A route relaxation based on the spatial aggregation of nodes for the generalized vehicle routing problem

François Lamothe ${ }^{1,4,5}$ Claudio Contardo ${ }^{2,5}$ Matthieu Gruson ${ }^{1,4}$ Rafael Martinelli ${ }^{3}$
${ }^{1}$ ESG UQÀM $\quad{ }^{2}$ Concordia University $\quad{ }^{3}$ PUC-Rio
${ }^{4}$ CIRRELT $\quad{ }^{5}$ GERAD

May 18, 2023

Agenda

(1) Introduction
(2) Literature review
(3) Column Generation
(4) Branching
(5) Cutting planes
(6) Computational results

The Generalized VRP

- Input:
- A set N of n nodes, partitioned into k clusters
- A depot node
- A demand $d_{i}>0$ for each cluster
- A vehicle capacity Q
- A fleet of (un)limited size
- Traveling costs $c_{i j}$
- Output
- A set of routes respecting the vehicle capacities
- Each cluster is visited once (at one node)
- Minimum total traveling cost

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, $z^{*}=386$

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, $z^{*}=386$

A very thorough (?) literature review

- Compact formulations, B\&C
- Bektas + Erdogan + Ropke 2011 (TS)
- Ha + Bostel + Langevin + Rousseau 214 (C\&OR)
- Problem reductions (to CARP most notably)
- Ghiani + Improta 2000 (EJOR)
- CG, B\&P
- Martinelli + Pecin + Poggi 2014 (EJOR)
- Reihaneh + Ghoniem 2018 (JORS)
- Freitas + P. Silva + Uchoa 2023 (C\&OR)

Mathematical formulation

$$
\min \sum_{l \in \Omega} c_{l} \theta_{l}
$$

subject to
$\begin{array}{ll}\sum_{l \in \Omega} a_{k l} \theta_{l}=1 & k \in \mathcal{C} \quad\left(\alpha_{k}\right) \\ \theta \geq 0 \text { and integer. } & \end{array}$

Pricing subproblem

- A resource constrained SPP (elementary, ng, etc...)
- Solved through a labeling algorithm
- Label L : terminal node $v(L)$, load $q(L)$, reduced cost $\overline{c(L)}$, memory $\pi(L)$

Pricing subproblem

- Traditional dominance rule between two labels L_{1}, L_{2}

$$
\begin{aligned}
\overline{c\left(L_{1}\right)} & \leq \overline{c\left(L_{2}\right)} \\
v\left(L_{1}\right) & =v\left(L_{2}\right) \\
q\left(L_{1}\right) & \leq q\left(L_{2}\right) \\
\pi\left(L_{1}\right) & \subseteq \pi\left(L_{2}\right)
\end{aligned}
$$

- The terminal condition $v\left(L_{1}\right)=v\left(L_{2}\right)$ seems too restrictive, especially if the number of nodes is much larger than the number of clusters

A new route relaxation

- We consider m supernodes (ideally with $m \ll n$), composed of nodes that are close from each other

A new route relaxation

- We consider m supernodes (ideally with $m \ll n$), composed of nodes that are close from each other
- More specifically, we consider supernodes such that every pair of nodes in the same supernode is at a distance $\leq \delta$

A new route relaxation

- We consider m supernodes (ideally with $m \ll n$), composed of nodes that are close from each other
- More specifically, we consider supernodes such that every pair of nodes in the same supernode is at a distance $\leq \delta$
- We perform pricing on a reduced graph, with $m+1$ nodes instead of $n+1$

A new route relaxation

- We consider m supernodes (ideally with $m \ll n$), composed of nodes that are close from each other
- More specifically, we consider supernodes such that every pair of nodes in the same supernode is at a distance $\leq \delta$
- We perform pricing on a reduced graph, with $m+1$ nodes instead of $n+1$
- The traveling cost between two supernodes is defined as $c_{s t}=\min \left\{c_{i j}: i \in s, j \in t\right\}$

A new route relaxation

- We consider m supernodes (ideally with $m \ll n$), composed of nodes that are close from each other
- More specifically, we consider supernodes such that every pair of nodes in the same supernode is at a distance $\leq \delta$
- We perform pricing on a reduced graph, with $m+1$ nodes instead of $n+1$
- The traveling cost between two supernodes is defined as $c_{s t}=\min \left\{c_{i j}: i \in s, j \in t\right\}$
- This can be seen as jumping within a supernode: entering through a node and leaving from another

A new route relaxation

- We consider m supernodes (ideally with $m \ll n$), composed of nodes that are close from each other
- More specifically, we consider supernodes such that every pair of nodes in the same supernode is at a distance $\leq \delta$
- We perform pricing on a reduced graph, with $m+1$ nodes instead of $n+1$
- The traveling cost between two supernodes is defined as $c_{s t}=\min \left\{c_{i j}: i \in s, j \in t\right\}$
- This can be seen as jumping within a supernode: entering through a node and leaving from another
- Terminal node $v(L)$ is now a supernode, not a disaggregated node

A new route relaxation

A new route relaxation

- New dominance rule

$$
\begin{aligned}
\overline{c\left(L_{1}\right)} & \leq \overline{c\left(L_{2}\right)} \\
v\left(L_{1}\right) & =v\left(L_{2}\right) \\
q\left(L_{1}\right) & \leq q\left(L_{2}\right) \\
\pi\left(L_{1}\right) & \subseteq \pi\left(L_{2}\right)
\end{aligned}
$$

- In practice, what we do is to aggregate nodes that are close to each other into a single node

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with feasible routes

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with feasible routes

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with feasible routes

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with feasible routes

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with feasible routes

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with feasible routes

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with feasible routes

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with feasible routes

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with feasible routes

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, integer solution with very relaxed routes, $z^{*}=306$

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with relaxed routes

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with relaxed routes

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with relaxed routes

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with relaxed routes

The Generalized VRP

Figure: Instance A-n32-k5-C11-V2, fractional solution with relaxed routes

Implementation

We are currently testing several possible implementations of this:

- A static aggregation of nodes in superclusters
- A dynamic aggregation (using DSSR)
- With target $\delta=0$ (feasible routes)
- Or $\delta>0$ (infeasible routes)

Decremental state-space relaxation

Decremental state-space relaxation

Some remarks

- The proposed approach serves at achieving a dual bound (it is a relaxation!)

Some remarks

- The proposed approach serves at achieving a dual bound (it is a relaxation!)
- Therefore, it may produce infeasible primal solutions (disconnected), as in the example before

Some remarks

- The proposed approach serves at achieving a dual bound (it is a relaxation!)
- Therefore, it may produce infeasible primal solutions (disconnected), as in the example before
- Luckily, connectivity can be achieved through branching (by imposing that routes pass through a specific node in a cluster)

Some remarks

- The proposed approach serves at achieving a dual bound (it is a relaxation!)
- Therefore, it may produce infeasible primal solutions (disconnected), as in the example before
- Luckily, connectivity can be achieved through branching (by imposing that routes pass through a specific node in a cluster)
- Other branching strategies are possible:

Some remarks

- The proposed approach serves at achieving a dual bound (it is a relaxation!)
- Therefore, it may produce infeasible primal solutions (disconnected), as in the example before
- Luckily, connectivity can be achieved through branching (by imposing that routes pass through a specific node in a cluster)
- Other branching strategies are possible:
- Number of vehicles

Some remarks

- The proposed approach serves at achieving a dual bound (it is a relaxation!)
- Therefore, it may produce infeasible primal solutions (disconnected), as in the example before
- Luckily, connectivity can be achieved through branching (by imposing that routes pass through a specific node in a cluster)
- Other branching strategies are possible:
- Number of vehicles
- Arcs between clusters

Some remarks

- The proposed approach serves at achieving a dual bound (it is a relaxation!)
- Therefore, it may produce infeasible primal solutions (disconnected), as in the example before
- Luckily, connectivity can be achieved through branching (by imposing that routes pass through a specific node in a cluster)
- Other branching strategies are possible:
- Number of vehicles
- Arcs between clusters
- Arcs between nodes

Some remarks

- The proposed approach serves at achieving a dual bound (it is a relaxation!)
- Therefore, it may produce infeasible primal solutions (disconnected), as in the example before
- Luckily, connectivity can be achieved through branching (by imposing that routes pass through a specific node in a cluster)
- Other branching strategies are possible:
- Number of vehicles
- Arcs between clusters
- Arcs between nodes
- Arcs between supernodes

Valid inequalities

- Our approach copes well with some strong cutting planes :-)
- Rounded capacity cuts
- Subset-row cuts
- However, same vertex inequalities (Bektas + Erdogan + Ropke 2011) become non-robust in our approach :-(

Experimental setup

- Julia code (v1.8)
- PUC-Rio HPC lab computers (didn't ask Rafa for the specs!)
- LPs soved using Gurobi 10
- MIP search: best bound
- Branching strategy: most fractional (1. \# of veqs; 2. total flow crossing a supernode; 3. arc between clusters; 4. arc between supernodes)
- All cuts activated (RCCs, 3-SRCs)
- Our approach is initialized with $\delta=+\infty$ (one supernode per cluster), and generate connected paths only through DSSR

Introduction
Literature review Column Generation Branching Cutting planes
Computational results

Partial results

Instance	Baseline				AggDssr			SpeedUp		
	CPU	LB	N	CPU	LB	m	\%CPU	$\% L B$	$\% \mathrm{~m}$	
Golden-1-C17-N241	356.37	1245.5	241	205.34	1245.5	184	1.74	1	1.31	
Golden-1-C18-N241	560.34	1260.25	241	265.52	1247	194	2.11	0.98	1.24	
Golden-1-C19-N241	673.66	1294.5	241	443.99	1285	190	1.52	0.99	1.27	
Golden-1-C21-N241	1019.07	1335	241	491.72	1335	184	2.07	1	1.31	
Golden-1-C22-N241	626.52	1363	241	905.65	1349.25	204	0.69	0.98	1.18	
Golden-1-C25-N241	2459.49	1431.2	241	1446.06	1430	203	1.7	0.99	1.19	
Golden-1-C27-N241	2251.72	1432	241	1244.55	1432	201	1.81	1	1.2	
Golden-1-C31-N241	1363.08	1503	241	922.63	1503	201	1.48	1	1.2	
Golden-1-C35-N241	3976.06	1570.71	241	4851.46	1570.71	239	0.82	1	1.01	
Golden-2-C22-N321	1979.31	1679	321	578.54	1679	227	3.42	1	1.41	
Golden-2-C23-N321	1616.33	1703	321	707.99	1703	244	2.28	1	1.32	
Golden-2-C25-N321	2151.96	1806	321	841.65	1806	242	2.56	1	1.33	
Golden-2-C27-N321	4985.62	1826	321	1120.09	1826	238	4.45	1	1.35	
Golden-2-C30-N321	7200.92	-1 E 15	321	3200.3	1881.67	266	>2.25	-	1.21	
Golden-2-C33-N321	7200.94	-1 E 15	321	4944.97	2000.21	280	>1.46	-	1.15	
Golden-3-C27-N401	6788.38	2232	401	1399.33	2232	290	4.85	1	1.38	
Golden-3-C29-N401	7200.98	0	401	5834.28	2260	318	>1.23	-	1.26	
Average	3083		288	1730		230	>2.14	~ 1	1.25	

Table: Caption

Thanks for your attention!

