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Air Liquide
This work arises from the collaboration with Air Liquide.

Air Liquide is a French multinational company which supplies
industrial gases and services to various industries including
medical, chemical and electronic manufacturers.
Founded in 1902, it is world leader in gases for industry, health
and the environment and has operations in over 80 countries.

   

 

 46,200 
employees

Revenue

€14,5 billion

Present in 

80 countries
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Air Liquide

The application studied concerns the distribution of a bulk gas
from several productions plants to customers.

Bulk Distribution: Trucks deliver liquefied gases to Tanks at
customer sites

Bulk activity worldwide

Over 2500 trucks
40000 tanks
350 dispatchers
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Inventory Routing Problem

L.C. Coelho , J.F. Cordeau, G. Laporte [2012]

Inventory Routing Problem (IRP) can be described as the
combination of vehicle routing and inventory management
problems, in which a supplier has to deliver products to a number
of geographically dispersed customers, subject to side constraints.
It provides integrated logistics solutions by simultaneously
optimizing: inventory management, vehicle routing and delivery
scheduling.
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Main variants of IRP

Classification of the IRP

Criteria Possible Options
Demand Deterministic Stochastic Dynamic

Time horizon Finite Infinite
Structure One-to-one One-to-many Many-to-many

Routing Direct Multiple Continuous
Inventory policy Maxi. level (ML) Order-up-to-level (OU)

Inventory decision Lost sales Back-order Non-negative
Fleet composition Homogeneous Hererogeneous

Fleet size Single Multiple

Andersson et al. [2010], Cohelo et. al. [2013]



Introduction Simplified Model Mathematical formulation Pricing Computational results Full Model Conclusions

Brief state-of-the-art for gas-distribution IRP
[Ba] Bell, Dalberto, Fisher, Greenfield, Jaikumar, Kedia, Mack, Prutzman 1983: First definition of the
problem - Air Product

[Ga] Golden, Assad, Dahl 1984

[DB] Dror and Ball 1987

[AF] Anily, Federgruen 1990

[WL] Webb, Larson 1995

[CC] Campbell, Clarke, Kleywegt, and Savelsbergh 1997

[C] Christiansen 1999

[Qa] Qu, Bookbinder, Iyogun 1999
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Prevalent approaches used in the literature

Heuristic approaches:

Local search [TB]
Decomposition [Ga,Qa,Ca,Ma] ⇒ first inventory, then routing.

Exact approaches:

Compact models [YJ]
Branch-and-cut [LG]
Branch-and-price [C]
Branch-and-cut-and-price [GR]

All the exact approaches are based on mathematical optimization.
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State-of-the-art formulations

Archetti et al. [AB]

Branch-and-cut approach.

VMI management of the inventory.

Time horizon divided in days.

Each customer can be served only once per day (no split).

No scheduling.

Single supplier.

Order up-to-level policy.

Single vehicle.
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State-of-the-art formulations

Desaulniers et al. [GR]

Branch-and-price approach.

VMI management of the inventory.

Time horizon divided in days.

Each customer can be served only once per day (no split).

No scheduling.

Single supplier.

Max level policy (more flexible).

Multi-vehicles.

Homogeneous fleet.
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State-of-the-art formulations

Archetti, Desaulniers and Speranza [AD]

Logistic ratio as objective function

Dinkelback for dealing with fractional objective functions

Time horizon divided in days.

Each customer can be served only once per day (no split).

No scheduling.

Single supplier.

Multi-vehicles.

Homogeneous fleet.
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Overview

State of the art Our work

Archetti et al. Simplified Model Full Model
[AB] 2007
Desaulniers et al. ⇒ (SM) ⇒ (FM)
[DR] 2014
Archetti et al. +subperiods -Daily shifts +scheduling -single product
[AD] 2016 +Surrogate log. ratio -No split delivery +q.ty conservation -Only VMI

+het. fleet -No layover +flexible periods -No pref. starting time
-Restr. start. times +multi-base -No hitching costs
-No scheduling -No missed orders
-No q.ty conservation -No runouts
-Fixed periods -No preferences
-Single-base

We present two generalizations of the models presented in the
literature.

The Full model is the closest to the Air Liquide model.
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Aspect not taken into account in SM I

Daily shifts

The time horizon is divided into periods of the lenght of one day.

No split delivery

Each customer can be visited only once per subperiod.

No layover

No layover is allowed.

Restricted starting time

Each shift must start on a given time instant.

No scheduling

No distinction is made between driver, trailers and tractors.
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Aspect not taken into account in SM II

No quantity conservation

A vehicle is supposed to return empty to the base.

Fixed periods

Each vehicle can perform only one shift per day and a shift can not cover
more than one day.

Single Base

All the vehicles start from the same base.
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Aspect not taken into account in SM and FM

Single product
All the products belong to the sale type.

Only VMI
No call-in customers are considered.

No missed orders, No runouts, No preferences
We optimize only the (Surrogate) Logistic Ratio.

No hitching costs
The hitching cost is neglected.
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Simplified Model

Introduction of subperiods

The model presented adds an additional level of granularity in order to
take into account the VMI consumption more in detail.

Each period is subdivided into subperiod.

Each vehicle can not visit a node more than once in the same
subperiod.

Logistic Ratio

The Simplfied Model is capable to minimize both the total costs, the
Logistic Ratio or the Surrogate Logistic Ratio.

Heterogeneous fleet

The model allows to use vehicles that are not identical , i.e. with
different capacities, time windows, costs, . . .
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Problem Data

G = (Nfc ,E ) is a complete and undirected graph.

where Nfc = Nc ∪ Nf and N̄ = Nfc ∪ {0} ∪ {n + 1}
cij are the routing cost

T is the set of time periods in the planning horizon.

SP is the set of subperiods in a period.

Ci is the inventory capacity of customer/source i ∈ Nfc ,

r s
i units of product in period s produced/consumed by each

customer/source i ∈ Nfc .

I 0
i is the initial Inventory r0

i ≤ I 0
i ≤ Ci .

A set of M vehicles each one of capacity Qk are available at
the depot, and each vehicle can be used at most once per
period to perform a route.
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Model description

Variables used

The model proposed uses the following set of variables:

ξ ∈ {0, 1}, one fore every feasible shift.

z ∈ {0, 1}, keeping track of when a shift visit a given node.

q ≥ 0, representing the quantity delivered or picked up.

I ≥ 0, representing the inventory levels.

y ≥ 0, representing the flow of the quantities delivered.
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Model description

InventoryConstraints(I , q, z)

Q.ty cons. I s
i = I s−1

i +
∑

k∈M

qs
ki − r s

i (∀i ∈ Nfc , ∀s ∈ SP), (1)

Capacity I s−1
i +

∑
k∈M

qs
ki ≤ Ci (∀i ∈ Nc , ∀s ∈ SP), (2)

I s−1
i + r s

i ≤ Ci (∀i ∈ Nf , ∀s ∈ SP), (3)

q-z link qs
ki ≤ min{Ci ,Qk}zs

ki (∀i ∈ Nc , ∀k ∈ M, ∀s ∈ SP), (4)

− qs
ki ≤ min{Ci ,Qk}zs

ki (∀i ∈ Nf , ∀k ∈ M, ∀s ∈ SP), (5)

Min q.ty I s−1
i +

∑
k∈M

qs
ki ≥ 0 (∀i ∈ Nf , ∀s ∈ SP), (6)

zs
ki ∈ {0, 1} (∀i ∈ Nfc , ∀k ∈ M, ∀s ∈ SP), (7)

qs
ki ≥ 0 (∀i ∈ Nc , ∀k ∈ M, ∀s ∈ SP), (8)

qs
ki ≤ 0 (∀i ∈ Nf , ∀k ∈ M, ∀s ∈ SP), (9)

I s
i ≥ 0 (∀i ∈ N, ∀s ∈ SP), (10)
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Model description

min f (ξ, q) (11)

s.t. InventoryConstraints(I , q, z)

node visit
∑

k∈M

∑
s∈SPt

zs
ki ≤ 1 (∀i ∈ Nc , ∀t ∈ T ), (12)

ξ − z link
∑

`∈Ris

ξ
t
k` = zs

ki (∀i ∈ Nfc , ∀k ∈ M, ∀t ∈ T , ∀s ∈ SPt ), (13)

one shift per veh.
∑
`∈R

ξ
t
k` ≤ 1 (∀k ∈ M, ∀t ∈ T ), (14)

Capacity (ykt
ij + ykt

ji )/Qk =
∑
`∈R

a`ξ
t
k` (∀e ∈ E , ∀k ∈ M, ∀t ∈ T ), (15)

Flow Cons.
∑
j∈N

(ykt
ij − ykt

ji ) = −2
∑

s∈SPt

qs
ki (∀i ∈ Nfc , ∀k ∈ M, ∀t ∈ T ), (16)

ξ
t
k` ∈ {0, 1} (∀` ∈ R, ∀k ∈ M, ∀t ∈ T ), (17)

ykt
ij ≥ 0 (∀i, j ∈ N, i 6= j, ∀k ∈ M, ∀t ∈ T ). (18)
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Valid inequalities

The following inequalities are valid and effective:∑
`∈Ri

ξ` ≥ fi , ∀i ∈ Nc ,

where fi = d wi
min{Q,Ci}e and wi =

∑
t∈T

∑
s∈SPt

r s
i − I 0

i
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The objective function I

Total cost

In the literature most of IRP models have as objective function the
minimization of the total distribution cost (Anderson et al 2010,
Coelho et al 2012)

Logistic ratio

The Logistic Ratio(LR) represents the cost per kilogram of the
total delivered quantities of products over a given time frame. It
allows monitoring of overall efficiency of the logistical distribution
process
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The objective function II

Surrogate logistic ratio

The Surrogate Logistic Ratio(SLR) can be defined as the global
extra cost per kilogram of delivered product, compared to a lower
bound of the logistic ratio.

SLR =
Total cost − Lower bound cost

Total delivered quantity
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How to deal with fraction objective function I

min
c>x

d>x
Ax ≥ b

Basic Idea (Charnes and Cooper, 1962): introducing the
following variables substitution:

τ =
1

d>x
x̄ = xτ =

x

d>x

(valid only if d>x > 0 )
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How to deal with fraction objective function II

Objective function

c>x

d>x
⇒ c>x̄

constraints:

Ax ≥ b ⇒ 1

d>x
Ax ≥ 1

d>x
b ⇒ Ax̄ ≥ bτ

Additional constraint

d>x =
1

τ
⇒ 1

d>x
d>x =

1

τd>x
⇒ d>x̄ = 1

The use of the variable substitution leads to values of x̄ close to
zero.
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How to deal with fraction objective function III

the tollerance of the LP solver is not enough to deal with such
small values. ⇒ A scale factor is used: x̄ = k x

d>x
with

k = 104 ÷ 105.

Scaling the normalization of the variables allows to obtain the
correct solution but it still slows down the averall
computational time.

In practice, a master problem that minimizes the overall costs
is ≈ 10 times fater than a master that minimizes the Logistic
Ratio.
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How to deal with fraction objective function IV

Optimizing the logistic ratio corresponds to optimizing the
following function:

min

∑
l∈R clξl∑

s∈S

∑
i∈N qs

i

If we consider the continuous relaxation of the model proposed we
obtain an alternative linear reformulation by imposing the following
variables substitution:

ξ̄l =
ξl∑

s∈S

∑
i∈N qs

i

Ī s
i =

I s
i∑

s∈S

∑
i∈N qs

i

q̄s
i =

qs
i∑

s∈S

∑
i∈N qs

i

τ =
1∑

s∈S

∑
i∈N qs

i
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Model linearized

InventoryConstraints(Ī , q̄, z̄)

Q.ty cons. Ī s
i = Ī s−1

i +
∑

k∈M

q̄s
ki − r s

i τ (∀i ∈ Nfc , ∀s ∈ SP), (19)

Capacity Ī s−1
i +

∑
k∈M

q̄s
ki ≤ Ciτ (∀i ∈ Nc , ∀s ∈ SP), (20)

Ī s−1
i + r s

i ≤ Ciτ (∀i ∈ Nf , ∀s ∈ SP), (21)

q-z link q̄s
ki ≤ min{Ci ,Qk}z̄s

ki (∀i ∈ Nc , ∀k ∈ M, ∀s ∈ SP), (22)

− q̄s
ki ≤ min{Ci ,Qk}z̄s

ki (∀i ∈ Nf , ∀k ∈ M, ∀s ∈ SP), (23)

Min q.ty Ī s−1
i +

∑
k∈M

q̄s
ki ≥ 0 (∀i ∈ Nf , ∀s ∈ SP), (24)

z̄s
ki ∈ {0, τ} (∀i ∈ Nfc , ∀k ∈ M, ∀s ∈ SP), (25)

q̄s
ki ≥ 0 (∀i ∈ Nc , ∀k ∈ M, ∀s ∈ SP), (26)

q̄s
ki ≤ 0 (∀i ∈ Nf , ∀k ∈ M, ∀s ∈ SP), (27)

Ī s
i ≥ 0 (∀i ∈ N, ∀s ∈ SP), (28)
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Model linearized

min f (ξ̄, q̄) (29)

s.t. InventoryConstraints(Ī , q̄, z̄)

node visit
∑

k∈M

∑
s∈SPt

z̄s
ki ≤ 1τ (∀i ∈ Nc , ∀t ∈ T ), (30)

ξ − z link
∑

`∈Ris

ξ̄
t
k` = z̄s

ki (∀i ∈ Nfc , ∀k ∈ M, ∀t ∈ T , ∀s ∈ SPt ), (31)

one shift per veh.
∑
`∈R

ξ̄
t
k` ≤ 1τ (∀k ∈ M, ∀t ∈ T ), (32)

Capacity (ȳkt
ij + ȳkt

ji )/Qk =
∑
`∈R

a`ξ̄
t
k` (∀e ∈ E , ∀k ∈ M, ∀t ∈ T ), (33)

Flow Cons.
∑
j∈N

(ȳkt
ij − ȳkt

ji ) = −2
∑

s∈SPt

q̄s
ki (∀i ∈ Nfc , ∀k ∈ M, ∀t ∈ T ), (34)

New constraint
∑
s∈S

∑
i∈N

q̄s
ki = 1 (35)

ξ̄
t
k` ∈ {0, τ} (∀` ∈ R, ∀k ∈ M, ∀t ∈ T ), (36)

ȳkt
ij ≥ 0 (∀i, j ∈ N, i 6= j, ∀k ∈ M, ∀t ∈ T ). (37)
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Binary variables in the Linearized model

ξl ∈ {0, τ}

ξ and z variables can be either equal to 0 or to τ

Continuous relaxation:

0 ≤ ξl ≤ τ

How to impose integrality:

τ −M(1− x̄l ) ≤ ξ̄l ≤ Mxl

xl ∈ {0, 1}

An additional set of (exponentially many) variables is added.
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Pricing I

Pricing for the simple model

In the two proposed version (SM) and (FM), the pricing
problem reduces to solve a series of Elementary Shortest Path
Problems with Resource Constraints (SPPRC).

In the simplified model, each node can be visited once per day
and each shift spans the time horizon corresponding to exactly
one day.

Therefore: the decision concerning the quantity to delivered in
each shift is taken in the master.
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Pricing II

Princing for the full model

In the full model, each node can be visited in several time
steps by the same shift and a shift can span the time horizon
for more than one time step.

Therefore: the decision concerning the quantity to delivered in
each shift is taken in the pricing.

The pricing problem does not change if, instead of the total
cost, the logistic ratio is minimized.
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Instances and Computational results

Instances corresponding to up to 75.

Number of depots: 1.

Number of sources: 1.

Number of customers: 5,10,15.

Number of vehicles: 1,. . . ,5.

Time horizon: 3, 4, 5.

The instances come from [AB] (Archetti et al., 2007) and we
compare with the optimal solutions reported in [AD] (Archetti et
al., 2015).
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Computational results comparing our lower bound with the
optimal solution

nodes 5 10 15
hor 3 4 5 3 4 5 3 4 5
veh 1 0,17 0,15 0,18 0,16 0,12 0,16 0,17 - -

2 0,12 0,10 0,13 0,16 0,13 0,17 0,20 - -
3 0,07 0,06 0,05 0,15 0,12 0,15 0,16 - -
4 0,04 0,06 0,05 0,12 0,09 0,12 0,14 - -
5 0,02 0,03 0,05 0,09 0,07 0,09 0,14 - -

Table: Instances from the literature, LB vs OPT
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Computational results comparing the lower bound with the
upper bound obtained with the proposed approach

nodes 5 10 15
hor 3 4 5 3 4 5 3 4 5
veh 1 0,25 0,22 0,24 0,27 0,22 0,31 0,37 0,28 0,38

2 0,17 0,12 0,19 0,26 0,23 0,28 0,47 0,48 0,57
3 0,09 0,13 0,07 0,27 0,24 0,27 0,48 0,52 0,49
4 0,06 0,08 0,07 0,20 0,19 0,21 0,58 0,53 0,56
5 0,03 0,03 0,04 0,16 0,13 0,15 0,52 0,71 0,85

Table: Instances from the literature, LB vs HEUR
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Computational results comparing the lower bound with the
upper bound on the AirLiquide instances

nodes 5 10 15
hor 3 4 5 3 4 5 3 4 5

veh 1 0,16 0,13 0,13 0,10 0,10 0,18 0,17 0,09 0,18
2 0,26 0,21 0,16 0,17 0,14 0,13 0,14 0,12 0,10
3 0,27 0,21 0,16 0,15 0,14 0,12 0,15 0,13 0,10
4 0,27 0,22 0,18 0,17 0,16 0,13 0,18 0,15 0,10
5 0,27 0,22 0,17 0,17 0,16 0,12 0,17 0,14 0,10

Table: Air Liquide Instances, LB vs HEUR
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Full Model
The Full Model (FM) is a generalization of the Simplified model.

Scheduling

FM allows to introduce the concept of driver, trailer and tractor.

Quantity conservation

A trailer can return not empty to the base and the quantity in the trailer
can be reused in the next shift.

Flexible periods

The Full Model does not have the concept of periods. A shift can
start and finish at any time during the time horizon.

This generalization changes significantly the difficulties of the
pricing.

Moreover, together with the assumption of quantity conservation
makes all the shift strongly interconnencted.
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Heuristic based on precomputed columns I

The Full Model is extremely complex and the pricing problem is
significantly more challenging:

Challenges in the Pricing Problem

No restricted starting time.

Quantity conservation is allowed.

No daily shift periods.

All these aspects increase consistently the search space of the
pricing routine and lead to the generation of similar shifts.
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Heuristic based on precomputed columns II

An heuristic approach is used to produce feasible shifts

We decided to use an Heuristic as black box to produce shifts.

For each instance, several runs of tests are performed with
different combination of seeds and optimization parameters.

The set of columns produced is used heuristically in the Full
Model.
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The heuristic is not able to improve the solution over the best
solution provided by the heuristic.

One possible explanation is the poor variability of the columns
generated by the heuristic.

Moreover, it is not easy to generate shift that can mix
together, this is due to the strong interconnection among the
shifts.
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Conclusions

We presented a real-world application of Inventory Routing
Problem

The problem differs from the problems already proposed in the
literature

A new column generation approach has been proposed :
several interesting methodological features are needed in order
to solve the problem

Work in progress: heuristic pricing, exact pricing,
computational results routing problems with fractional
objective function.
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