Incorporating Holding Costs in Continuous-Time Service Network Design: New Model, Relaxation and Exact Algorithm

Roberto Baldacci

Engineering Management and Decision Sciences (EMDS), College of Science and Engineering (CSE), Hamad Bin Khalifa University (HBKU), Doha, Qatar

rbaldacci@hbku.edu.qa

Column Generation 2023

joint work with Shengnan Shu, Zhou Xu Department of Logistics and Maritime Studies The Hong Kong Polytechnic University, Hong Kong

Outline I

1 Introduction

- 2 Service Network Design Problem (SNDP): Problem Description
- 3 Models for the SNDP
- 4 Continuous-time SNDP (CTSNDP) and DDD algorithm
- **5** CTSNDP with Holding Costs (CTSNDP-HC)
- 6 New DDD Algorithm for the CTSNDP-HC
- 7 Computational Study

SNDP: Problem Description

Input

- A physical network of terminals
- Commodities with origins and destinations

Design

- Direct transportation services to open
- Paths to transport commodities (unsplittable case)
- Consolidations of commodities

Constraints

- Time windows
- Capacities
- Objective: minimize the total cost (fixed and flow costs)

1	k	<i>o</i> ^{<i>k</i>}	d^k	q^k	e ^k	l ^k
	1	b	а	25	0	160
	2	d	а	30	20	180
	3	С	а	40	0	180

 (c, f, τ, u) on arcs

SNDP: Problem Description

- A physical network of terminals
- Commodities with origins and destinations
- Design
 - Direct transportation services to open
 - Paths to transport commodities (unsplittable case)
 - Consolidations of commodities
- Constraints
 - Time windows
 - Capacities
- Objective: minimize the total cost (fixed and flow costs)

k	<i>o^k</i>	d^k	q^k	e ^k	I ^k
1	b	а	25	0	160
2	d	а	30	20	180
3	с	а	40	0	180

 (c, f, τ, u) on arcs

({commodities}, dep.time, arr.time)) Fixed cost: 70 (=22 (c, b) + 38 (d, b) + 10 (b, a)) Flow cost: 165

SERVICE NETWORK DESIGN PROBLEM (SNDP): PROBLEM DESCRIPTION - 4/51

SNDP: Problem Description

Input

- A physical network of terminals
- Commodities with origins and destinations

Design

- Direct transportation services to open
- Paths to transport commodities (unsplittable case)
- Consolidations of commodities

Constraints

- Time windows
- Capacities
- Objective: minimize the total cost (fixed and flow costs)

k	o ^k	d ^k	q^k	e ^k	I ^k
1	b	а	25	0	160
2	d	а	30	20	180
3	С	а	40	0	180

 (c, f, τ, u) on arcs

 $(\{commodities\}, dep.time, arr.time\})$ Fixed cost: 70 (=22 (c, b) + 38 (d, b) + 10 (b, a)) Flow cost: 165

The three commodities are *consolidated* on arc (b, a)

SERVICE NETWORK DESIGN PROBLEM (SNDP): PROBLEM DESCRIPTION - 5/51

SNDP with Holding Costs

$(\{1, 2, 3\}, 90, 150)$ In-Transit Holding Costs ({commodities}, dep.time, arr.time)) Caused by transporta-Fixed cost: 70 (13).040 tion Flow cost: 165 ({2}, 20, 90 Can be included in flow costs c d SNDP opt. sol.

 Optimal design without incorporating holding cost can go arbitrarily worse

SNDP with Holding Costs

• In-Transit Holding Costs

- Caused by transportation
- Can be included in flow costs
- In-Storage Holding Costs
 - Caused by consolidation
 - E.g. Commodities 1 (b-a) and 3 (c-a) wait at terminal b for 90 and 50 minutes to be consolidated with commodity 2 (d-a)
- Optimal design without incorporating holding cost can go arbitrarily worse

({commodities}, dep.time, arr.time)) Fixed cost: 70 Flow cost: 165 Holding cost: Hold.cost. of 0.01 at term. b 0.01*(25*90+40*50)=42.5

SNDP with Holding Costs

SERVICE NETWORK DESIGN PROBLEM (SNDP): PROBLEM DESCRIPTION - 8/51

Models for the SNDP

- Wide applications: transportation, telecommunication, logistics, and productiondistribution systems [Crainic, 2000; Wieberneit, 2008]
- Time-dependent compact models that use continuous variables to model time ⇒ weak linear programming (LP) relaxations
- Time-indexed models [Andersen et al., 2009b,a; Pedersen et al., 2009]:
 - Discretization level: Δ
 - Time-expanded network: $\mathcal{D}_{\mathcal{T}}^{\Delta} = (\mathcal{N}_{\mathcal{T}}^{\Delta}, \mathcal{H}_{\mathcal{T}}^{\Delta} \cup \mathcal{A}_{\mathcal{T}}^{\Delta})$ (holding $\mathcal{H}_{\mathcal{T}}^{\Delta}$, service $\mathcal{A}_{\mathcal{T}}^{\Delta}$)

- Variables indexed by time: $X_{ij}^{k\bar{t}\bar{t}}$ be 0-1 variable equal to 1 if commodity $k \in \mathcal{K}$ is routed along arc $(i, j) \in \mathcal{A}$ departing from i at time t and arriving at j at time \bar{t} , 0 otherwise
- Price of discretization analysed in Boland et al. [2018]

Models for the SNDP

- Wide applications: transportation, telecommunication, logistics, and productiondistribution systems [Crainic, 2000; Wieberneit, 2008]
- Time-dependent compact models that use continuous variables to model time ⇒ weak linear programming (LP) relaxations
- Time-indexed models [Andersen et al., 2009b,a; Pedersen et al., 2009]:
 - Discretization level:
 - Time-expanded network: $\mathcal{D}_{\mathcal{T}}^{\Delta} = (\mathcal{N}_{\mathcal{T}}^{\Delta}, \mathcal{H}_{\mathcal{T}}^{\Delta} \cup \mathcal{A}_{\mathcal{T}}^{\Delta})$ (holding $\mathcal{H}_{\mathcal{T}}^{\Delta}$, service $\mathcal{A}_{\mathcal{T}}^{\Delta}$)

■ Variables indexed by time: $X_{ij}^{kt\bar{t}}$ be 0-1 variable equal to 1 if commodity $k \in \mathcal{K}$ is routed along arc $(i, j) \in \mathcal{A}$ departing from i at time t and arriving at j at time \bar{t} , 0 otherwise

Price of discretization analysed in Boland et al. [2018]

Models for the SNDP

- Wide applications: transportation, telecommunication, logistics, and productiondistribution systems [Crainic, 2000; Wieberneit, 2008]
- Time-dependent compact models that use continuous variables to model time ⇒ weak linear programming (LP) relaxations
- Time-indexed models [Andersen et al., 2009b,a; Pedersen et al., 2009]:
 - Discretization level:
 - Time-expanded network: $\mathcal{D}_{\mathcal{T}}^{\Delta} = (\mathcal{N}_{\mathcal{T}}^{\Delta}, \mathcal{H}_{\mathcal{T}}^{\Delta} \cup \mathcal{A}_{\mathcal{T}}^{\Delta})$ (holding $\mathcal{H}_{\mathcal{T}}^{\Delta}$, service $\mathcal{A}_{\mathcal{T}}^{\Delta}$)

- Variables indexed by time: $X_{ij}^{kt\bar{t}}$ be 0-1 variable equal to 1 if commodity $k \in \mathcal{K}$ is routed along arc $(i, j) \in \mathcal{A}$ departing from i at time t and arriving at j at time \bar{t} , 0 otherwise
- Price of discretization analysed in Boland et al. [2018]

- When Δ ⇒ 0, time-indexed (TI) model size ⇒ infinity, but solution ⇒ optimal in continuous-time
- Boland et al. [2017] tackled the CTSNDP
 - Existence of a finite time-expanded network whose time-indexed model solution is continuous-time optimal
 - \Rightarrow The size of the resulting TI model may be prohibitively
 - Propose a Dynamic Discretization Discovery (DDD) algorithm → optimal continuous-time solution obtained by considering a small portion of the complete TI-model
- Follow-up works

[Marshall et al., 2020; Hewitt, 2019; Medina et al., 2019; Vu et al., 2020] on CTSNDP, its variations, and other continuous time transportation optimization problems

• Valid or effective only when holding costs are zero

- When Δ ⇒ 0, time-indexed (TI) model size ⇒ infinity, but solution ⇒ optimal in continuous-time
- Boland et al. [2017] tackled the CTSNDP
 - Existence of a finite time-expanded network whose time-indexed model solution is continuous-time optimal
 - \Rightarrow The size of the resulting TI model may be prohibitively
 - Propose a Dynamic Discretization Discovery (DDD) algorithm
 ⇒ optimal continuous-time solution obtained by considering a *small portion* of the complete TI model

Follow-up works

[Marshall et al., 2020; Hewitt, 2019; Medina et al., 2019; Vu et al., 2020] on CTSNDP, its variations, and other continuous time transportation optimization problems

• Valid or effective only when holding costs are zero

- When Δ ⇒ 0, time-indexed (TI) model size ⇒ infinity, but solution ⇒ optimal in continuous-time
- Boland et al. [2017] tackled the CTSNDP
 - Existence of a finite time-expanded network whose time-indexed model solution is continuous-time optimal
 - \Rightarrow The size of the resulting TI model may be prohibitively
 - Propose a Dynamic Discretization Discovery (DDD) algorithm
 ⇒ optimal continuous-time solution obtained by considering a *small portion* of the complete TI model

Follow-up works

[Marshall et al., 2020; Hewitt, 2019; Medina et al., 2019; Vu et al., 2020] on CTSNDP, its variations, and other continuous time transportation optimization problems

• Valid or effective only when holding costs are zero

- When Δ ⇒ 0, time-indexed (TI) model size ⇒ infinity, but solution ⇒ optimal in continuous-time
- Boland et al. [2017] tackled the CTSNDP
 - Existence of a finite time-expanded network whose time-indexed model solution is continuous-time optimal
 - \Rightarrow The size of the resulting TI model may be prohibitively
 - Propose a Dynamic Discretization Discovery (DDD) algorithm
 ⇒ optimal continuous-time solution obtained by considering a *small portion* of the complete TI model

Follow-up works

[Marshall et al., 2020; Hewitt, 2019; Medina et al., 2019; Vu et al., 2020] on CTSNDP, its variations, and other continuous time transportation optimization problems

Valid or effective only when holding costs are zero

Existence of a Complete TI model for the CTSNDP

- Based on the following observation:
 - The services' departure times of a continuous-time optimal solution can be shifted to be as early as possible without changing the total cost
- Not valid when holding costs are considered
 - Shifting services' departure times may change holding costs

Existence of a Complete TI model for the CTSNDP

If terminal **b** has positive holding cost, then:

- Based on the following observation:
 - The services' departure times of a continuous-time optimal solution can be shifted to be as early as possible without changing the total cost
- Not valid when holding costs are considered
 - Shifting services' departure times may change holding costs

Continuous-Time Service Network Design with Holding Costs (CTSNDP-HC): Challenges and Our Results

- Prove the existence of a complete TI model with $\Delta = 1$ for CTSNDP-HC
 - This is needed to guarantee the convergence of the DDD algorithm to be developed
- Develop a DDD algorithm for CTSNDP-HC
 - New cuts
 - New and more effective upper bound heuristic
 - New and effective refinement strategy
- Demonstrate the effectiveness of the new DDD algorithm and the benefits that can be gained by taking into account holding costs

Continuous-Time Service Network Design with Holding Costs (CTSNDP-HC): Challenges and Our Results

- Prove the existence of a complete TI model with $\Delta = 1$ for CTSNDP-HC
 - This is needed to guarantee the convergence of the DDD algorithm to be developed
- Develop a DDD algorithm for CTSNDP-HC
 - New and tighter relaxation
 - New cuts
 - New and more effective upper bound heuristic
 - New and effective refinement strategy
- Demonstrate the effectiveness of the new DDD algorithm and the benefits that can be gained by taking into account holding costs

Continuous-Time Service Network Design with Holding Costs (CTSNDP-HC): Challenges and Our Results

- Prove the existence of a complete TI model with $\Delta = 1$ for CTSNDP-HC
 - This is needed to guarantee the convergence of the DDD algorithm to be developed
- Develop a DDD algorithm for CTSNDP-HC
 - New and tighter relaxation
 - New cuts
 - New and more effective upper bound heuristic
 - New and effective refinement strategy
- Demonstrate the effectiveness of the new DDD algorithm and the benefits that can be gained by taking into account holding costs

Dynamic Discretization Discovery Algorithm for CTSNDP-HC A column point-generation based approach

- Proposed by Boland et al. [2017]
- The algorithm converges to optimal and stops in a finite number of iterations
 - \Rightarrow Due to sufficiency of Δ and the new refinement strategy developed

Dynamic Discretization Discovery Algorithm for CTSNDP-HC A column point-generation based approach

- Proposed by Boland et al. [2017]
- The algorithm converges to optimal and stops in a finite number of iterations

Time-Index model for the SNDP with Holding Costs

• Formulation SND-HC($\mathcal{D}_{\mathcal{T}}^{\Delta}$):

$$\begin{split} z(\mathcal{D}_{\mathcal{T}}^{\Delta}) &= \min \sum_{((i,t),(j,\overline{t})) \in \mathcal{A}_{\mathcal{T}}^{\Delta}} f_{ij} y_{ij}^{t\overline{t}} + \sum_{k \in \mathcal{K}} \sum_{((i,t),(j,\overline{t})) \in \mathcal{A}_{\mathcal{T}}^{\Delta}} (c_{ij}^{k} q^{k}) x_{ij}^{kt\overline{t}} + \sum_{k \in \mathcal{K}} \sum_{i \in \mathcal{N}} (h_{i}^{k} q^{k}) w_{i}^{k} \\ \sum_{(i,t),(j,\overline{t}) \in \mathcal{A}_{\mathcal{T}}^{\Delta} \cup \mathcal{H}_{\mathcal{T}}^{\Delta}} x_{ij}^{kt\overline{t}} - \sum_{((j,\overline{t}),(i,t)) \in \mathcal{A}_{\mathcal{T}}^{\Delta} \cup \mathcal{H}_{\mathcal{T}}^{\Delta}} x_{ji}^{k\overline{t}} = \begin{cases} 1 & (i,t) = (o^{k}, e^{k}), \\ -1 & (i,t) = (d^{k}, l^{k}), \forall k \in \mathcal{K}, (i,t) \in \mathcal{N}_{\mathcal{T}}^{\Delta}, \\ 0 & \text{otherwise}, \end{cases} \\ \sum_{k \in \mathcal{K}} q^{k} x_{ij}^{kt\overline{t}} \leq u_{ij} y_{ij}^{t\overline{t}}, & \forall ((i,t),(j,\overline{t})) \in \mathcal{A}_{\mathcal{T}}^{\Delta}, \\ \sum_{k \in \mathcal{K}} t x_{ij}^{kt\overline{t}} - e^{k}, & i = o^{k}, \end{cases} \\ \begin{cases} \sum_{((i,t),(j,\overline{t})) \in \mathcal{A}_{\mathcal{T}}^{\Delta}} t x_{ji}^{k\overline{t}} - e^{k}, & i = o^{k}, \\ ((i,t),(j,\overline{t})) \in \mathcal{A}_{\mathcal{T}}^{\Delta}, & \forall i \in \mathcal{N}, \forall k \in \mathcal{K}, \end{cases} \\ \sum_{((i,t),(j,\overline{t})) \in \mathcal{A}_{\mathcal{T}}^{\Delta}} t x_{ji}^{k\overline{t}} - \sum_{((j,\overline{t}),(i,t)) \in \mathcal{A}_{\mathcal{T}}^{\Delta}} t x_{ji}^{k\overline{t}}, & i = d^{k}, \quad \forall i \in \mathcal{N}, \forall k \in \mathcal{K}, \end{cases} \\ x_{ij}^{kt\overline{t}} \in \{0,1\}, \quad \forall ((i,t),(j,\overline{t})) \in \mathcal{A}_{\mathcal{T}}^{\Delta} \cup \mathcal{H}_{\mathcal{T}}^{\Delta}, k \in \mathcal{K}, \\ y_{ij}^{t\overline{t}} \in \mathbb{N}_{\geq 0}, \quad \forall ((i,t),(j,\overline{t})) \in \mathcal{A}_{\mathcal{T}}^{\Delta}, k \in \mathcal{K}. \end{cases} \end{split}$$

Existence of a Complete TI Model

- Define a flat solution as $\mathcal{S} = (\mathcal{P}, \mathcal{C})$
 - P: paths for commodities
 - C: consolidation plans for arcs of paths
- Continuous-time solution: (P, C) + services' departure times
- Given S = (P, C), optimal service' departure times can be solved by an LP model
- The LP model is totally unimodular
 ⇒ optimal departure times are integers (with integers data)

 ⇒ Δ = 1 is sufficient

k	Pk		С								
	'	α	J								
1	(<u>b</u> ,a)	(b , a)	$\{(1,1),(2,2),(3,2)\}$								
2	(d, b, a)	(d,b)	$\{(2,1)\}$								
3	(c,b,a)	(<mark>c,b</mark>)	$\{(3,1)\}$								

Existence of a Complete TI Model

- Define a flat solution as $\mathcal{S} = (\mathcal{P}, \mathcal{C})$
 - P: paths for commodities
 - C: consolidation plans for arcs of paths
- Continuous-time solution: (P, C) + services' departure times
- Given S = (P, C), optimal service' departure times can be solved by an LP model
- The LP model is totally unimodular
 ⇒ optimal departure times are integers (with integers data)
 ⇒ Δ = 1 is sufficient

k	D ^k		$\mathcal C$
	F	α	J
1	(<u>b</u> ,a)	(<mark>b</mark> ,a)	$\{(1,1),(2,2),(3,2)\}$
2	(d, b, a)	(d,b)	$\{(2,1)\}$
3	(c,b,a)	(c,b)	$\{(3,1)\}$

- Fully time-expanded network $\mathcal{D}_{\hat{\mathcal{T}}}$
- Consider a <u>Partially</u> time-expanded network D_T = (N_T, H_T ∪ A_T)
 ⇒ derive lower bounds on both transportation costs and holding costs
- Associate to each feasible path in the fully time-expanded network a <u>feasible</u> path in the partially time-expanded network

- Fully time-expanded network $\mathcal{D}_{\hat{\mathcal{T}}}$
- Consider a Partially time-expanded network D_T = (N_T, H_T ∪ A_T)
 ⇒ derive lower bounds on both transportation costs and holding costs
- Associate to each feasible path in the <u>fully</u> time-expanded network a <u>feasible</u> path in the partially time-expanded network

(b) Mapped solution on the partially time-expanded network

NEW DDD ALGORITHM FOR THE CTSNDP-HC - 27/51

- Fully time-expanded network $\mathcal{D}_{\hat{\mathcal{T}}}$
- Consider a Partially time-expanded network D_T = (N_T, H_T ∪ A_T)
 ⇒ derive lower bounds on both transportation costs and holding costs
- Associate to each feasible path in the <u>fully</u> time-expanded network a <u>feasible</u> path in the partially time-expanded network

(b) Mapped solution on the partially time-expanded network

NEW DDD ALGORITHM FOR THE CTSNDP-HC - 28/51

- Fully time-expanded network $\mathcal{D}_{\hat{\mathcal{T}}}$
- Consider a Partially time-expanded network D_T = (N_T, H_T ∪ A_T)
 ⇒ derive lower bounds on both transportation costs and holding costs
- Associate to each feasible path in the <u>fully</u> time-expanded network a <u>feasible</u> path in the partially time-expanded network

(b) Mapped solution on the partially time-expanded network

NEW DDD ALGORITHM FOR THE CTSNDP-HC - 29/51

New Relaxation for the CTSNDP-HC

- Partially time-expanded network $\mathcal{D}_{\mathcal{T}} = (\mathcal{N}_{\mathcal{T}}, \mathcal{H}_{\mathcal{T}} \cup \mathcal{A}_{\mathcal{T}})$
- Relaxation SND-HC-R(D_T):

$$\begin{split} z_{R}(\mathcal{D}_{\mathcal{T}}) &= \min \sum_{((i,t),(j,\bar{t}))\in\mathcal{A}_{\mathcal{T}}} f_{ij} y_{ij}^{t\bar{t}} + \sum_{k\in\mathcal{K}} \sum_{((i,t),(j,\bar{t}))\in\mathcal{A}_{\mathcal{T}}} (c_{ij}^{k}q^{k}) x_{ij}^{k\bar{t}\bar{t}} + \sum_{k\in\mathcal{K}} \sum_{i\in\mathcal{N}} (h_{i}^{k}q^{k}) w_{i}^{k} \\ \text{SND}(\mathcal{D}_{\mathcal{T}}^{\Delta}) \text{ and} \\ w_{i}^{k} &\leq \begin{cases} \sum_{a=((i,t),(j,\bar{t}))\in\mathcal{A}_{\mathcal{T}}} \xi^{k}(a) x_{ij}^{k\bar{t}\bar{t}} - e^{k}, & i = o^{k}, \\ l^{k} - \sum_{a=((j,\bar{t}),(i,\bar{t}))\in\mathcal{A}_{\mathcal{T}}} \psi^{k}(a) x_{ji}^{k\bar{t}\bar{t}}, & i = d^{k}, \\ \sum_{a=((i,t),(j,\bar{t}))\in\mathcal{A}_{\mathcal{T}}} \xi^{k}(a) x_{ij}^{k\bar{t}\bar{t}} - \sum_{a=((j,\bar{t}),(i,t))\in\mathcal{A}_{\mathcal{T}}} \psi^{k}(a) x_{ji}^{k\bar{t}\bar{t}}, & otherwise, \end{cases} \\ w_{i}^{k} &\geq \begin{cases} \sum_{a=((i,t),(j,\bar{t}))\in\mathcal{A}_{\mathcal{T}}} \vartheta^{k}(a) x_{ji}^{k\bar{t}\bar{t}} - e^{k}, & i = o^{k}, \\ l^{k} - \sum_{a=((i,\bar{t}),(i,\bar{t}))\in\mathcal{A}_{\mathcal{T}}} \delta^{k}(a) x_{ji}^{k\bar{t}\bar{t}}, & i = d^{k}, \\ l^{k} - \sum_{a=((i,\bar{t}),(i,\bar{t}))\in\mathcal{A}_{\mathcal{T}}} \delta^{k}(a) x_{ji}^{k\bar{t}\bar{t}}, & i = d^{k}, \\ \vartheta^{k}(a) x_{ji}^{k\bar{t}\bar{t}}, & i = d^{k}, \\ w_{i}^{k} &\geq \end{cases} \begin{cases} \sum_{a=((i, t),(i, \bar{t}))\in\mathcal{A}_{\mathcal{T}}} \vartheta^{k}(a) x_{ji}^{k\bar{t}\bar{t}} - \sum_{a=((j, \bar{t}),(i, \bar{t}))\in\mathcal{A}_{\mathcal{T}}} \delta^{k}(a) x_{ji}^{k\bar{t}\bar{t}}, & i = d^{k}, \\ y_{i}^{k} &= l^{k} - e^{k} - \sum_{((i, t),(j, \bar{t}))\in\mathcal{A}_{\mathcal{T}}} \tau_{ij} x_{ij}^{k\bar{t}\bar{t}}, & \forall k \in \mathcal{K}. \end{cases}$$

New Refinement Strategy for CTSNDP-HC

- Based on the same refinement operations of Boland et al. [2017] and Hewitt [2022], but using different refinement strategies
 - Add new time points to and modify arcs of the partial time-expanded network

 \Rightarrow so that the existing relaxation optimal solution becomes <u>infeasible</u>

- Lengthen short arcs (whose travel times are shorter than actual travel times, leading to infeasible consolidations)
- Split the time intervals to improve accuracy of holding time to guarantee the convergence of the algorithm

New Refinement Strategy for CTSNDP-HC

- Based on the same refinement operations of Boland et al. [2017] and Hewitt [2022], but using different refinement strategies
 - Add new time points to and modify arcs of the partial time-expanded network

 \Rightarrow so that the existing relaxation optimal solution becomes <u>infeasible</u>

- Lengthen short arcs (whose travel times are shorter than actual travel times, leading to infeasible consolidations)
- Split the time intervals to improve accuracy of holding time to guarantee the convergence of the algorithm

New Refinement Strategy for CTSNDP-HC

- Based on the same refinement operations of Boland et al. [2017] and Hewitt [2022], but using different refinement strategies
 - Add new time points to and modify arcs of the partial time-expanded network

 \Rightarrow so that the existing relaxation optimal solution becomes $\underline{infeasible}$

- Lengthen short arcs (whose travel times are shorter than actual travel times, leading to infeasible consolidations)
- Split the time intervals to improve accuracy of holding time to guarantee the convergence of the algorithm

Computational Study

- We generated two classes of instances:
 - Class I: derived from Boland et al. [2017], evaluate the performance of the method in solving the CTSNDP and CTSNDP-HC
 - Class II: newly generated, analyse the factors that affect the complexity of the CTSNDP-HC
 - Holding costs defined for the less-than-truckload shipment case [Lai et al., 2022]
- Results grouped by "HC/LF", "HC/HF", "LC/LF" and "LC/HF"
 - Low Cost ratio (LC) (fixed to flow cost ratio)
 - High Cost ratio (HC)
 - Low Flexibility (LF) (shipments' time requirements)
 - High Flexibility (HF)
- Gurobi (v.8.1.1) [Gurobi Optimization, 2021] MIP solver to solve relaxation SND-HC-R($\mathcal{D}_{\mathcal{T}})$
- Seconds of an Intel(R) Core(TM) i7-8700 (3.20 GHz) Desktop PC, two hours of time limit

Computational Study

- We generated two classes of instances:
 - Class I: derived from Boland et al. [2017], evaluate the performance of the method in solving the CTSNDP and CTSNDP-HC
 - Class II: newly generated, analyse the factors that affect the complexity of the CTSNDP-HC
 - Holding costs defined for the less-than-truckload shipment case [Lai et al., 2022]
- Results grouped by "HC/LF", "HC/HF", "LC/LF" and "LC/HF"
 - Low Cost ratio (LC) (fixed to flow cost ratio)
 - High Cost ratio (HC)
 - Low Flexibility (LF) (shipments' time requirements)
 - High Flexibility (HF)
- Gurobi (v.8.1.1) [Gurobi Optimization, 2021] MIP solver to solve relaxation SND-HC-R($\mathcal{D}_{\mathcal{T}}$)
- Seconds of an Intel(R) Core(TM) i7-8700 (3.20 GHz) Desktop PC, two hours of time limit

Computational Study

- We generated two classes of instances:
 - Class I: derived from Boland et al. [2017], evaluate the performance of the method in solving the CTSNDP and CTSNDP-HC
 - Class II: newly generated, analyse the factors that affect the complexity of the CTSNDP-HC
 - Holding costs defined for the less-than-truckload shipment case [Lai et al., 2022]
- Results grouped by "HC/LF", "HC/HF", "LC/LF" and "LC/HF"
 - Low Cost ratio (LC) (fixed to flow cost ratio)
 - High Cost ratio (HC)
 - Low Flexibility (LF) (shipments' time requirements)
 - High Flexibility (HF)
- Gurobi (v.8.1.1) [Gurobi Optimization, 2021] MIP solver to solve relaxation SND-HC-R($\mathcal{D}_{\mathcal{T}}$)
- Seconds of an Intel(R) Core(TM) i7-8700 (3.20 GHz) Desktop PC, two hours of time limit

- 558 instances [Boland et al., 2017] ($\leq |\mathcal{N}| = 30$, $|\mathcal{A}| = 683$, $|\mathcal{K}| = 400$)
- LB0: lower bound on the CTSNDP
- UB0: upper bound on the CTSNDP-HC based on the CTSNDP
- LB, UB: lower and upper bounds on the CTSNDP-HC

			%UB					% <i>LB</i> 0	%(JB0
	%opt	min	max	avg	time	%tLB	iter	avg	avg	max
HC/LF	98.4	1.1	1.9	1.6	279.3	86.6	4.4	4.1	0.8	5.3
HC/HF	65.5	1.0	6.1	2.9	2902.7	94.4	6.2	10.6	3.9	17.9
LC/LF	100.0	-	-	-	0.7	62.3	1.8	0.7	0.0	1.0
LC/HF	100.0	-	-	-	0.2	57.0	2.3	0.8	1.1	8.0

- 558 instances [Boland et al., 2017] ($\leq |\mathcal{N}| = 30$, $|\mathcal{A}| = 683$, $|\mathcal{K}| = 400$)
- LB0: lower bound on the CTSNDP
- UB0: upper bound on the CTSNDP-HC based on the CTSNDP
- LB, UB: lower and upper bounds on the CTSNDP-HC

			%UB					% <i>LB</i> 0	%(JB0
	%opt	min	max	avg	time	%tLB	iter	avg	avg	max
HC/LF	98.4	1.1	1.9	1.6	279.3	86.6	4.4	4.1	0.8	5.3
HC/HF	65.5	1.0	6.1	2.9	2902.7	94.4	6.2	10.6	3.9	17.9
LC/LF	100.0	-	-	-	0.7	62.3	1.8	0.7	0.0	1.0
LC/HF	100.0	-	-	-	0.2	57.0	2.3	0.8	1.1	8.0

- 558 instances [Boland et al., 2017] ($\leq |\mathcal{N}| = 30$, $|\mathcal{A}| = 683$, $|\mathcal{K}| = 400$)
- LB0: lower bound on the CTSNDP
- UB0: upper bound on the CTSNDP-HC based on the CTSNDP
- LB, UB: lower and upper bounds on the CTSNDP-HC

			%UB					% <i>LB</i> 0	%(JB0
	%opt	min	max	avg	time	%tLB	iter	avg	avg	max
HC/LF	98.4	1.1	1.9	1.6	279.3	86.6	4.4	4.1	0.8	5.3
HC/HF	65.5	1.0	6.1	2.9	2902.7	94.4	6.2	10.6	3.9	17.9
LC/LF	100.0	-	-	-	0.7	62.3	1.8	0.7	0.0	1.0
LC/HF	100.0	-	-	-	0.2	57.0	2.3	0.8	1.1	8.0

- 558 instances [Boland et al., 2017] ($\leq |\mathcal{N}| = 30$, $|\mathcal{A}| = 683$, $|\mathcal{K}| = 400$)
- LB0: lower bound on the CTSNDP
- UB0: upper bound on the CTSNDP-HC based on the CTSNDP
- LB, UB: lower and upper bounds on the CTSNDP-HC

			%UB					% <i>LB</i> 0	%(JB0
	%opt	min	max	avg	time	%tLB	iter	avg	avg	max
HC/LF	98.4	1.1	1.9	1.6	279.3	86.6	4.4	4.1	0.8	5.3
HC/HF	65.5	1.0	6.1	2.9	2902.7	94.4	6.2	10.6	3.9	17.9
LC/LF	100.0	-	-	-	0.7	62.3	1.8	0.7	0.0	1.0
LC/HF	100.0	-	-	-	0.2	57.0	2.3	0.8	1.1	8.0

- Based on new 1116 CTSNDP-HC derived from Crainic et al. [2001] (up to $|\mathcal{N}| = 30$, $|\mathcal{A}| = 683$ and $|\mathcal{K}| = 400$)
- Varying the connectivity level: networks $D_1 > D_2 > D_3 > D_4$
- Varying the flexibility level: distributions C > B > A

					%U	В				% <i>LB</i> 0	% <i>UB</i> 0
		%opt	min	max	avg	time	%tLB	iter	avg	avg	max
A 1	D_1	97.8	1.1	2.1	1.6	183.7	86.3	4.0	7.3	4.1	15.7
1	D_2	98.9	2.3	2.3	2.3	116.7	84.9	3.8	8.0	4.6	17.6
1	D ₃	98.9	1.2	1.2	1.2	175.0	80.5	3.8	8.8	5.2	24.4
1	D4	98.9	1.8	1.8	1.8	103.0	78.6	3.8	9.0	5.9	23.4
B 1	D_1	84.9	1.1	6.8	3.0	1810.4	95.5	4.7	10.0	7.7	36.5
1	D_2	90.3	1.3	7.7	4.0	1246.9	94.6	4.8	11.8	9.9	34.8
1	D3	89.2	1.0	6.3	2.7	906.9	89.8	4.9	11.3	10.1	37.1
1	D4	95.7	1.3	2.8	1.9	348.2	85.1	5.1	10.7	10.4	37.1
C 1	D_1	53.8	1.0	25.4	8.7	3586.5	98.5	4.0	6.9	6.5	44.7
1	D2	59.1	1.0	19.7	4.6	3288.5	97.4	4.7	8.1	8.6	46.1
1	D3	84.9	1.0	19.9	4.6	1650.8	94.0	5.1	11.0	11.8	43.1
1	D4	94.6	3.0	3.0	3.0	452.3	87.5	5.6	10.6	14.1	45.8

Computational Study - 41/51

- Based on new 1116 CTSNDP-HC derived from Crainic et al. [2001] (up to $|\mathcal{N}| = 30$, $|\mathcal{A}| = 683$ and $|\mathcal{K}| = 400$)
- Varying the connectivity level: networks $D_1 > D_2 > D_3 > D_4$
- Varying the flexibility level: distributions C > B > A

				%U	В				% <i>LB</i> 0	% <i>UB</i> 0
	%opt	min	max	avg	time	%tLB	iter	avg	avg	max
A \mathcal{D}_1	97.8	1.1	2.1	1.6	183.7	86.3	4.0	7.3	4.1	15.7
\mathcal{D}_2	98.9	2.3	2.3	2.3	116.7	84.9	3.8	8.0	4.6	17.6
\mathcal{D}_3	98.9	1.2	1.2	1.2	175.0	80.5	3.8	8.8	5.2	24.4
\mathcal{D}_4	98.9	1.8	1.8	1.8	103.0	78.6	3.8	9.0	5.9	23.4
$B \ \mathcal{D}_1$	84.9	1.1	6.8	3.0	1810.4	95.5	4.7	10.0	7.7	36.5
\mathcal{D}_2	90.3	1.3	7.7	4.0	1246.9	94.6	4.8	11.8	9.9	34.8
\mathcal{D}_3	89.2	1.0	6.3	2.7	906.9	89.8	4.9	11.3	10.1	37.1
\mathcal{D}_4	95.7	1.3	2.8	1.9	348.2	85.1	5.1	10.7	10.4	37.1
$C \ \mathcal{D}_1$	53.8	1.0	25.4	8.7	3586.5	98.5	4.0	6.9	6.5	44.7
\mathcal{D}_2	59.1	1.0	19.7	4.6	3288.5	97.4	4.7	8.1	8.6	46.1
\mathcal{D}_3	84.9	1.0	19.9	4.6	1650.8	94.0	5.1	11.0	11.8	43.1
\mathcal{D}_4	94.6	3.0	3.0	3.0	452.3	87.5	5.6	10.6	14.1	45.8

COMPUTATIONAL STUDY - 42/51

Class I: Comparison of Partially and Fully Time-expanded Networks

- %value = $100.0 \times x/y$
- $x \in \{variables, constraints, nodes\}$: partially time-expanded network
- $y \in \{variables, constraints, nodes\}$: fully time-expanded network

Conclusions

We have:

- Shown the importance of incorporating holding costs in CTSNDP
- Proved the existence of a complete time-indexed model for the CTSNDP-HC
- Designed a new effective DDD algorithm
- Shown that the benefits depends on the connectivity of the underlying physical network and on the flexibility of the shipments' time requirements

Conclusions

We have:

- Shown the importance of incorporating holding costs in CTSNDP
- Proved the existence of a complete time-indexed model for the CTSNDP-HC
- Designed a new effective DDD algorithm
- Shown that the benefits depends on the connectivity of the underlying physical network and on the flexibility of the shipments' time requirements

Future work:

- Applications to other continuous time transportation planning problems, including problems under uncertainty
- Performance bottleneck: MIP solver \Rightarrow strengthen the relaxation with additional cuts

Conclusions

We have:

- Shown the importance of incorporating holding costs in CTSNDP
- Proved the existence of a complete time-indexed model for the CTSNDP-HC
- Designed a new effective DDD algorithm
- Shown that the benefits depends on the connectivity of the underlying physical network and on the flexibility of the shipments' time requirements

Future work:

- Applications to other continuous time transportation planning problems, including problems under uncertainty
- Performance bottleneck: MIP solver \Rightarrow strengthen the relaxation with additional cuts

Paper available at

http://www.optimization-online.org/DB_HTML/2021/10/8616.html

Thank you for your attention!

COMPUTATIONAL STUDY - 47/51

Class II: differences between UB0 and UB

- %*dr*: percentage of the commodities that use different delivery routes
- %*ds*: percentage of the commodities that use the same delivery routes but with different departure scheduling plans

D' .	Network	etwork % <i>UB</i> 1	0/ 1	%da	%	dr	%	ds	E	EXM-	0		EXM	
Dist.	Network	% <i>0</i> B1	%dp	%da	avg	max	avg	max	%hc	%ht	%cs	%hc	%ht	%cs
	\mathcal{D}_1	1.6	22.4	14.1	1.0	7.5	21.4	42.5	3.2	6.7	40.9	1.2	3.9	32.9
•	\mathcal{D}_2	2.0	25.7	17.0	1.0	7.0	24.8	38.0	3.7	7.4	43.7	1.2	4.1	35.2
A	\mathcal{D}_3	2.4	29.8	19.9	0.4	2.6	29.4	42.5	4.5	8.3	49.1	1.4	4.4	38.0
	\mathcal{D}_4	2.7	34.0	22.8	0.0	0.0	34.0	56.0	4.9	9.2	52.1	1.5	4.8	40.6
	\mathcal{D}_1	3.0	25.6	16.8	2.1	7.5	23.5	45.0	5.3	8.7	47.4	1.6	4.3	38.2
P	\mathcal{D}_2	4.4	31.5	20.7	1.6	12.5	30.0	50.0	6.8	10.9	52.2	1.5	4.5	39.1
в	\mathcal{D}_3	5.2	35.7	25.1	1.2	5.1	34.6	60.0	7.7	12.1	54.4	1.8	5.2	42.6
	\mathcal{D}_4	6.2	41.7	29.0	0.0	1.0	41.7	63.0	8.7	14.1	56.5	1.8	5.4	44.4
	\mathcal{D}_1	5.1	31.2	20.9	3.3	11.0	27.9	44.0	7.7	10.3	50.6	1.7	4.1	37.2
6	\mathcal{D}_2	5.5	34.9	24.3	3.0	12.5	31.9	50.0	8.1	11.4	54.9	1.7	4.4	40.0
С	\mathcal{D}_3	7.3	39.7	26.2	1.6	10.0	38.1	57.5	9.9	15.1	58.0	1.6	5.1	41.5
	\mathcal{D}_4	8.7	47.6	34.0	0.0	0.0	47.6	72.5	11.1	17.9	61.5	1.7	5.8	45.6

Computational Study - 48/51

Class II: differences between UB0 and UB

- %*dr*: percentage of the commodities that use different delivery routes
- %*ds*: percentage of the commodities that use the same delivery routes but with different departure scheduling plans

Dist.	Network	% <i>UB</i> 1	%dp	%da	%dr		%ds		EXM-0			EXM		
					avg	max	avg	max	%hc	%ht	%cs	%hc	%ht	%cs
A	\mathcal{D}_1	1.6	22.4	14.1	1.0	7.5	21.4	42.5	3.2	6.7	40.9	1.2	3.9	32.9
	\mathcal{D}_2	2.0	25.7	17.0	1.0	7.0	24.8	38.0	3.7	7.4	43.7	1.2	4.1	35.2
	\mathcal{D}_3	2.4	29.8	19.9	0.4	2.6	29.4	42.5	4.5	8.3	49.1	1.4	4.4	38.0
	\mathcal{D}_4	2.7	34.0	22.8	0.0	0.0	34.0	56.0	4.9	9.2	52.1	1.5	4.8	40.6
В	\mathcal{D}_1	3.0	25.6	16.8	2.1	7.5	23.5	45.0	5.3	8.7	47.4	1.6	4.3	38.2
	\mathcal{D}_2	4.4	31.5	20.7	1.6	12.5	30.0	50.0	6.8	10.9	52.2	1.5	4.5	39.1
	\mathcal{D}_3	5.2	35.7	25.1	1.2	5.1	<mark>34.6</mark>	60.0	7.7	12.1	54.4	1.8	5.2	42.6
	\mathcal{D}_4	6.2	41.7	29.0	0.0	1.0	41.7	63.0	8.7	14.1	56.5	1.8	5.4	44.4
с	\mathcal{D}_1	5.1	31.2	20.9	3.3	11.0	27.9	44.0	7.7	10.3	50.6	1.7	4.1	37.2
	\mathcal{D}_2	5.5	34.9	24.3	3.0	12.5	31.9	50.0	8.1	11.4	54.9	1.7	4.4	40.0
	\mathcal{D}_3	7.3	39.7	26.2	1.6	10.0	38.1	57.5	9.9	15.1	58.0	1.6	5.1	41.5
	\mathcal{D}_4	8.7	47.6	34.0	0.0	0.0	47.6	72.5	11.1	17.9	61.5	1.7	5.8	45.6

References I

- Andersen, J., Crainic, T. G., and Christiansen, M. (2009a). Service network design with asset management: Formulations and comparative analyses. *Transportation Research Part C: Emerging Technologies*, 17(2):197–207.
- Andersen, J., Crainic, T. G., and Christiansen, M. (2009b). Service network design with management and coordination of multiple fleets. *European Journal of Operational Research*, 193(2):377–389.
- Boland, N., Hewitt, M., Marshall, L., and Savelsbergh, M. (2017). The continuous-time service network design problem. *Operations Research*, 65(5):1303–1321.
- Boland, N., Hewitt, M., Marshall, L., and Savelsbergh, M. (2018). The price of discretizing time: a study in service network design. *EURO Journal on Transportation and Logistics*, pages 1–22.
- Crainic, T. G. (2000). Service network design in freight transportation. *European Journal of Operational Research*, 122(2):272–288.
- Crainic, T. G., Frangioni, A., and Gendron, B. (2001). Bundle-based relaxation methods for multicommodity capacitated fixed charge network design. *Discrete Applied Mathematics*, 112(1-3):73–99.
- Gurobi Optimization, L. (2021). Gurobi optimizer reference manual (v.8.1.1). http://www.gurobi.com.
- Hewitt, M. (2019). Enhanced dynamic discretization discovery for the continuous time load plan design problem. *Transportation Science*, 53(6):1731–1750.
- Hewitt, M. (2022). The Flexible Scheduled Service Network Design Problem. Transportation Science, 56(4):1000–1021.
- Lai, M., Cai, X., and Hall, N. G. (2022). Cost allocation for less-than-truckload collaboration via shipper consortium. *Transportation Science*, 56(3):585–611.

References II

- Marshall, L., Boland, N., Savelsbergh, M., and Hewitt, M. (2020). Interval-based dynamic discretization discovery for solving the continuous-time service network design problem. *Transportation Science*, page trsc.2020.0994.
- Medina, J., Hewitt, M., Lehuédé, F., and Péton, O. (2019). Integrating long-haul and local transportation planning: The service network design and routing problem. *EURO Journal on Transportation and Logistics*, 8(2):119–145.
- Pedersen, M. B., Crainic, T. G., and Madsen, O. B. (2009). Models and tabu search metaheuristics for service network design with asset-balance requirements. *Transportation Science*, 43(2):158– 177.
- Vu, D. M., Hewitt, M., Boland, N., and Savelsbergh, M. (2020). Dynamic discretization discovery for solving the time-dependent traveling salesman problem with time windows. *Transportation science*, 54(3):703–720.
- Wieberneit, N. (2008). Service network design for freight transportation: a review. *OR spectrum*, 30(1):77–112.