Learning dual inequalities for column generation

Guy Desaulniers Polytechnique Montréal and GERAD, Canada Co-authors: Louis Popovic, Quentin Cappart In collaboration with Giro Inc.

> Column Generation workshop Montréal, Canada May 19, 2023

GROUPE D'ÉTUDES ET DE RECHERCHE EN ANALYSE DES DÉCISIONS

Outline

- 2 Model and dual inequalities
- Operation of the second sec
- 4 Main computational results

Outline

Motivation and goal

2 Model and dual inequalities

- Operation of the second sec
- 4 Main computational results

High degeneracy in column generation

- High degeneracy occurs for many applications
 - With set partitioning/covering/packing constraints : vehicle routing, crew scheduling, cutting stock, computer vision, etc.
 - Several non-zero coefficients in each column (say, \geq 10)
- Unstable dual variables : large oscillations from one iteration to the next
- Generation of useless columns
- Slow convergence (large number of iterations)

Some existing techniques

- Dual variable stabilization
 - Marsten et al. (1975), du Merle et al. (1999), Ben Amor et al. (2006), Oukil et al. (2007)
- Dual variable smoothing
 - Wentges (1997), Neame (2000), Pessoa et al. (2013, 2018)
- Constraint aggregation
 - El Hallaoui et al. (2005, 2008, 2010), Bouarab et al. (2017), Costa et al. (2022)
- Dual optimal inequalities
 - Valério de Carvalho (2005), Ben Amor et al. (2006), Gschwind and Irnich (2016), Yarkony et al. (2020), Haghani et al. (2022)

- Industrial project with Giro
- Application to public transit : electric bus scheduling
- Explore the use of dual inequalities to speed up column generation
- Use machine learning to predict them

Outline

Motivation and goal

2 Model and dual inequalities

- Operation of the second sec
- 4 Main computational results

Brief problem statement

Multi-depot electric vehicle scheduling problem (MDEVSP)

- Input
 - Set of timetabled trips with energy consumptions
 - Set of depots with identical electric buses (EBs)
 - Set of charging stations with identical chargers
- Find least-cost EB schedules such that
 - Each trip is covered by a bus
 - Each schedule starts and ends at the same depot
 - Each schedule is time- and energy-feasible
 - Charging station capacity is not exceeded

Mathematical model

$$\min \qquad \sum_{d \in D} \sum_{s \in S^d} c_s x_s \tag{1}$$

s.t. :
$$\sum_{d \in D} \sum_{s \in S^d} a_s^t x_s = 1, \quad \forall t \in T$$
(2)

$$\sum_{d\in D}\sum_{s\in S^d} b_s^{ph} x_s \le u^h, \quad \forall p\in P, h\in H$$
(3)

$$\sum_{s \in S^d} x_s \le v^d, \qquad \forall d \in D \tag{4}$$

 $x_s \in \{0,1\}, \quad \forall d \in D, s \in S^d$ (5)

$x_s = 1$ if EB schedule s is selected and 0 otherwise

Mathematical model

$$\min \qquad \sum_{d \in D} \sum_{s \in S^d} c_s x_s \tag{1}$$

s.t. :
$$\sum_{d \in D} \sum_{s \in S^d} a_s^t x_s = 1, \quad \forall t \in T$$
(2)

$$\sum_{d\in D}\sum_{s\in S^d} b_s^{ph} x_s \le u^h, \quad \forall p\in P, h\in H$$
(3)

$$\sum_{s\in S^d} x_s \le v^d, \qquad \forall d \in D \tag{4}$$

 $x_s \in \{0,1\}, \quad \forall d \in D, s \in S^d$ (5)

(1) : Minimize sum of fixed and variable costs

Mathematical model

$$\min \qquad \sum_{d \in D} \sum_{s \in S^d} c_s x_s \tag{1}$$

s.t.:
$$\sum_{d \in D} \sum_{s \in S^d} a_s^t x_s = 1, \quad \forall t \in T$$
(2)

$$\sum_{d\in D}\sum_{s\in S^d} b_s^{ph} x_s \le u^h, \quad \forall p\in P, h\in H$$
(3)

$$\sum_{s\in S^d} x_s \le v^d, \qquad \forall d \in D \tag{4}$$

 $x_s \in \{0,1\}, \quad \forall d \in D, s \in S^d$ (5)

(2) : Assign an EB to each trip

Mathematical model

$$\min \qquad \sum_{d \in D} \sum_{s \in S^d} c_s x_s \tag{1}$$

s.t. :
$$\sum_{d \in D} \sum_{s \in S^d} a_s^t x_s = 1, \quad \forall t \in T$$
(2)

$$\sum_{d\in D}\sum_{s\in S^d} b_s^{ph} x_s \le u^h, \quad \forall p\in P, h\in H$$
(3)

$$\sum_{s\in S^d} x_s \leq v^d, \qquad \forall d\in D \tag{4}$$

 $x_s \in \{0,1\}, \quad \forall d \in D, s \in S^d$ (5)

(3) : Meet charging station capacities in each period

Mathematical model

$$\min \qquad \sum_{d \in D} \sum_{s \in S^d} c_s x_s \tag{1}$$

s.t. :
$$\sum_{d \in D} \sum_{s \in S^d} a_s^t x_s = 1, \quad \forall t \in T$$
(2)

$$\sum_{d\in D}\sum_{s\in S^d} b_s^{ph} x_s \le u^h, \quad \forall p\in P, h\in H$$
(3)

$$\sum_{s\in S^d} x_s \leq v^d, \qquad \forall d \in D \tag{4}$$

 $x_s \in \{0,1\}, \quad \forall d \in D, s \in S^d$ (5)

(4) : Respect available number of EBs per depot

Mathematical model

$$\min \qquad \sum_{d \in D} \sum_{s \in S^d} c_s x_s \tag{1}$$

s.t.:
$$\sum_{d \in D} \sum_{s \in S^d} a_s^t x_s = 1, \quad \forall t \in T$$
(2)

$$\sum_{d\in D}\sum_{s\in S^d} b_s^{ph} x_s \le u^h, \quad \forall p\in P, h\in H$$
(3)

$$\sum_{s\in S^d} x_s \le v^d, \qquad \forall d \in D \tag{4}$$

 $x_s \in \{0,1\}, \quad \forall d \in D, s \in S^d$ (5)

π_t : Dual of (2) for trip t

Column generation

- Large MDESVP instances solved by a column generation heuristic
 - One pricing problem per depot : shortest path problem with resource constraints
 - Heuristic branching (diving)
- Constraint perturbation is applied to reduce degeneracy

$$\sum_{d \in D} \sum_{s \in S^d} a_s^t x_s + \delta_t^+ - \delta_t^- = 1, \quad \forall t \in T$$
$$0 \le \delta_t^+ \le \epsilon_t^+, \quad \forall t \in T$$
$$0 \le \delta_t^- \le \epsilon_t^-, \quad \forall t \in T,$$

where ϵ_t^+ and ϵ_t^- are small constants chosen randomly.

Column generation

- Large MDESVP instances solved by a column generation heuristic
 - One pricing problem per depot : shortest path problem with resource constraints
 - Heuristic branching (diving)
- Constraint perturbation is applied to reduce degeneracy

$$\sum_{d \in D} \sum_{s \in S^d} a_s^t x_s + \delta_t^+ - \delta_t^- = 1, \quad \forall t \in T$$
$$0 \le \delta_t^+ \le \epsilon_t^+, \quad \forall t \in T$$
$$0 \le \delta_t^- \le \epsilon_t^-, \quad \forall t \in T,$$

where ϵ_t^+ and ϵ_t^- are small constants chosen randomly.

Dual inequalities

Dual inequalities (DIs)

- Linear inequalities involving dual variables
- Reduce dual space
- Relax the master problem by adding new primal variables

Dual optimal inequalities (DOIs)

• DIs satisfied by all optimal dual solutions

Deep dual optimal inequalities (DDOIs)

• A set of DIs (not necessarily DOIs) satisfied by at least one optimal dual solution

Dual inequalities

Dual inequalities (DIs)

- Linear inequalities involving dual variables
- Reduce dual space
- Relax the master problem by adding new primal variables

Dual optimal inequalities (DOIs)

• DIs satisfied by all optimal dual solutions

Deep dual optimal inequalities (DDOIs)

• A set of DIs (not necessarily DOIs) satisfied by at least one optimal dual solution

Dual inequalities

Dual inequalities (DIs)

- Linear inequalities involving dual variables
- Reduce dual space
- Relax the master problem by adding new primal variables

Dual optimal inequalities (DOIs)

• DIs satisfied by all optimal dual solutions

Deep dual optimal inequalities (DDOIs)

• A set of DIs (not necessarily DOIs) satisfied by at least one optimal dual solution

Studied dual inequalities

• Focus on simple DIs of the form :

$$\pi_i \geq \pi_j, \qquad i,j \in T, i \neq j$$

- Should not be too difficult to predict
- Safe version :

$$\pi_i \geq \pi_j - \phi, \qquad i, j \in T, i \neq j$$

where $\phi > 0$ is a constant (that could depend on i, j)

• New primal variable : e_{ij}

Impact on the master problem

min
$$\sum_{d \in D} \sum_{s \in S^d} c_s x_s + \phi e_{ij}$$
(6)

s.t. :
$$\sum_{d \in D} \sum_{s \in S^d} a_s^i x_s - e_{ij} = 1$$
(7)

$$\sum_{d \in D} \sum_{s \in S^d} a_s^j x_s + e_{ij} = 1$$
(8)

$$e_{ij} \ge 0$$
 (9)

and other constraints

Variable e_{ij} allows to cover i twice (more than once) instead of covering j

G. Desaulniers et al. (Polytechnique Montréal and GERAD)

Impact on the master problem

min
$$\sum_{d \in D} \sum_{s \in S^d} c_s x_s + \phi e_{ij}$$
(6)
st : $\sum \sum a^i x_s - e_{ii} = 1$ (7)

s.t.:
$$\sum_{d \in D} \sum_{s \in S^d} a'_s x_s - e_{ij} = 1$$
(7)

$$\sum_{d \in D} \sum_{s \in S^d} a_s^j x_s + e_{ij} = 1$$
(8)

$$e_{ij} \ge 0$$
 (9)

and other constraints

If $\pi_i^\star > \pi_j^\star$, then it should be more costly to cover i a second time rather than covering $j \Rightarrow e_{ij}^\star = 0$

Impact on the master problem

min
$$\sum_{d \in D} \sum_{s \in S^d} c_s x_s + \phi e_{ij}$$
(6)

s.t.:
$$\sum_{d \in D} \sum_{s \in S^d} a_s^i x_s - e_{ij} = 1$$
 (7)

$$\sum_{d \in D} \sum_{s \in S^d} a_s^j x_s + e_{ij} = 1$$
(8)

$$e_{ij} \ge 0$$
 (9)

and other constraints

If $\pi_i^\star=\pi_j^\star,$ then both options are equally costly and $\phi>0$ breaks the tie $\Rightarrow~e_{ij}^\star=0$

G. Desaulniers et al. (Polytechnique Montréal and GERAD)

Impact on the master problem

min
$$\sum_{d \in D} \sum_{s \in S^d} c_s x_s + \phi e_{ij}$$
(6)
s.t. :
$$\sum_{d \in D} \sum_{s \in S^d} a_s^i x_s - e_{ij} = 1$$
(7)
$$\sum_{d \in D} \sum_{s \in S^d} a_s^j x_s + e_{ij} = 1$$
(8)
$$e_{ij} \ge 0$$
(9)
and other constraints

and other constraints

If
$$\pi_i^\star < \pi_j^\star$$
 and $\phi < \pi_j^\star - \pi_i^\star$ (invalid DI), then $e_{ij}^\star > 0$

Impact on the master problem

min
$$\sum_{d \in D} \sum_{s \in S^d} c_s x_s + \phi e_{ij}$$
(6)

s.t. :
$$\sum_{d \in D} \sum_{s \in S^d} a_s^i x_s - e_{ij} = 1$$
(7)

$$\sum_{d\in D}\sum_{s\in S^d}a^j_s x_s + e_{ij} = 1$$
(8)

$$e_{ij} \ge 0$$
 (9)

and other constraints

Multiple DIs can be imposed simultaneously, requiring multiple primal variables e_{ij}

G. Desaulniers et al. (Polytechnique Montréal and GERAD)

Learning dual inequalities

Computational results with perfect information

- MDEVSP instance generator of Brasseur (2022)
- From real bus lines in Montreal
- 2 sets of 25 instances : with \sim 840 (M) and \sim 1030 (L) trips
- DIs deduced from optimal dual solutions ($\phi = 0$)
- Linear relaxation only

			MP	MP ^{DI}	
	Trips	Buses	Time (s)	Time (s)	Acc
М	837.4	52.1	594	103	5.33
L	1030.5	62.6	1260	175	3.34

Acc = geometric mean of Time MP / Time MP^{DI}

Outline

Motivation and goal

2 Model and dual inequalities

Prediction

- Given a pair of trips *i* and *j*, we would like to predict if $\pi_i \ge \pi_j$ in an optimal linear relaxation solution of (1)–(5)
- We can solve MDEVSP instances and get optimal dual solutions ⇒ Supervised learning
- In the training phase, features provide information about each trip and 0-1 labels are assigned to each ordered pair (1 if $\pi_i \geq \pi_j$ and 0 otherwise)

Machine learning model

- Graphical neural network (GNN) with attention, followed by a multilayer perceptron (MLP)
 - GNN takes into account the network structure between the trips
 - GNN propagates the features of the nodes and arcs through neighbor nodes and arcs
 - Given the updated features, MLP outputs a score $y_{ij} \in [0,1]$ that can be used to make a prediction
 - $\pi_i \ge \pi_j$ if $y_{ij} \ge 1 \beta$ or $y_{ji} \le \beta$, a given parameter in (0, 1]
- Trip node features : Trip start and end times, trip duration, # trips departing from (resp. arriving at) the same terminal within 10 minutes after departure (resp. before arrival), etc.
- Arc features : Cost, consumed energy, travel time, waiting time, etc.

Machine learning model

- Graphical neural network (GNN) with attention, followed by a multilayer perceptron (MLP)
 - GNN takes into account the network structure between the trips
 - GNN propagates the features of the nodes and arcs through neighbor nodes and arcs
 - Given the updated features, MLP outputs a score $y_{ij} \in [0,1]$ that can be used to make a prediction
 - $\pi_i \ge \pi_j$ if $y_{ij} \ge 1 \beta$ or $y_{ji} \le \beta$, a given parameter in (0, 1]
- Trip node features : Trip start and end times, trip duration, # trips departing from (resp. arriving at) the same terminal within 10 minutes after departure (resp. before arrival), etc.
- Arc features : Cost, consumed energy, travel time, waiting time, etc.

Prediction results

- 250/250 instances M/L
- 80%/10%/10% for training/validation/testing

	Precision (%)		DIs		
β	М	L	М	L	
0.15	94.7	95.0	275264	427927	
0.25	92.0	92.4	314679	488256	
0.35	89.2	89.6	348041	539769	
0.45	86.2	86.7	379695	586923	

Precision = True positives / (True positives + False positives)

Inequality selection

- $\bullet\,$ Number of potential DIs is very large \Rightarrow Select a subset
- Select inequalities forming a long sequence :

$$\pi_1 \geq \pi_2 \geq \ldots \geq \pi_\ell$$

• Network G representing the DIs

- One source o, one sink s, and one node per trip $t \in T$
- Arcs (o, t), (t, s), $\forall t \in T$; $(i, j) \in T \times T$ if $\pi_i \ge \pi_j$ predicted
- Filtering of arcs applied to limit the number of cycles
- Run Bellman-Ford algorithm on *G* to find the longest sequence of arcs for a given number of iterations
 - If a cycle is detected, remove all arcs in the cycle
 - Otherwise, pick the DIs in the path and remove the corresponding arcs

Inequality selection

- $\bullet\,$ Number of potential DIs is very large \Rightarrow Select a subset
- Select inequalities forming a long sequence :

$$\pi_1 \geq \pi_2 \geq \ldots \geq \pi_\ell$$

• Network G representing the DIs

- One source o, one sink s, and one node per trip $t \in T$
- Arcs (o, t), (t, s), $\forall t \in T$; $(i, j) \in T \times T$ if $\pi_i \geq \pi_j$ predicted
- Filtering of arcs applied to limit the number of cycles
- Run Bellman-Ford algorithm on *G* to find the longest sequence of arcs for a given number of iterations
 - If a cycle is detected, remove all arcs in the cycle
 - Otherwise, pick the DIs in the path and remove the corresponding arcs

Recovery procedure

- Selected DIs might not be DDOIs due to wrong predictions
- Might yield a weaker lower bound (some $e_{ii}^{\star} > 0$)
- Implemented recovery procedure
 - For all pairs (i, j) such that $e_{ij}^{\star} > 0$, increase ϕ_{ij} by 10 if first time or remove the corresponding DI otherwise
 - Restart column generation
 - Stop if $e_{ij}^{\star} = 0$ for all pairs (i, j) or after a fixed number of iterations

Main computational results

Outline

Motivation and goal

2 Model and dual inequalities

- 3 Predicting dual inequalities
- 4 Main computational results

Main computational results

Experiments with predicted DIs

- 2 new 25-instance sets : with ${\sim}870$ (M) and ${\sim}1080$ (L) trips
- Predicted DIs ($\beta = 0.15$) : 25 sequences of DIs
 - Average of 638.9/720.7 DIs for instances M/L
 - Precision of 88.7% / 86.8%
- 3 algorithm variants
 - $\phi = 0$, no recovery
 - 2 $\phi = 0$, up to two recovery iterations
 - **③** $\phi = 1$, up to one recovery iteration
- M/L instances split into slow (S) and fast (F) instances according to median time of algorithm without DIs
- Linear relaxation + recovery if any

Main computational results

Results

	Time	Acc	Acc S	Acc F	LB Gap	Miscov			
	(s)				(%)	(%)			
Without DIs									
М	2274								
L	7676								
With DIs, $\phi = 0$, no recovery									
М	499	1.71	2.67	1.06	0.19	6.01			
L	3372	1.99	3.93	0.95	0.17	5.73			
With DIs, $\phi = 0$, up to 2 rec. it.									
М	1558	0.72	1.12	0.45	0.11	3.54			
L	7323	0.80	1.19	0.53	0.09	3.60			
With DIs, $\phi = 1$, up to 1 rec. it.									
М	669	1.27	1.83	0.86	0.12	1.81			
L	6878	1.28	2.04	0.83	0.10	1.11			

Miscov : # trips not covered exactly once

G. Desaulniers et al. (Polytechnique Montréal and GERAD)

Conclusion and future work

Conclusion

Summary

- Prediction of simple DIs to speed up column generation
- Promising computational results for the most difficult MDEVSP instances

Future works

- Improve ML model for better prediction
- Improve DI selection
- Generate DIs dynamically (see Gschwind and Irnich, 2016)

Questions ?

Conclusion and future work

Conclusion

Summary

- Prediction of simple DIs to speed up column generation
- Promising computational results for the most difficult MDEVSP instances

Future works

- Improve ML model for better prediction
- Improve DI selection
- Generate DIs dynamically (see Gschwind and Irnich, 2016)

Questions ?

Conclusion and future work

Conclusion

Summary

- Prediction of simple DIs to speed up column generation
- Promising computational results for the most difficult MDEVSP instances

Future works

- Improve ML model for better prediction
- Improve DI selection
- Generate DIs dynamically (see Gschwind and Irnich, 2016)

Questions?