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SNDP: Problem Description

• Input
A physical network of
terminals
Commodities with ori-
gins and destinations

• Design
Direct transportation
services to open
Paths to transport
commodities (unsplit-
table case)
Consolidations of com-
modities

• Constraints
Time windows
Capacities

• Objective: minimize the
total cost (fixed and flow
costs)
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The three commodities
are consolidated on arc
(b, a)
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SNDP with Holding Costs

• In-Transit Holding Costs
Caused by transporta-
tion
Can be included in flow
costs

• In-Storage Holding Costs
Caused by consolida-
tion
E.g. Commodities 1
(b-a) and 3 (c-a) wait
at terminal b for 90
and 50 minutes to be
consolidated with com-
modity 2 (d-a)

• Optimal design without
incorporating holding cost
can go arbitrarily worse
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Models for the SNDP

• Wide applications: transportation, telecommunication, logistics, and production-
distribution systems [Crainic, 2000; Wieberneit, 2008]

• Time-dependent compact models that use continuous variables to model time
⇒ weak linear programming (LP) relaxations

• Time-indexed models [Andersen et al., 2009b,a; Pedersen et al., 2009]:

Discretization level: ∆

Time-expanded network: D∆
T = (N∆

T ,H∆
T ∪A∆

T ) (holding H∆
T , service A∆

T )

Variables indexed by time: x
ktt
ij be 0-1 variable equal to 1 if commodity k ∈ K

is routed along arc (i , j) ∈ A departing from i at time t and arriving at j at
time t, 0 otherwise

Price of discretization analysed in Boland et al. [2018]
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Continuous-Time Service Network Design (CTSNDP)

• When ∆ ⇒ 0, time-indexed (TI) model size⇒ infinity, but solution⇒ optimal
in continuous-time

• Boland et al. [2017] tackled the CTSNDP

Existence of a finite time-expanded network whose time-indexed model solution
is continuous-time optimal

⇒ The size of the resulting TI model may be prohibitively

Propose a Dynamic Discretization Discovery (DDD) algorithm
⇒ optimal continuous-time solution obtained by considering a small portion of
the complete TI model

• Follow-up works
[Marshall et al., 2020; Hewitt, 2019; Medina et al., 2019; Vu et al., 2020]
on CTSNDP, its variations, and other continuous time transportation opti-
mization problems

• Valid or effective only when holding costs are zero
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Existence of a Complete TI model for the CTSNDP

• Based on the following obser-
vation:

The services’ departure
times of a continuous-time
optimal solution can be
shifted to be as early as
possible without changing
the total cost

• Not valid when holding costs
are considered

Shifting services’ departure
times may change holding
costs
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Continuous-Time Service Network Design with Holding Costs
(CTSNDP-HC): Challenges and Our Results

• Prove the existence of a complete TI model with ∆ = 1 for CTSNDP-HC

This is needed to guarantee the convergence of the DDD algorithm to be
developed

• Develop a DDD algorithm for CTSNDP-HC

New cuts

New and more effective upper bound heuristic

New and effective refinement strategy

• Demonstrate the effectiveness of the new DDD algorithm and the benefits
that can be gained by taking into account holding costs
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Dynamic Discretization Discovery Algorithm for CTSNDP-HC
A column point-generation based approach

• Proposed by
Boland et al. [2017]

• The algorithm converges
to optimal and stops in a
finite number of iterations

⇒ Due to sufficiency of
∆ and the new refinement
strategy developed
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Time-Index model for the SNDP with Holding Costs

• Formulation SND-HC(D∆
T ):

z(D∆
T ) = min

∑

((i,t),(j,t))∈A∆
T

fijy
tt
ij +

∑

k∈K

∑

((i,t),(j,t))∈A∆
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(ckij q
k )xkttij +
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i∈N

(hki q
k )wk

i
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q
k
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l
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t x
ktt
ji , i = d

k
, ∀ i ∈ N , ∀ k ∈ K,

∑

((i,t),(j,t))∈A∆
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t x
ktt
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∑

((j,t),(i,t))∈A∆
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t x
ktt
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x
ktt
ij ∈ {0, 1}, ∀((i , t), (j, t)) ∈ A∆

T ∪ H∆
T , k ∈ K,

y
tt
ij ∈ N≥0, ∀((i , t), (j, t)) ∈ A∆

T ,

w
k
i ≥ 0, ∀i ∈ N , k ∈ K.
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Existence of a Complete TI Model

• Define a flat solution as S = (P , C)
P : paths for commodities
C: consolidation plans for arcs of
paths

• Continuous-time solution: (P , C) +
services’ departure times

• Given S = (P , C), optimal service’
departure times can be solved by an
LP model

• The LP model is totally unimodular

⇒ optimal departure times are inte-
gers (with integers data)

⇒ ∆ = 1 is sufficient

a b

c d

({1, 2, 3}, 90, 150)

({
3}
,

0,
40
)

({
2
},
2
0
,
9
0
)

k P
k C

α J

1 (b,a) (b,a) {(1, 1), (2, 2), (3, 2)}
2 (d ,b,a) (d ,b) {(2, 1)}
3 (c,b,a) (c,b) {(3, 1)}
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Deriving the Relaxation

• Fully time-expanded network DT̂

• Consider a Partially time-expanded network DT = (NT ,HT ∪ AT )
⇒ derive lower bounds on both transportation costs and holding costs

• Associate to each feasible path in the fully time-expanded network a feasible
path in the partially time-expanded network
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New Relaxation for the CTSNDP-HC
• Partially time-expanded network DT = (NT ,HT ∪ AT )

• Relaxation SND-HC-R(DT ):

zR(DT ) = min
∑

((i,t),(j,t))∈AT
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tt
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∑

a=((i,t),(j,t))∈AT

ξ
k
(a)x

ktt
ij −

∑

a=((j,t),(i,t))∈AT

ψ
k
(a) x

ktt
ji , otherwise,

w
k
i ≥



































∑

a=((i,t),(j,t))∈AT

ϑ
k
(a)x

ktt
ij − e

k
, i = o

k
,

l
k
−

∑

a=((j,t),(i,t))∈AT

δ
k
(a) x

ktt
ji , i = d

k
, ∀ i ∈ N , ∀ k ∈ K,
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ϑ
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∑
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δ
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i∈N

w
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k − e
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∑
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τijx
ktt
ij , ∀ k ∈ K.
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New Refinement Strategy for CTSNDP-HC

• Based on the same refinement operations of Boland et al. [2017] and
Hewitt [2022], but using different refinement strategies

• Add new time points to and mod-
ify arcs of the partial time-expanded
network
⇒ so that the existing relaxation op-
timal solution becomes infeasible

• Lengthen short arcs (whose travel
times are shorter than actual travel
times, leading to infeasible consoli-
dations)

• Split the time intervals to improve
accuracy of holding time to guaran-
tee the convergence of the algorithm
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dations)

• Split the time intervals to improve
accuracy of holding time to guaran-
tee the convergence of the algorithm

(a) Lengthen short arcs

(b) Split time interval
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Computational Study

• We generated two classes of instances:

Class I: derived from Boland et al. [2017], evaluate the performance of the
method in solving the CTSNDP and CTSNDP-HC

Class II: newly generated, analyse the factors that affect the complexity of the
CTSNDP-HC

Holding costs defined for the less-than-truckload shipment case [Lai et al., 2022]

• Results grouped by “HC/LF”, “HC/HF”, “LC/LF” and “LC/HF”

Low Cost ratio (LC) (fixed to flow cost ratio)

High Cost ratio (HC)

Low Flexibility (LF) (shipments’ time requirements)

High Flexibility (HF)

• Gurobi (v.8.1.1) [Gurobi Optimization, 2021] MIP solver to solve relaxation
SND-HC-R(DT )

• Seconds of an Intel(R) Core(TM) i7-8700 (3.20 GHz) Desktop PC, two hours
of time limit
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Class I: Summary of the Results
• 558 instances [Boland et al., 2017] ( ≤ |N | = 30, |A| = 683, |K| = 400)
• LB0: lower bound on the CTSNDP
• UB0: upper bound on the CTSNDP-HC based on the CTSNDP
• LB, UB: lower and upper bounds on the CTSNDP-HC

%UB %LB0 %UB0

%opt min max avg time %tLB iter avg avg max

HC/LF 98.4 1.1 1.9 1.6 279.3 86.6 4.4 4.1 0.8 5.3

HC/HF 65.5 1.0 6.1 2.9 2902.7 94.4 6.2 10.6 3.9 17.9

LC/LF 100.0 - - - 0.7 62.3 1.8 0.7 0.0 1.0

LC/HF 100.0 - - - 0.2 57.0 2.3 0.8 1.1 8.0

%UB = 100 (UB − LB)/LB - %UB0 = 100 (UB0−UB)/UB0 - %LB0 = 100 (LB − LB0)/LB0

Computational Study - 37/51



Class I: Summary of the Results
• 558 instances [Boland et al., 2017] ( ≤ |N | = 30, |A| = 683, |K| = 400)
• LB0: lower bound on the CTSNDP
• UB0: upper bound on the CTSNDP-HC based on the CTSNDP
• LB, UB: lower and upper bounds on the CTSNDP-HC

%UB %LB0 %UB0

%opt min max avg time %tLB iter avg avg max

HC/LF 98.4 1.1 1.9 1.6 279.3 86.6 4.4 4.1 0.8 5.3

HC/HF 65.5 1.0 6.1 2.9 2902.7 94.4 6.2 10.6 3.9 17.9

LC/LF 100.0 - - - 0.7 62.3 1.8 0.7 0.0 1.0

LC/HF 100.0 - - - 0.2 57.0 2.3 0.8 1.1 8.0

%UB = 100 (UB − LB)/LB - %UB0 = 100 (UB0−UB)/UB0 - %LB0 = 100 (LB − LB0)/LB0

Computational Study - 38/51



Class I: Summary of the Results
• 558 instances [Boland et al., 2017] ( ≤ |N | = 30, |A| = 683, |K| = 400)
• LB0: lower bound on the CTSNDP
• UB0: upper bound on the CTSNDP-HC based on the CTSNDP
• LB, UB: lower and upper bounds on the CTSNDP-HC

%UB %LB0 %UB0

%opt min max avg time %tLB iter avg avg max

HC/LF 98.4 1.1 1.9 1.6 279.3 86.6 4.4 4.1 0.8 5.3

HC/HF 65.5 1.0 6.1 2.9 2902.7 94.4 6.2 10.6 3.9 17.9

LC/LF 100.0 - - - 0.7 62.3 1.8 0.7 0.0 1.0

LC/HF 100.0 - - - 0.2 57.0 2.3 0.8 1.1 8.0

%UB = 100 (UB − LB)/LB - %UB0 = 100 (UB0−UB)/UB0 - %LB0 = 100 (LB − LB0)/LB0

Computational Study - 39/51



Class I: Summary of the Results
• 558 instances [Boland et al., 2017] ( ≤ |N | = 30, |A| = 683, |K| = 400)
• LB0: lower bound on the CTSNDP
• UB0: upper bound on the CTSNDP-HC based on the CTSNDP
• LB, UB: lower and upper bounds on the CTSNDP-HC

%UB %LB0 %UB0

%opt min max avg time %tLB iter avg avg max

HC/LF 98.4 1.1 1.9 1.6 279.3 86.6 4.4 4.1 0.8 5.3

HC/HF 65.5 1.0 6.1 2.9 2902.7 94.4 6.2 10.6 3.9 17.9

LC/LF 100.0 - - - 0.7 62.3 1.8 0.7 0.0 1.0

LC/HF 100.0 - - - 0.2 57.0 2.3 0.8 1.1 8.0

%UB = 100 (UB − LB)/LB - %UB0 = 100 (UB0−UB)/UB0 - %LB0 = 100 (LB − LB0)/LB0

Computational Study - 40/51



Class II: Summary of the Results
• Based on new 1116 CTSNDP-HC derived from Crainic et al. [2001]
(up to |N | = 30, |A| = 683 and |K| = 400)

• Varying the connectivity level: networks D1 > D2 > D3 > D4

• Varying the flexibility level: distributions C > B > A

%UB %LB0 %UB0

%opt min max avg time %tLB iter avg avg max

A D1 97.8 1.1 2.1 1.6 183.7 86.3 4.0 7.3 4.1 15.7

D2 98.9 2.3 2.3 2.3 116.7 84.9 3.8 8.0 4.6 17.6

D3 98.9 1.2 1.2 1.2 175.0 80.5 3.8 8.8 5.2 24.4

D4 98.9 1.8 1.8 1.8 103.0 78.6 3.8 9.0 5.9 23.4

B D1 84.9 1.1 6.8 3.0 1810.4 95.5 4.7 10.0 7.7 36.5

D2 90.3 1.3 7.7 4.0 1246.9 94.6 4.8 11.8 9.9 34.8

D3 89.2 1.0 6.3 2.7 906.9 89.8 4.9 11.3 10.1 37.1

D4 95.7 1.3 2.8 1.9 348.2 85.1 5.1 10.7 10.4 37.1

C D1 53.8 1.0 25.4 8.7 3586.5 98.5 4.0 6.9 6.5 44.7

D2 59.1 1.0 19.7 4.6 3288.5 97.4 4.7 8.1 8.6 46.1

D3 84.9 1.0 19.9 4.6 1650.8 94.0 5.1 11.0 11.8 43.1

D4 94.6 3.0 3.0 3.0 452.3 87.5 5.6 10.6 14.1 45.8
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Class I: Comparison of Partially and Fully Time-expanded Networks

• %value = 100.0× x/y

• x ∈ {variables, constraints, nodes}: partially time-expanded network

• y ∈ {variables, constraints, nodes}: fully time-expanded network
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Conclusions

We have:

• Shown the importance of incorporating holding costs in CTSNDP

• Proved the existence of a complete time-indexed model for the CTSNDP-HC

• Designed a new effective DDD algorithm

• Shown that the benefits depends on the connectivity of the underlying physical
network and on the flexibility of the shipments’ time requirements
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Future work:

• Applications to other continuous time transportation planning problems, in-
cluding problems under uncertainty

• Performance bottleneck: MIP solver ⇒ strengthen the relaxation with addi-
tional cuts

Computational Study - 45/51



Conclusions

We have:

• Shown the importance of incorporating holding costs in CTSNDP

• Proved the existence of a complete time-indexed model for the CTSNDP-HC

• Designed a new effective DDD algorithm

• Shown that the benefits depends on the connectivity of the underlying physical
network and on the flexibility of the shipments’ time requirements

Future work:

• Applications to other continuous time transportation planning problems, in-
cluding problems under uncertainty

• Performance bottleneck: MIP solver ⇒ strengthen the relaxation with addi-
tional cuts

Paper available at
http://www.optimization-online.org/DB_HTML/2021/10/8616.html
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Thank you for your attention!
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Class II: differences between UB0 and UB

• %dr : percentage of the commodities that use different delivery routes

• %ds: percentage of the commodities that use the same delivery routes but
with different departure scheduling plans

Dist. Network %UB1 %dp %da

%dr %ds EXM-0 EXM

avg max avg max %hc %ht %cs %hc %ht %cs

A

D1 1.6 22.4 14.1 1.0 7.5 21.4 42.5 3.2 6.7 40.9 1.2 3.9 32.9

D2 2.0 25.7 17.0 1.0 7.0 24.8 38.0 3.7 7.4 43.7 1.2 4.1 35.2

D3 2.4 29.8 19.9 0.4 2.6 29.4 42.5 4.5 8.3 49.1 1.4 4.4 38.0

D4 2.7 34.0 22.8 0.0 0.0 34.0 56.0 4.9 9.2 52.1 1.5 4.8 40.6

B

D1 3.0 25.6 16.8 2.1 7.5 23.5 45.0 5.3 8.7 47.4 1.6 4.3 38.2

D2 4.4 31.5 20.7 1.6 12.5 30.0 50.0 6.8 10.9 52.2 1.5 4.5 39.1

D3 5.2 35.7 25.1 1.2 5.1 34.6 60.0 7.7 12.1 54.4 1.8 5.2 42.6

D4 6.2 41.7 29.0 0.0 1.0 41.7 63.0 8.7 14.1 56.5 1.8 5.4 44.4

C

D1 5.1 31.2 20.9 3.3 11.0 27.9 44.0 7.7 10.3 50.6 1.7 4.1 37.2

D2 5.5 34.9 24.3 3.0 12.5 31.9 50.0 8.1 11.4 54.9 1.7 4.4 40.0

D3 7.3 39.7 26.2 1.6 10.0 38.1 57.5 9.9 15.1 58.0 1.6 5.1 41.5

D4 8.7 47.6 34.0 0.0 0.0 47.6 72.5 11.1 17.9 61.5 1.7 5.8 45.6
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