Università
degli Studi
di Milano

Dantzig-Wolfe: from data-driven decomposition to parallel resolution

Alberto Ceselli
Dipartimento di Informatica, Università degli Studi di Milano
Saverio Basso
SUPSI and IDSIA, Lugano

Column Generation Workshop 2023

Solving Prescriptive Analytics Optimization Problems

5	10.4	17.2	12	18.3	58	16	11

1	0	0	0	0	0	0	0	1
0	23.3	0	15	17	102	51	0	237
0	5.6	0	0	0	0	0	0	12.5
0	0	0	0	0	6.3	4.3	2.3	12.5
0	0	6.2	0	6.2	0	0	0	12.5
0	0	1	1	0	0	0	0	1
0	0	0	0	0	-1	1	0	1
7.4	0	0	3.1	0	-2.5	0	5.3	15

Use branch-and-cut

- problem complexity issues
- data size scalability issues

Solving Prescriptive Analytics Optimization Problems

5	10.4	17.2	12	18.3	58	16	11	
1	0	0	0	0	0	0	0	1
0	23.3	0	15	17	102	51	0	237
0	5.6	0	0	0	0	0	0	12.5
0	0	0	0	0	6.3	4.3	2.3	12.5
0	0	6.2	0	6.2	0	0	0	12.5
0	0	1	1	0	0	0	0	1
0	0	0	0	0	-1	1	0	1
7.4	0	0	3.1	0	-2.5	0	5.3	15

1	0	0	0	0	0	0	0
0	5.6	0	0	0	0	0	0
0	0	6.2	0	6.2	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	-1	1	0
0	0	0	0	0	6.3	4.3	2.3
7.4	0	0	3.1	0	-2.5	0	5.3
0	23.3	0	15	17	102	51	0

1. to detect block structures by data driven decomposition methods
2. to exploit massive parallelism for optimization of large scale instances

Part I: Automatic Decomposition of MIPs

Looking for decomposition schemes:

- on the problem formulation (Frangioni et al, 2010 -)
- on the MIP instance (Wang Ralphs, 2013)

Detectors search suitable decomposition patterns of a given MIP instance

- by looking for previously known structures
- by exploiting static properties of that instance (Bergner Caprara Ceselli Furini Luebbecke Malaguti Traversi, 2015)
- by communality detection (Khaniyev Elhedhli Erenay, 2018)

Generic branch-and-price-and-cut solvers:

- GCG (Gamrath Luebbecke, 2010 -)
- DIP (Ralphs Galati, 2017-)
- BapCod (Vanderbeck, 2017-)
- Coluna.jl (Marquez Nesello Vanderbeck Pessoa Sadykov, 2023)

Machine learning to choose a decomposition algorithm (Kruber
Luebbecke Parmentier, 2017)

Promising Decompositions

Good decompositions: low running time, tight dual bound (Post-process)

Preliminary investigation

Research target

Investigate the link between static properties of MIP base instances and good decomposition patterns

Dataset A generation:

- 36 MIPLIB instances, generated 1000 random decompositions each
- Computed (117) static features (indep. on instance size)
- Optimized every decomposition, recorded time and bound

Experimental analysis of new decompositions from

- unknown decomp of known MIPs: base MIPs are part of Dataset A
- unknown decomp of unknown MIPs: new, unseen MIP instances

[^0]
Mixing features: Regression for unknown problems

Independent Time and Bound regressors (XGboost). Preliminary results:
Known MIPs

Time

Time

Bound

Bound

Time prediction always possible, Bound prediction out of reach

Feature importance

Time (top) and bound (bottom) regressors most important features:

A Data Driven Detection Framework

Three main components:

- D-trainer (Dataset A, xgboost regressors for Time and Bound)
- D-preprocessor
- D-optimizer (GCG)

A Data Driven Detector

Research target

Given a MIP instance, generate a suitable decomposition pattern

Ranking function $\mathbf{D}(\mathbf{i})$: Percentage of decompositions dominated by decomposition i
Given decompositions i and $\mathrm{j}, i \rightarrow j$:

$$
\begin{aligned}
& \operatorname{Time}(i) \geq \operatorname{Time}(j) \wedge \text { Bound }(i)>\operatorname{Bound}(j), \quad \text { or } \\
& \operatorname{Time}(i)>\operatorname{Time}(j) \wedge \text { Bound }(i) \geq \text { Bound }(j)
\end{aligned}
$$

[^1]
Local Search Algorithms

Research target

Given a base MIP instance, and a decomposition for it, improve it algorithmically

Starting decomposition:

static detectors or data driven detector

Neighbourhood:

set of decompositions that differ from candidate decomposition of one constraint

[^2]
Generation

Generation: Choose one constraint from the border, insert into one block

Generation

Generation: Choose one constraint from the border, insert into one block

Generation

Generation: Choose one constraint from the border, insert into one block

Generation

Generation: Choose one constraint from the border, insert into one block

Generation

Generation: Choose one constraint from the border, insert into one block

Generation

Generation: Choose one constraint from the border, insert into one block

Generation

Generation: Choose one constraint from the border, insert into one block

+ bound cannot worsen
- time prediction to avoid slow decompositions

Repeat for each constraint (border)/block combination

Generation

Generation: Choose one constraint from the border, insert into one block

+ bound cannot worsen
- time prediction to avoid slow decompositions

Repeat for each constraint (border)/block combination
Faster computation: Sample a representative neighbourhood ($25 x$ speedup, little loss of quality)

Framework testing and Benchmark Configurations

Framework (D-preprocessor) configurations
D-preprocessor experimental setup

with sampling and orthogonal selection, termination: 85% convexification.

- C ++11 custom library, Boost library, Python 3.6 scripts
- Intel i7-6700K CPU and 32GB RAM
- 30 unknown MIPLIB problems
- D-optimizer: GCG 3.0.1, 5 hours timelimit
- Benchmarks: GCG, SAS-Decomp

Root Node bounds comparison

$\mathrm{DDW}_{\text {Sample }}$	SAS ${ }_{\text {comm }}$		GCG			GCG ${ }_{\text {Hmetis }}$		GCGFull	
run 1	DDW Best	10		DDW Best	6	DDW Best	t 6	DDW Best	6
	Draw	4		Draw	15	Draw	- 14	Draw	14
	SAS Best	9		GCG Best	3	GCG Best	t 4	GCG Best	4
run 2	DDW Best	10		DDW Best	7	DDW Best	t 7	DDW Best	7
	Draw	5		Draw	15	Draw	- 14	Draw	14
	SAS Best	9		GCG Best	3	GCG Best	t 4	GCG Best	4
run 3	DDW Best	10		DDW Best	8	DDW Best	t 7	DDW Best	8
	Draw	5		Draw	14	Draw	v 13	Draw	13
	SAS Best	9		GCG Best	3	GCG Best	t 5	GCG Best	- 4
							DDW ${ }_{\text {sample }}$		
			GCG	GCG ${ }_{\text {Hmetis }}$		GCG ${ }_{\text {Full }}$	run 1	run 2	run 3
Time [s]			905.17		16.92	847.79	344.08	347.41	420.92
Solver errors				1	1	0	6	5	5
Timeouts				14	13	14	6	5	7

SAS Decomp slightly faster, 6 timeouts

Part II: Concurrent Column

Generation

Column Generation (CG)

Research target

Given a base MIP instance, and a decomposition for it, solve it as quickly as possible

Column Generation (CG)

Research target

Given a base MIP instance, and a decomposition for it, solve it as quickly as possible

Column Generation (CG)

Research target

Given a base MIP instance, and a decomposition for it, solve it as quickly as possible

Column Generation (CG)

Research target

Given a base MIP instance, and a decomposition for it, solve it as quickly as possible

Column Generation (CG)

Research target

Given a base MIP instance, and a decomposition for it, solve it as quickly as possible

Asynchronous Column Generation (ACG)

- RMP and subproblem tasks run in parallel
- Communication through shared pool (exclusive access)
- RMP version stamps: Tasks might work with different sets of dual variables
- Generic implementation: tasks solved are solved with branch-and-cut

[^3]
ACG example and terminating conditions

Proposition The following are sufficient and necessary conditions to guarantee convergence to the optimal solution

- each subproblem finished optimization with the latest RMP version stamp
- there are no new columns in the pool

Proof [...] \square

Distributed Asynchronous Column Generation (DCG)

- RMP and Subproblem tasks run on different machines
- Communication through MPI protocol (Master-Client architecture)
- Local pool (exclusive access) on every node
- Additional handler task on every Client node

Maximizing asynchronous computation

Experimentally, short optimization times maximize asynchronous computation:

- Dual variables are updated earlier
- RMP fetches new columns faster

Minimizing RMP optimization time:

- Rebalancing (from 10k to 20 k solutions)
- RMP update policy (store only promising solutions for the current set of dual variables)

Minimizing Subproblems optimization time:

- Short timeouts during the solve step (from 1 to 60 seconds)

Test-bed Instances and Benchmark Algorithms

Configurations:

- CPLEX (version 12.6.3)
- Synchronous Column Generation (SCG)
- Asynchronous Column Generation (ACG)
- Distributed Asynchronous Column Generation (DCG)

Implementation: $\mathrm{C}++11$ with Boost, OpenMP and OpenMPI libraries
Experimental Setup: up to 4 machines with Intel i7-6700K CPU and 32GB RAM (Ubuntu 16.04)

Test-bed instances (root node)

- 30 Large scale instances: Multi-dimensional Variable Size and Cost Bin-packing Problem (MDVCSBP) (250, 500, 750 subproblems)
- 21 "stress" test instances: Vehicle Routing Problem with Time Windows (VRPTW) (5 subproblems)
- 21 intermediate: Multi-Depot VRPTW (155 subproblems)

Scalability profiling

Single node (left) and multi node (right) scalability overview:

- Almost linear speed-ups for ACG on a single machine

Scalability profiling

Single node (left) and multi node (right) scalability overview:

- Almost linear speed-ups for ACG on a single machine
- DCG scales well up to 3 machines on large scale instances
- Additional heuristic subproblems would improve performance

Overall results

Performance profiling

30 Large scale instances (30h timeout):

- CPLEX hits 10 timeouts
- DCG is on average 87 times faster

Overall results

Performance profiling

30 Large scale instances (30h timeout):

- CPLEX hits 10 timeouts
- DCG is on average 87 times faster

21 Stress test instances (10h timeout):

- CPLEX always out of memory (19 times) or timeout (2 times)
- DCG requires on average 14 minutes

Conclusions and Perspectives

Our data driven approach for the automatic decomposition of MIPs

- head-to-head with state-of-the-art detectors
- provides decompositions with a twisted flavor

Our parallel and distributed column generation approach

- performs one order of magnitude better than commercial solvers on large scale instances

There is still ground to cover for

- reaching commercial solvers on fully generic MIPs
- improving ML models and search algorithms
- using ML models as white boxes

[^0]: S. Basso, A. Ceselli, A. Tettamanzi "Random Sampling and Machine Learning to Understand Good Decompositions", Annals of Operations Research 284 (2018)

[^1]: S. Basso, A. Ceselli "Computational evaluation of ranking models in an automatic decomposition framework", Proc. of EURO/ALIO 2018 (2018)

[^2]: S. Basso, A. Ceselli "Computational Evaluation of Data Driven Local Search for MIP Decompositions", Proc. of ODS 2019 (2019)

[^3]: S. Basso, A. Ceselli "Asynchronous Column Generation", Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments (ALENEX) (2017)

