Framework

Some functions g and F

• Analytic center :
$$g(s) = \sum_{j=1}^{n} \ln(s_j)$$
 and $F(s) = s$.

ŏooo

• Chebyshev center:
$$g(s) = \min_{j \in \{1,\dots,n\}} s_j$$
 and $F_j(s) = ||A_j||_* s_j$ (1).

Harmonic center :
$$g(s) = \frac{n}{\sum\limits_{j=1}^{n} \frac{1}{s_j}}$$
 (or $-\sum\limits_{j=1}^{n} \frac{1}{s_j}$) et $F(s) = s$ (new center).

Proposition

- If q = n and $\mathbb{S} = \mathbb{R}^m$, we find the classical center methods.
- If $q = |\mathcal{I}_P|$ and $\mathbb{S} = \{\pi \in \mathbb{R}^m \mid A_P^{\top}\pi = c_P\}$, we find the local center cutting plane methods: local ACCPM, local Chebyshev, ...

¹ $\|A_j\|_*$: any norm of vector A_j

Duality of the local center problem

For F(s) = s, the Lagrangian dual of the local center problem is:

$$\begin{array}{l} \text{reduced } cost \to \min_{v,w} \quad \tilde{c}_{l_P}^\top v + w \tag{11} \end{array}$$

compatibility constraints
$$\rightarrow$$
 s.t.: $(MA_{I_P})v = 0,$ (12)

normalization constraint
$$\rightarrow -f(v) - \frac{w}{|I_P|} \le 1$$
 (13)

où
$$f(v) = \min_{s>0} \frac{(-g(s)+v^T s+|I_P|)}{|I_P|}$$

Lemma

1 If
$$g(s) = \sum_{j \in \mathcal{I}_P} \ln(s_j)$$
 then $f(v) = \sum_{j \in \mathcal{I}_P} \frac{\ln(v_j)}{|l_P|}$.
2 If $g(s) = -\sum_{j \in \mathcal{I}_P} \frac{1}{s_j}$ then $f(v) = 2\sum_{j \in \mathcal{I}_P} \frac{\sqrt{v_j}}{|l_P|} - 1$.

local analytic center $\sum_{j \in I_P} \frac{-\ln(v_j)}{|I_P|} - \frac{w}{|I_P|} \le 1$

18 / 25

Local center cutting plane framework

Research trends

References

Generic local center cutting plane method

Literature review

ğ

Research trends

References

Illustrative example

∽ へ (~ 20 / 25

Local center cutting plane framework

Research trends

References

Illustrative example

ocal analytic center
$$\alpha_{ac}$$
:

$$\begin{array}{l} \max_{\alpha} & \ln(\alpha) + \ln(1-\alpha) + \ln(\frac{1}{\alpha^{k}}) \\ \mathrm{s.t.:} & 1 > \alpha > 0, \end{array}$$

∽ < (~ 20 / 25

8

Research trends

References

Illustrative example

→	Local analytic center α_{ac} :		
	$\max_lpha \ln(lpha) + \ln(1-lpha) + \ln(rac{1}{lpha^k})$		
	s.t.: $1 > \alpha > 0$,		
→	Local harmonic center α_{hc} :		
	$\min_{\alpha} \frac{1}{\alpha} + \frac{1}{1-\alpha} + \alpha^k$		
	$\text{s.t.:} 1 > \alpha > 0,$		
→	• Local Chebyshev center α_{cheb} :		
	max r		
	s.t.: $\alpha \ge r, 1-\alpha \ge r, \frac{1}{\alpha^k} \ge r,$		
	$1>lpha>0,$ r \geq 0,		
→	$\frac{\frac{1}{2}-\alpha_{\mathrm{ac}}}{\frac{1}{2}-\alpha_{\mathrm{bc}}}=\frac{(1-2\alpha_{\mathrm{ac}})}{\alpha_{\mathrm{bc}}^{k-1}\alpha_{\mathrm{bc}}^2(1-\alpha_{\mathrm{bc}})^2}\gg 1$		

∽ へ (~ 20 / 25

Summary

Summary

Classical center methods	Local center methods	
localization set	local dual polyhedron approximation	
the center is calculated at each iteration	when there is a need	
involves all columns	some incompatible columns	
good complexities	good enough complexities!	

Literature review

ocal center cutting plane framework

Research trends

References

1 Introduction

2 Literature review

- Center methods
- Improved Primal Simplex (IPS)

3 Local center cutting plane framework

- Motivation
- Center Methods Unified Framework
- Generic local center cutting plane method
- Illustrative example
- Summary

4 Research trends

Literature review

ocal center cutting plane framework

Research trends ○●

References

Research trends

<ロト < 部ト < 目ト < 目 > 目 の Q (C 23 / 25

Research trends

Seems working good but needs some extensive testing and tuning.

Research trends

- Seems working good but needs some extensive testing and tuning.
- Develop an algorithm capable of finding a descent direction that significantly and in polynomial time improves the current primal solution within the context of column generation.
 - \rightarrow Idea : A variant of LCCPM based on PIPS decomposition instead of IPS.

Research trends

References

Research trends

- Seems working good but needs some extensive testing and tuning.
- Develop an algorithm capable of finding a descent direction that significantly and in polynomial time improves the current primal solution within the context of column generation.
 - \rightarrow Idea : A variant of LCCPM based on PIPS decomposition instead of IPS.

Keep calm and optimize!

References I

- J. Desrosiers, F. Soumis, M. Desrochers, Routing with time windows by column generation, Networks 14 (1984) 545 – 565.
- C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, P. H. Vance, Branch-and-price: Column generation for solving huge integer programs, Oper. Res. 46 (1998) 316–329.
- G. Desaulniers, J. Desrosiers, M. M. Solomon, Accelerating Strategies in Column Generation Methods for Vehicle Routing and Crew Scheduling Problems, Springer US, Boston, MA, 2002, pp. 309–324.
- J. E. Kelley, Jr., The cutting-plane method for solving convex programs, Journal of the Society for Industrial and Applied Mathematics 8 (1960) 703–712.
- J. Elzinga, T. G. Moore, A central cutting plane algorithm for the convex programming problem, Mathematical Programming 8 (1975) 134–145.
- J.-L. Goffin, A. Haurie, J.-P. Vial, Decomposition and nondifferentiable optimization with the projective algorithm, Management science 38 (1992) 284–302.
- A. Y. Levin, An algorithm for minimizing convex functions, in: Doklady Akademii Nauk, volume 160, 1965, pp. 1244–1247.

References II

- P. M. Vaidya, A new algorithm for minimizing convex functions over convex sets, Mathematical Programming 73 (1989) 291–341.
- J.-L. Goffin, Z.-Q. Luo, Y. Ye, Complexity analysis of an interior cutting plane method for convex feasibility problems, SIAM Journal on Optimization 6 (1996) 638–652.
- I. Elhallaoui, M. Abdelmoutalib, G. Desaulniers, F. Soumis, An improved primal simplex algorithm for degenerate linear programs, INFORMS Journal on Computing 23 (2011).
- Y. Emine, F. Soumis, I. El Hallaoui, New complementary problem formulation for the improved primal simplex, Groupe d'études et de recherche en analyse des décisions, 2021.