A route relaxation based on the spatial aggregation of nodes for the generalized vehicle routing problem

François Lamothe 1,4,5Claudio Contardo 2, 5Matthieu Gruson 1,4Rafael Martinelli 3

¹ESG UQÀM ²Concordia University ³PUC-Rio

⁴CIRRELT ⁵GERAD

May 18, 2023

- 2 Literature review
- 3 Column Generation

4 Branching

- 5 Cutting planes
- 6 Computational results

The Generalized VRP

- Input:
 - A set N of n nodes, partitioned into k clusters
 - A depot node
 - A demand $d_i > 0$ for each cluster
 - A vehicle capacity Q
 - A fleet of (un)limited size
 - Traveling costs c_{ij}
- Output
 - A set of routes respecting the vehicle capacities
 - Each cluster is visited once (at one node)
 - Minimum total traveling cost

Introduction Literature review Column Generation Branching Cutting planes

Computational results

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, $z^* = 386$

< 口 > < 同 >

- (E

Introduction

Literature review Column Generation Branching Cutting planes Computational results

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, $z^* = 386$

< 口 > < 同 >

A very thorough (?) literature review

- Compact formulations, B&C
 - Bektas + Erdogan + Ropke 2011 (TS)
 - Ha + Bostel + Langevin + Rousseau 214 (C&OR)
- Problem reductions (to CARP most notably)
 - Ghiani + Improta 2000 (EJOR)
- CG, B&P
 - Martinelli + Pecin + Poggi 2014 (EJOR)
 - Reihaneh + Ghoniem 2018 (JORS)
 - Freitas + P. Silva + Uchoa 2023 (C&OR)

Mathematical formulation

$$\begin{array}{ll} \min & \sum_{l \in \Omega} c_l \theta_l \\ \text{subject to} \\ & \sum_{l \in \Omega} a_{kl} \theta_l = 1 \\ & \theta \geq 0 \text{ and integer.} \end{array} \qquad k \in \mathcal{C} \qquad (\alpha_k) \end{array}$$

æ

《口》《聞》《臣》《臣》

Pricing subproblem

- A resource constrained SPP (elementary, ng, etc...)
- Solved through a labeling algorithm
- Label L: terminal node v(L), load q(L), reduced cost c(L), memory π(L)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Literature review Column Generation Branching Cutting planes Computational results	
Pricing subproblem	

• Traditional dominance rule between two labels L_1, L_2

$$\overline{c(L_1)} \leq \overline{c(L_2)}$$

 $v(L_1) = v(L_2)$
 $q(L_1) \leq q(L_2)$
 $\pi(L_1) \subseteq \pi(L_2)$

• The terminal condition $v(L_1) = v(L_2)$ seems too restrictive, especially if the number of nodes is much larger than the number of clusters

A new route relaxation

• We consider m supernodes (ideally with $m \ll n$), composed of nodes that are close from each other

- We consider m supernodes (ideally with $m \ll n$), composed of nodes that are close from each other
- More specifically, we consider supernodes such that every pair of nodes in the same supernode is at a distance $\leq \delta$

- We consider m supernodes (ideally with $m \ll n$), composed of nodes that are close from each other
- More specifically, we consider supernodes such that every pair of nodes in the same supernode is at a distance $\leq \delta$
- We perform pricing on a reduced graph, with *m* + 1 nodes instead of *n* + 1

- We consider m supernodes (ideally with $m \ll n$), composed of nodes that are close from each other
- More specifically, we consider supernodes such that every pair of nodes in the same supernode is at a distance $\leq \delta$
- We perform pricing on a reduced graph, with *m* + 1 nodes instead of *n* + 1
- The traveling cost between two supernodes is defined as $c_{st} = \min\{c_{ij}: i \in s, j \in t\}$

- We consider m supernodes (ideally with $m \ll n$), composed of nodes that are close from each other
- More specifically, we consider supernodes such that every pair of nodes in the same supernode is at a distance $\leq \delta$
- We perform pricing on a reduced graph, with *m* + 1 nodes instead of *n* + 1
- The traveling cost between two supernodes is defined as $c_{st} = \min\{c_{ij}: i \in s, j \in t\}$
- This can be seen as *jumping* within a supernode: entering through a node and leaving from another

A new route relaxation

- We consider m supernodes (ideally with $m \ll n$), composed of nodes that are close from each other
- More specifically, we consider supernodes such that every pair of nodes in the same supernode is at a distance $\leq \delta$
- We perform pricing on a reduced graph, with m + 1 nodes instead of n + 1
- The traveling cost between two supernodes is defined as $c_{st} = \min\{c_{ij}: i \in s, j \in t\}$
- This can be seen as *jumping* within a supernode: entering through a node and leaving from another
- Terminal node v(L) is now a supernode, not a disaggregated node

< ロ > < 同 > < 三 > < 三 >

A new route relaxation

・ロト ・日 ・ ・ ヨ ・ ・

3.⊁ 3

A new route relaxation

・ロト ・ 同ト ・ ヨト ・

A new route relaxation

・ロト ・日 ・ ・ ヨ ・ ・

3.⊁ 3

A new route relaxation

・ロト ・ 同ト ・ ヨト ・

3.⊁ 3

Introduction Literature review Column Generation Branching Cutting planes Computational results	
A new route relaxation	

• New dominance rule

 $\overline{c(L_1)} \leq \overline{c(L_2)}$ $v(L_1) = v(L_2)$ $q(L_1) \leq q(L_2)$ $\pi(L_1) \subseteq \pi(L_2)$

• In practice, what we do is to aggregate nodes that are close to each other into a single node

The Generalized VRP

The Generalized VRP

The Generalized VRP

The Generalized VRP

The Generalized VRP

The Generalized VRP

The Generalized VRP

The Generalized VRP

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with feasible routes

< D > < A > < B > < B >

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, integer solution with *very* relaxed routes, $z^* = 306$

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with relaxed routes

LCGM Column Generation 2023

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with relaxed routes

LCGM Column Generation 2023

The Generalized VRP

The Generalized VRP

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with relaxed routes

< 口 > < 同 >

Introduction	
Literature review	
Column Generation	
Branching	
Cutting planes	
Computational results	

Implementation

We are currently testing several possible implementations of this:

- A static aggregation of nodes in superclusters
- A dynamic aggregation (using DSSR)
 - With target $\delta = 0$ (feasible routes)
 - Or $\delta > 0$ (infeasible routes)

Decremental state-space relaxation

< 17 ▶

Decremental state-space relaxation

< 一型 >

	Introduction Literature review Column Generation Branching Cutting planes Computational results		
Some remarks			

• The proposed approach serves at achieving a dual bound (it is a relaxation!)

- The proposed approach serves at achieving a dual bound (it is a relaxation!)
- Therefore, it may produce infeasible primal solutions (disconnected), as in the example before

- The proposed approach serves at achieving a dual bound (it is a relaxation!)
- Therefore, it may produce infeasible primal solutions (disconnected), as in the example before
- Luckily, connectivity can be achieved through branching (by imposing that routes pass through a specific node in a cluster)

- The proposed approach serves at achieving a dual bound (it is a relaxation!)
- Therefore, it may produce infeasible primal solutions (disconnected), as in the example before
- Luckily, connectivity can be achieved through branching (by imposing that routes pass through a specific node in a cluster)
- Other branching strategies are possible:

- The proposed approach serves at achieving a dual bound (it is a relaxation!)
- Therefore, it may produce infeasible primal solutions (disconnected), as in the example before
- Luckily, connectivity can be achieved through branching (by imposing that routes pass through a specific node in a cluster)
- Other branching strategies are possible:
 - Number of vehicles

- The proposed approach serves at achieving a dual bound (it is a relaxation!)
- Therefore, it may produce infeasible primal solutions (disconnected), as in the example before
- Luckily, connectivity can be achieved through branching (by imposing that routes pass through a specific node in a cluster)
- Other branching strategies are possible:
 - Number of vehicles
 - Arcs between clusters

- The proposed approach serves at achieving a dual bound (it is a relaxation!)
- Therefore, it may produce infeasible primal solutions (disconnected), as in the example before
- Luckily, connectivity can be achieved through branching (by imposing that routes pass through a specific node in a cluster)
- Other branching strategies are possible:
 - Number of vehicles
 - Arcs between clusters
 - Arcs between nodes

- The proposed approach serves at achieving a dual bound (it is a relaxation!)
- Therefore, it may produce infeasible primal solutions (disconnected), as in the example before
- Luckily, connectivity can be achieved through branching (by imposing that routes pass through a specific node in a cluster)
- Other branching strategies are possible:
 - Number of vehicles
 - Arcs between clusters
 - Arcs between nodes
 - Arcs between supernodes

Valid inequalities

• Our approach copes well with some strong cutting planes :-)

- Rounded capacity cuts
- Subset-row cuts
- However, *same vertex inequalities* (Bektas + Erdogan + Ropke 2011) become non-robust in our approach :-(

Experimental setup

- Julia code (v1.8)
- PUC-Rio HPC lab computers (didn't ask Rafa for the specs!)
- LPs soved using Gurobi 10
- MIP search: best bound
- Branching strategy: most fractional (1. # of veqs; 2. total flow crossing a supernode; 3. arc between clusters; 4. arc between supernodes)
- All cuts activated (RCCs, 3-SRCs)
- Our approach is initialized with $\delta = +\infty$ (one supernode per cluster), and generate connected paths only through DSSR

Partial results

Instance	Baseline			AggDssr			SpeedUp		
	CPU	LB	Ν	CPU	LB	m	%CPU	%LB	%m
Golden-1-C17-N 241	356.37	1245.5	241	205.34	1245.5	184	1.74	1	1.31
Golden - 1 - C18 - N 241	560.34	1260.25	241	265.52	1247	194	2.11	0.98	1.24
Golden - 1 - C19 - N 241	673.66	1294.5	241	443.99	1285	190	1.52	0.99	1.27
Golden - 1 - C21 - N 241	1019.07	1335	241	491.72	1335	184	2.07	1	1.31
Golden - 1 - C22 - N 241	626.52	1363	241	905.65	1349.25	204	0.69	0.98	1.18
Golden - 1 - C 25 - N 241	2459.49	1431.2	241	1446.06	1430	203	1.7	0.99	1.19
Golden - 1 - C 27 - N 241	2251.72	1432	241	1244.55	1432	201	1.81	1	1.2
Golden - 1 - C 31 - N 241	1363.08	1503	241	922.63	1503	201	1.48	1	1.2
Golden - 1 - C 35 - N 241	3976.06	1570.71	241	4851.46	1570.71	239	0.82	1	1.01
Golden - 2-C22-N 321	1979.31	1679	321	578.54	1679	227	3.42	1	1.41
Golden - 2-C23-N 321	1616.33	1703	321	707.99	1703	244	2.28	1	1.32
Golden - 2-C25-N 321	2151.96	1806	321	841.65	1806	242	2.56	1	1.33
Golden - 2-C27-N 321	4985.62	1826	321	1120.09	1826	238	4.45	1	1.35
Golden - 2-C30-N 321	7200.92	-1E15	321	3200.3	1881.67	266	> 2.25	-	1.21
Golden - 2-C33-N 321	7200.94	-1E15	321	4944.97	2000.21	280	>1.46	-	1.15
Golden-3-C27-N401	6788.38	2232	401	1399.33	2232	290	4.85	1	1.38
Golden-3-C29-N401	7200.98	0	401	5834.28	2260	318	>1.23	-	1.26
Average	3083		288	1730		230	>2.14	~ 1	1.25

Table: Caption

э

Thanks for your attention!

э

《口》《聞》《臣》《臣》