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Background & motivation

“Nowadays, the leading exact algorithms for solving many classes of
vehicle-routing problems (VRPs, Toth and Vigo [2014]) are
branch-price-and-cut algorithms.” [Costa et al., 2019].

In most of the cases, the considered objective function is to minimize the
total distance travelled by all vehicles (minsum objectives).

Can column generation be effectively applied to address minmax
vehicle routing problems?

The minmax multiple traveling salesman problem (mTSP) [França et al.,

1995]:

The minsum mTSP is generalized (directly or indirectly) by
several routing problems.
By addressing compact formulations for the minmax mTSP
through commercial MILP solvers, optimal solutions can be
found, within 1 hour, only for instances with 10 customers
[Sarin et al., 2014, Soylu, 2015].
The optimality gap for heuristic solutions can be computed
only for small instances [see, e.g., He and Hao, 2023].
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Problem statement

Given:
a road network;
a fleet of homogeneous vehicles housed in a common depot;
a set of customers to visit;

Find vehicle tours (routes) such that:
each customer is visited;
the length of the longest tour (route) is minimized.

Example:
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(b)

A minmax mTSP instance (a) and a corresponding solution (b) with a fleet of 3
vehicles.
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Compact model: Notation

Data:

N Customer set {1, . . . , n}
{0, n+1} Depot at the beginning and the end of the planning

horizon, respectively

G=(V,A) Directed graph modelling the road network:
V = N ∪ {0, n+ 1}
A = {(i, j) ∈ |V |×|V | : i 6= n+ 1, j 6= 0}\{(0, n+ 1)}

tij Length (distance) associated with the traversal of arc
(i, j) ∈ A

K Index set for the vehicles

Variables:

C ∈ R+ Length of the longest tour (route) among those
assigned to the |K| vehicles

xij ∈ {0, 1} Vehicle flow along arc (i, j) ∈ A
Tij ∈ R+ Cumulated length, at vertex j, of a partial tour

(route) covered by a vehicle coming directly from
vertex i
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Compact model: Arc-flow formulation (known: ∼[Maffioli and Sciomachen, 1997])

min C (1a)∑
j∈N

x0,j =
∑
i∈N

xi,n+1 = |K| (1b)

∑
(j,i)∈δ−(i)

xji =
∑

(i,j)∈δ+(i)

xij = 1 i ∈ N (1c)

T0j = t0jx0j j ∈ N (1d)∑
(i,j)∈δ+(i)

Tij −
∑

(j,i)∈δ−(i)

Tji =
∑

(i,j)∈δ+(i)

tijxij i ∈ N (1e)

Ti,n+1 ≤ C i ∈ N (1f)

t0ijxij ≤ Tij ≤ CUj,n+1xij (i, j) ∈ A (1g)

xij ∈ {0, 1} (i, j) ∈ A (1h)

CL ≤ C1 ≤ CU (optional) (1i)

where:

δ+(S)/δ−(S): Set of arcs {(i, j) ∈ A : i ∈ S, j /∈ S}/{(i, j) ∈ A : i /∈ S, j ∈ S}
leaving/entering the set S ⊆ N (with δ+({i}) = δ+(i)/δ−({i}) = δ−(i));

t0ij = t0i + tij , with t00 = 0, and CUj,n+1 = CU − tj,n+1, with tn+1,n+1 = 0.
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Path-based formulation (known: [Benavent et al., 2014])

Data:

P Set of feasible paths for any vehicle

api Number of times path p ∈ P visits customer i ∈ N
cp Length of path p ∈ P

Variables:

Ck∈R+ Length of the path assigned to vehicle k ∈ K
λkp∈{0,1} Binary variable equal to 1 if path p∈P is assigned to vehicle k∈K

min C1 (2a)

s.t.
∑
k∈K

∑
p∈P

api λ
kp ≥ 1 i ∈ N (2b)∑

p∈P

λkp ≤ 1 k ∈ K (2c)∑
p∈P

cpλkp ≤ Ck k ∈ K (2d)

Ck ≥ Ck+1 k ∈ {1, . . . , |K| − 1} (2e)

λkp ∈ {0, 1} k ∈ K, p ∈ P (2f)

Ck ≥ 0 k ∈ K (2g)

CL ≤ C1 ≤ CU (optional) (2h)
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Pricing problem

The dual of the linear relaxation of (2) is:

max
∑
i∈N

µi +
∑
k∈K

θk (3a)

s.t.
∑
i∈N

api µi + θk + cpρk ≤ 0 k ∈ K, p ∈ P (3b)

− ρ1 + σ1 ≤ 1 (3c)

− ρk − σk−1 + σk ≤ 0 k ∈ {2, . . . , |K| − 2} (3d)

− ρ|K| − σ|K|−1 ≤ 0 (3e)

µi ≥ 0 i ∈ N (3f)

θk, ρk ≤ 0 k ∈ K (3g)

σk ≥ 0 k ∈ {1, . . . , |K| − 1} (3h)

where µi ∈ R+, θk, ρk ∈ R−, and σk ∈ R+ are the dual variables associated

with constraints (2b), (2c), (2d), and (2e), respectively.
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Pricing problem (cont’d)

The reduced cost of path p ∈ P , when assigned to vehicle k ∈ K, is
defined as:

−
∑
i∈N

api µi − θk − c
pρk (4)

A distinct pricing problem (PP) for each k ∈ K:

min
p∈P

c̄p(µ, ρk)

where c̄p(µ, ρk) = −
∑
i∈N a

p
iµi − cpρk.

A path p ∈ P represents a negative reduced cost solution for PPk,
k ∈ K, if c̄p(µ, ρk) < θk.

Each PP corresponds to an Elementary Shortest Path Problem with
Resource Constraints (ESPPRC), which is known to be NP-hard in
the strong sense (Dror [1994]), and can be solved by means of
state-of-the-art techniques ([Costa et al., 2019]).

Any available upper bound CU for C1 can be used to restrict the
feasible regions of the PPs.
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Can we somehow exploit the fact that all the pricing problems share the same feasible region?

Observation 1 (Empirical)

At each column generation iteration, it often happens that some dual variables ρk,
k ∈ K, have the same value (Benavent et al. [2014], Bianchessi and Tresoldi [2021],
Bianchessi et al. [2022]).

(i) The column generation iteration can be properly designed in order to exploit
Observation 1.

Algorithm 1: Column generation iteration
Input: Index set fot the vehicles K, dual variables (µ, θ,ρ), set of pricing problems {PP1,. . . ,PP|K|}.

Output: Sets of pareto-optimal solutions S̄k with negative reduced cost for all pricing problems PPk , k∈K.
1 Define set K′ = {k1, . . . , k|K|} such that ρki ≤ ρkj for each i < j;

2 S̄k ← ∅ for each k ∈ K; i← 1;
3 while i ≤ |K| do
4 if (i == 1) or (|ρki − ρki−1

| > ε) then

5 Solve PPki computing set Ski ; /* Sk : Set of pareto-optimal solutions of PPk */

6 for s ∈ Ski do

7 j ← i;
8 while (j ≤ |K|) and (|ρki − ρkj | ≤ ε) do

9 if (s is a negative reduced cost solution for PPkj
) then

10 S̄ki
← S̄ki

∪ {s};

11 j ← j + 1;

12 i← i + 1;

(ii) The branching scheme must allow the PPs to share the same feasible region at
every node of the branch-and-bound tree.
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Restricted master heuristic (Joncour et al. [2010])

Notation

(λ̄, C̄) Optimal fractional solution to the current linear relaxation of (2)

P̄ Set of paths associated with variables λ̄ > 0

P̂ Superset of P̄ defined according to some criteria

CU = min C1 (5a)

s.t.
∑
k∈K

∑
p∈P̂

api λ
kp ≥ 1 i ∈ N (5b)

∑
p∈P̂

λkp ≤ 1 k ∈ K (5c)

∑
p∈P̂

cpλkp ≤ Ck k ∈ K (5d)

Ck ≥ Ck+1 k ∈ {1, . . . , |K| − 1} (5e)

λkp ∈ {0, 1} k ∈ K, p ∈ P̂ (5f)

Improving UB values allow to:

restrict the PPs’ feasible region, potentially constraining the LB to
improve;

speed up the solution algorithm for the PPs.
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Path-based formulation

Given:

prop Property that uniquely determines a representative vertex for each
path p ∈ P (e.g., “Property 1: The last customer vertex visited
before reaching directly the depot vertex n+ 1.”, “Property 2: The
first customer vertex reached directly after leaving the depot vertex
0.”, etc.)

fprop:N×P→B fprop(i, p) = 1 iff vertex i is the representative vertex of path p
according to property prop

Variables:

C ∈ R+ Length of the longest path among those assigned to |K| vehicles

λp∈{0,1} Binary variable equal to 1 if path p∈P is assigned to one of the |K|
vehicles

min C (6a)

s.t.
∑
p∈P

api λ
p ≥ 1 i ∈ N (6b)∑

p∈P

λp ≤ |K| (6c)∑
p∈P :fprop(i,p)=1

cpλp ≤ C i ∈ N (6d)

λp ∈ {0, 1} p ∈ P (6e)

CL ≤ C ≤ CU (optional) (6f)
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Pricing problem

A unique pricing problem (PP):

min
p∈P

c̄p(µ,ρ, θ)

where:

c̄p(µ,ρ, θ) = −
∑
i∈N api µi −

∑
i∈N cpρif

prop(i, p)− θ
µi ∈ R+, θ∈R−, and ρi ∈ R− are the dual variables associated with
constraints (6b), (6c), and (6d), respectively, in the linear relaxation of (6).

The PP corresponds to an ESPPRC with linear length costs (that depend on
the path’s representative vertex) and possible side constraints.

The model of the PP varies on the basis of the considered property prop.
W.r.t. Property 1:

min −
∑
i∈N

µiyi −
∑
i∈N

ρiTi,n+1 − θ (7a)∑
j∈N

x0,j =
∑
i∈N

xi,n+1 = 1 (7b)∑
(j,i)∈δ−(i)

xji =
∑

(i,j)∈δ+(i)

xij = yi i ∈ N (7c)

T0j = t0jx0j j ∈ N (7d)∑
(i,j)∈δ+(i)

Tij −
∑

(j,i)∈δ−(i)

Tji =
∑

(i,j)∈δ+(i)

tijxij i ∈ N (7e)

t
0
ijxij ≤ Tij ≤ C

U
j,n+1xij (i, j) ∈ A (7f)

yi ∈ {0, 1} i ∈ N (7g)
xij ∈ {0, 1} (i, j) ∈ A (7h)
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Pricing Problem (w.r.t. Property 1): Label setting dynamic programming algorithm

We address the ng-path relaxation (Baldacci et al. [2011]) of the PP:

Labels of the form (t,B, R, i). (Initial label (0,0, 0, 0) at vertex 0.)

Extension of label L = (t,B, R, i) along arc (i, j) ∈ V :

1 Feasibility check:

t+ tij ≤ CU − 1
(j=n+ 1) or (j /∈Ni) or (j ∈ Ni and B(j) = 0)

2 Resulting label L′ = (t′,B′, R′, j):

t′ = t+ tij

B′(u) =


0 for all u ∈ V \ {0, n+ 1} if j = n+ 1
0 for all u /∈ Ni ∩Nj if i 6= 0 and j 6= n+ 1
B(u) for all u∈Ni∩Nj if i 6= 0 and j 6=n+ 1
1 if j 6= n+ 1 and u = j

R′ =

{
R− µj if j 6= n+ 1
R− ρit′ if j = n+ 1

Dominance: L′ = (t′,B′, R′, j) � L′′ = (t′′,B′′, R′′, j) if t′ ≤ t′′,
B′(u) ≤ B′′(u) for each u ∈ Ni, and R′ ≤ R′′.

Observation 2

Information concerning the (i) representative vertex and (ii) final length of the path
become known at the same time.
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Pricing Problem (w.r.t. Property 1): Bi-directional search (Righini and Salani [2006]) acceleration strategy

Backward search:

Labels of the form (t,B, R, v, i).
(Initial label (CU − 1,0, 0,−1, n+ 1) at vertex n+ 1.)
Extension of label L = (t,B, R, v, i) along arc (i, j) ∈ V :

1 Feasibility check:

t− tij ≥ 0
(i=0) or (i /∈Nj) or (i ∈ Nj and B(i) = 0)

2 Resulting label L′ = (t′,B′, R′, v′, j):

t′ = t− tij

B′(u) =


0 for all u ∈ V \ {0, n+ 1} if i = 0
0 for all u /∈ Ni ∩Nj if i 6= 0 and j 6= n+ 1
B(u) for all u∈Ni∩Nj if i 6= 0 and j 6=n+ 1
1 if i 6= 0 and u = i

v′ =

{
i if j = n+ 1
v otherwise

R′ =

R− ρi(C
U − 1) if j = n+ 1

R− µj if i 6= 0 and j 6= n+ 1
R+ ρvt

′ if i = 0
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Pricing Problem (w.r.t. Property 1): Bi-directional search (Righini and Salani [2006]) acceleration strategy

Backward search (cont’d):

Dominance:L1 =(t1,B1, R1, v1, j) � L2 =(t2,B2, R2, v2, j) if:

(i) t1 ≥ t2
(ii) B1(u) ≤ B2(u) for each u ∈ Nj
(iii) R1 ≤ R2

(iv) R1 + ρv1 t
2 ≤ R2 + ρv2 t

2
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R2 + ρv2t
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t

R

Merge of labels Lf =(tf ,Bf , Rf , i) and Lb=(tb,Bb, Rb, vb, i) at i ∈ N :

Feasibility check: (i) tf≤ tb and (ii)Bf(u)+Bb(u)<1 for each u∈Ni, u 6= i

Resulting reduced cost: Rf +Rb + ρvb(t
b − tf )
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Implemented/considered algorithms

BP-M6 - The BP algorithm based on model (6) - Property 1 -
in which:

the ng-path relaxation of the PP is solved (the size of the
ng-neighborhoods is equal to 5);
the bi-directional search is applied on top of the label setting
dynamic programming;
the RMH is applied at each node of the tree;

CPLEX-M1 - The CPLEX solver addressing model (1) plus
constraints

t0,ix0,i + ti,n+1xi,n+1 ≤ C i ∈ N (8)

and with parameters:
IloCplex::Param::Threads=6;
IloCplex::ParallelMode=1;

Constraints CL ≤ C1 ≤ CU are considered both in (6) and (1), with:

CL = CL1 = maxi∈N (t0,i + ti,n+1)

CU = CU1



Introduction minmax mTSP Branch-and-Price (BP) algorithm Alternative BP algorithm Experimental results Conclusions References

Implemented/considered algorithms

BP-M6 - The BP algorithm based on model (6) - Property 1 -
in which:

the ng-path relaxation of the PP is solved (the size of the
ng-neighborhoods is equal to 5);
the bi-directional search is applied on top of the label setting
dynamic programming;
the RMH is applied at each node of the tree;

CPLEX-M1 - The CPLEX solver addressing model (1) plus
constraints

t0,ix0,i + ti,n+1xi,n+1 ≤ C i ∈ N (8)

and with parameters:
IloCplex::Param::Threads=6;
IloCplex::ParallelMode=1;

Constraints CL ≤ C1 ≤ CU are considered both in (6) and (1), with:

CL = CL1 = maxi∈N (t0,i + ti,n+1)

CU = CU1



Introduction minmax mTSP Branch-and-Price (BP) algorithm Alternative BP algorithm Experimental results Conclusions References

Instances

We considered the instances of Set I proposed by [He and
Hao, 2022]: 8 TSP instances (att532, kroA200, lin318,
mtsp100, mtsp150, mtsp51, pcb1173, rat783) addressed
with different values of |K|.
For each of the TSP instances, we generated an instance
considering the first |N | ∈ {10, 20, 30, 40, 50} customers listed
in the TSP instance, to address with values of |K| such that

(i) 3 ≤ |K| ≤ 10 and (ii) |N ||K| ≥ 3:

Combinations:

|N | Possible values of |K|

10 3
20 3,4,5,6
30 3,4,5,6,7,8,9,10
40 3,4,5,6,7,8,9,10
50 3,4,5,6,7,8,9,10

29 combinations for a total of 232 (29 · 8) instances.
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Setting

SW: C++/CPLEX 20.1; the code was compiled in release
mode with Microsoft Visual Studio Community 2022 (64-bit)
(Visual C++ 2022).

HW: 64-bit Windows machine, with the Intel processor
i7-6700K, 4.00 GHz, and 32 GB of RAM.

Overall execution time limit: 900 seconds.



Introduction minmax mTSP Branch-and-Price (BP) algorithm Alternative BP algorithm Experimental results Conclusions References

Analysis of BP-M6: Impact of bi-directional search

BP-M6 compared against BP-M6-BI.

Solution of the linear relaxation of (6) with CL = 0.

Geometric means of ratios of solution times Sol. timeBP-M6/Sol. timeBP-M6-BI
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(b) Categories defined w.r.t. the original instances from which the benchmark instances are derived

(Sol. timeBP-M6-BI or Sol. timeBP-M6 greater than 5 seconds - 155/232 instances)

Bi-directional search is beneficial.
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Analysis of BP-M6: Impact of the initial CL value

Solution of the linear relaxation of (6) with CL = CLf = dCL1 · fe,
f ∈ {0, 0.125, 0.25, 0.5}.

O
ve

ra
ll

at
t5

32

kr
oA

20
0

lin
31

8

m
ts

p10
0

m
ts

p15
0

m
ts

p51

pcb
11

73

ra
t7

83

0

100

200

300

S
ec

on
d

s

Average solution time BP-M6-CL0
BP-M6-CL0.125

BP-M6-CL0.25

BP-M6-CL0.5

O
ve

ra
ll

at
t5

32

kr
oA

20
0

lin
31

8

m
ts

p10
0

m
ts

p15
0

m
ts

p51

pcb
11

73

ra
t7

83

0

2

4

S
ec

on
d

s

Categories defined w.r.t. the original instances from which the benchmark instances are derived

Lower bound values have huge impacts on both (i) the column generation
algorithm and (ii) the label setting dynamic programming algorithm.
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Analysis of BP-M6: Impact of the restricted master heuristic (RMH)

BP-M6 compared against BP-M6-RMH.

Subsets of instances with |N | ≤ 30.
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Embedding primal bound heuristics into the BP algorithm is fundamental;
RMHs come almost for free.
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Assessment of BP-M6

BP-M6 compared against CPLEX-M1.
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BP-M6 is superior to CPLEX-M1.
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Assessment of BP-M6

BP-M6 compared against CPLEX-M1.
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Assessment of BP-M6

BP-M6 compared against CPLEX-M1.
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BP-M6 is superior to CPLEX-M1.
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Improved the state-of-the-art concerning the exact solution of the
minmax mTSP.

Identified what seem to be some key components/features to embed
in BP algorithms addressing minmax VRPs.

Future work:

Implement/evaluate the BP algorithm based on model (2).
Implement/evaluate the BP algorithm based on model (6) -
Property 3: The representative vertex is the customer vertex at
which merge is performed when applying the bi-directional search to
solve the PP.

(↑) Observation 2 applies for both the fw and bw search.
(↓) No more possible to consider dynamic half-way points in

bi-directional search [Tilk et al., 2017].
(↓) The representative vertex of a path has to be kept consistent w.r.t.

improving UB values.

Check for improving LB values at each node of the B&B tree on the
basis of the arcs enforced by branching decisions.
. . .

... thanks for your attention!!!
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