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Linear programming

(LP) zLP = min
x

c⊤x (1)

s.t.: Ax = b (2)

x ≥ 0 (3)

where c ∈ Rn, c ∈ Rn, b ∈ Rm, and A ∈ Rm×n (has a very large number of
columns). The dual variable vector associated with constraint set (2) is denoted
by π.

Large-scale optimization problems from industrial applications, especially
in the field of transportation, are often solved by the method of Column
Generation (CG) (Desrosiers et al., 1984; Barnhart et al., 1998; Desaulniers
et al., 2002).
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Standard Column Generation (SCG) scheme
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Column generation : methods to solve RMP

Primal simplex method

→ Pros:
✓ Is better for re-optimization (no or low degeneracy).

→ Cons:
✓ Unstable due to the use of extreme dual variables in case of high

degeneracy.
✓ Poor columns in the initial stage (the head-in effect).
✓ Slow convergence (the tailing-off effect).

Primal-dual interior point method

→ Pros:
✓ Get stable dual solution.
✓ No degeneracy issues.

→ Cons:
✓ Highly fractional solutions which have a negative impact on the

branching process.
✓ Crossover is exponential for large problems.

5 / 25



Introduction Literature review Local center cutting plane framework Research trends References

Column generation : methods to solve RMP

Primal simplex method

→ Pros:
✓ Is better for re-optimization (no or low degeneracy).

→ Cons:
✓ Unstable due to the use of extreme dual variables in case of high

degeneracy.
✓ Poor columns in the initial stage (the head-in effect).
✓ Slow convergence (the tailing-off effect).

Primal-dual interior point method

→ Pros:
✓ Get stable dual solution.
✓ No degeneracy issues.

→ Cons:
✓ Highly fractional solutions which have a negative impact on the

branching process.
✓ Crossover is exponential for large problems.

5 / 25



Introduction Literature review Local center cutting plane framework Research trends References

Column generation : methods to solve RMP

Primal simplex method

→ Pros:
✓ Is better for re-optimization (no or low degeneracy).

→ Cons:
✓ Unstable due to the use of extreme dual variables in case of high

degeneracy.
✓ Poor columns in the initial stage (the head-in effect).
✓ Slow convergence (the tailing-off effect).

Primal-dual interior point method

→ Pros:
✓ Get stable dual solution.
✓ No degeneracy issues.

→ Cons:
✓ Highly fractional solutions which have a negative impact on the

branching process.
✓ Crossover is exponential for large problems.

5 / 25



Introduction Literature review Local center cutting plane framework Research trends References

Column generation : methods to solve RMP

Primal simplex method

→ Pros:
✓ Is better for re-optimization (no or low degeneracy).

→ Cons:
✓ Unstable due to the use of extreme dual variables in case of high

degeneracy.
✓ Poor columns in the initial stage (the head-in effect).
✓ Slow convergence (the tailing-off effect).

Primal-dual interior point method

→ Pros:
✓ Get stable dual solution.
✓ No degeneracy issues.

→ Cons:
✓ Highly fractional solutions which have a negative impact on the

branching process.
✓ Crossover is exponential for large problems.

5 / 25



Introduction Literature review Local center cutting plane framework Research trends References

Column generation : methods to solve RMP

Primal simplex method

→ Pros:
✓ Is better for re-optimization (no or low degeneracy).

→ Cons:
✓ Unstable due to the use of extreme dual variables in case of high

degeneracy.
✓ Poor columns in the initial stage (the head-in effect).
✓ Slow convergence (the tailing-off effect).

Primal-dual interior point method

→ Pros:
✓ Get stable dual solution.
✓ No degeneracy issues.

→ Cons:
✓ Highly fractional solutions which have a negative impact on the

branching process.
✓ Crossover is exponential for large problems.

5 / 25



Introduction Literature review Local center cutting plane framework Research trends References

Cutting plane methods

From a dual viewpoint, adding columns to the RMP is equivalent to adding rows
(cuts) to its dual. Consequently, CG is a special case of the classical method of
cutting planes of Kelley (Kelley, 1960).

Several methods have been proposed to improve the convergence of the Kelley
method, the most popular ones are known as center methods.

Global vs local center method? unified framework?
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Center methods

The center methods determine a localization set (bounded, convex and
closed set) and compute a point inside (xk) this set called query point.
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Center methods

Many different choices for the query point have been proposed, among others:

1 The Elzinga-Moore method (Elzinga and Moore, 1975). The query point xk+1 is
chosen as the Chebyshev center of Lk , i.e., the center of the largest Euclidean
ball that lies in Lk (simple linear program).

2 The analytic center cutting plane method (ACCPM) (Goffin et al., 1992). The
query point xk+1 is chosen as the analytic center of the inequalities defining Lk .

3 The center of gravity method (Levin, 1965). The query point xk+1 is chosen as
the center of gravity of Lk .

4 The volumetric center method (Vaidya, 1989).The query point xk+1 is chosen
as the volumetric center, i.e., the point that minimizes the determinant of the
Hessian of the logarithmic barrier of Lk .
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Center methods

Method Analytical complexity Issues

Kelley 1
ϵn

✓ convergence rate is disas-
trous (worst-case).

Center of gravity nln( 1
ϵ
)

✓ not practical.

Volumetric center nln( 1
ϵ
)

✓ not practical.

Analytic center n2

ϵ2 (Goffin et al., 1996)
✓ non-linear program.

✓ "needs" solving the sub-
problem to optimality.

The big issue : not guarantee a "significant" improvement of the (primal) objective
value at each iteration (or even in a fixed number of iterations).
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Improved Primal Simplex (IPS)

IPS decomposition (Elhallaoui et al., 2011)

➝ Increases the efficiency of the primal simplex method when solving degen-
erate linear programs.

➝ Given a current solution x,

A variant of IPS, called Polynomial IPS (Emine et al., 2021), can ensure a
significant improvement of the objective function at each iteration and finds an
ϵ−approximation of the optimal solution in a polynomial number of iterations.

Is IPS a center method?
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Preliminaries

Complementary problem (IPS)

(CPP ) zP = max
π,y

y (4)

s.t.: cj − πTAj = 0 ∀j ∈ P (5)

cj − πTAj ≥ y ∀j ∈ IP (6)

We introduce the local dual polyhedron approximation

D := {π ∈ Rm | A⊤
P π = cP and A⊤

IP
π ≤ cIP }

If π satisfies (5), any compatible column will have non negative reduced cost
(Elhallaoui et al. (2011)).

⇒ The set D is a subset of feasible dual solutions.
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Motivation

Local center cutting plane method (LCCPM): motivation

Geometrical insight,

Advantages: primal exact approach, we reduce the number of calls to the proce-
dure that finds centers, avoids degeneracy.
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Center Methods Unified Framework

Center Methods Unified Framework

Mathematically speaking, center methods solve the following family of local center
programs:

max
π,s

g(s) (7)

s.t.: A⊤
q π + F (s) = cq , (8)

π ∈ S, (9)

sj > 0, j ∈ {1, . . . , q} (10)

where the submatrix Aq is composed of q columns of A, cq is the subvector of c
composed q dimension, the function g : Rq → R is concave in s, F : Rq → Rq is
linear in s, and the set S is a polyhedron defined by some linear equalities.
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Center Methods Unified Framework

Some functions g and F

Analytic center : g(s) =
n∑

j=1
ln(sj ) and F (s) = s.

Chebyshev center: g(s) = min
j∈{1,...,n}

sj and Fj (s) = ∥ Aj∥∗sj (1).

Harmonic center : g(s) = n
n∑

j=1
1
sj

( or −
n∑

j=1

1
sj
) et F (s) = s (new center).

Proposition

If q = n and S = Rm, we find the classical center methods.

If q = |IP | and S = {π ∈ Rm | A⊤
P π = cP}, we find the local center cutting

plane methods: local ACCPM, local Chebyshev, ...

1∥ Aj∥∗ : any norm of vector Aj
16 / 25
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Center Methods Unified Framework

Duality of the local center problem

For F(s) = s, the Lagrangian dual of the local center problem is:

reduced cost → min
v,w

c̃⊤IP v + w (11)

compatibility constraints → s.t.: (MAIP )v = 0, (12)

normalization constraint → − f (v)−
w

|IP |
≤ 1 (13)

où f (v) = min
s>0

(−g(s)+vT s+|IP |)
|IP |

.

Lemma

1 If g(s) =
∑

j∈IP

ln(sj ) then f (v) =
∑

j∈IP

ln(vj )

|IP |
.

2 If g(s) = −
∑

j∈IP

1
sj

then f (v) = 2
∑

j∈IP

√
vj

|IP |
− 1.
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Center Methods Unified Framework

Finding centers is equivalent to solve a variant of the complementary problem

local analytic center∑
j∈IP

−ln(vj )

|IP |
− w

|IP |
≤ 1

local harmonic center
2
∑

j∈IP
−

√
vj

|IP |
− w

|IP |
≤ 0

local Chebyshev center∑
j∈IP

∥ Aj∥∗vj ≤ 1
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Generic local center cutting plane method

Local center cutting plane method (LCCPM) = a kind of IPS with the appropriate
complementary problem
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Illustrative example

➝ Local analytic center αac :

max
α

ln(α) + ln(1 − α) + ln(
1
αk

)

s.t.: 1 > α > 0,

➝ Local harmonic center αhc :

min
α

1
α

+
1

1 − α
+ αk

s.t.: 1 > α > 0,

➝ Local Chebyshev center αcheb:

max r

s.t.: α ≥ r , 1 − α ≥ r ,
1
αk

≥ r ,

1 > α > 0, r ≥ 0,

➝
1
2−αac
1
2−αhc

= (1−2αac )

αk−1
hc

α2
hc

(1−αhc )
2 ≫ 1

20 / 25
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Summary

Classical center methods Local center methods
localization set local dual polyhedron approximation
the center is calculated at each iteration when there is a need
involves all columns some incompatible columns
good complexities good enough complexities!
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Research trends

Seems working good but needs some extensive testing and tuning.

Develop an algorithm capable of finding a descent direction that signifi-
cantly and in polynomial time improves the current primal solution within
the context of column generation.

→ Idea : A variant of LCCPM based on PIPS decomposition instead
of IPS.

Keep calm and optimize!
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→ Idea : A variant of LCCPM based on PIPS decomposition instead
of IPS.
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