Dantzig-Wolfe Reformulations for the Stable Set Problem (and Possible Extensions to Related Problems)

Jonas Witt Marco Lübbecke

RWTH Aachen University

Column Generation 2016 · Búzios · 05/25/2016

Integer Programming and Polyhedra

original problem

$$\begin{array}{lll} \max & c^T x \\ \text{s.t.} & a_i^T x & \leq & b_i \\ & x & \in & \mathbb{Z}^n \cap [L, U] \end{array} \quad \forall i \in I$$

• $L, U \in \mathbb{Z}^n$ finite bounds on variables

Integer Programming and Polyhedra

original problem

$$\begin{array}{rcl} \max & c^T x \\ \text{s.t.} & a_i^T x & \leq & b_i \\ & x & \in & \mathbb{Z}^n \cap [L, U] \end{array} \quad \forall i \in I$$

• $L, U \in \mathbb{Z}^n$ finite bounds on variables

integer hull

$$P_{IP} := \operatorname{conv} \{ x \in \mathbb{Z}^n \cap [L, U] : a_i^T x \le b_i \; \forall i \in I \}$$

set of feasible solutions to the LP relaxation

$$P_{LP} := \{ x \in \mathbb{Q}^n \cap [L, U] : a_i^T x \le b_i \ \forall i \in I \}$$

Dantzig-Wolfe Reformulation for IPs

- choose subset $I' \subseteq I$
- let $X(I') := \operatorname{conv} \{ x \in \mathbb{Z}^n \cap [L, U] : a_i^T x \le b_i \quad \forall i \in I' \}$
- remark: $X(I) = P_{IP}$
- ▶ reformulate every $x \in X(I')$ as convex combination of extreme points of X(I')
- introduce one variable per extreme point

Dantzig-Wolfe Reformulation for IPs

- choose subset $I' \subseteq I$
- ▶ let $X(I') := \operatorname{conv} \{ x \in \mathbb{Z}^n \cap [L, U] : a_i^T x \leq b_i \quad \forall i \in I' \}$
- remark: $X(I) = P_{IP}$
- ► reformulate every x ∈ X(I') as convex combination of extreme points of X(I')
- introduce one variable per extreme point
- corresponds to convexification of constraints with index in I'
- \rightarrow Dantzig-Wolfe polytope:

$$P_{DW}(I') := \{x \in \mathbb{Q}^n \cap [L, U] : a_i^T x \le b_i \ orall i \in I \setminus I', \ x \in X(I')\}$$

inclusion relation

 $P_{IP} \subseteq P_{DW}(I') \subseteq P_{LP}$

inclusion relation

we want to investigate the strength of such reformulations

- when is the reformulation weakest possible?
- when is the reformulation strongest possible?
- ...

inclusion relation

we want to investigate the strength of such reformulations

- when is the reformulation weakest possible?
- when is the reformulation strongest possible?
- ▶ ...

we focus on the stable set problem in this talk!

Stable Set Problem

- \blacktriangleright let G=(V,E) be a graph with n:=|V| and weights $w\in\mathbb{Z}_{\geq0}^n$
- $S \subseteq V$ is called stable set if no nodes of S are adjacent
- find stable set S^* with maximum weight
- maximum weight is called weighted stability number $\alpha_w(G)$

Stable Set Problem

- \blacktriangleright let G=(V,E) be a graph with n:=|V| and weights $w\in\mathbb{Z}_{\geq0}^n$
- $S \subseteq V$ is called stable set if no nodes of S are adjacent
- ▶ find stable set S^{*} with maximum weight
- maximum weight is called weighted stability number $\alpha_w(G)$
- IP formulation

$$\max \sum_{v \in V} w_v \cdot x_v$$

s.t.
$$x_u + x_v \leq 1 \quad \forall \{u, v\} \in E$$
$$x \in \{0, 1\}^n$$

$$P_{IP} \subseteq P_{DW}(I') \subseteq P_{LP}$$

$$P_{IP} \subseteq P_{DW}(I') \subseteq P_{LP}$$

$$\downarrow$$
STAB(G)

• stable set polytope
$$STAB(G)$$

- stable set polytope STAB(G)
- fractional stable set polytope FRAC(G)

$$P_{IP} \subseteq P_{DW}(I') \subseteq P_{LP}$$

$$\downarrow \qquad \qquad \downarrow$$

$$STAB(G) \qquad \qquad \downarrow \qquad FRAC(G)$$

$$DW(G,G')$$

- stable set polytope STAB(G)
- fractional stable set polytope FRAC(G)
- choose $E' \subseteq E$ and define G' := (V, E')

$$DW(G, G') := \{ x \in [0, 1]^n : x_u + x_v \le 1 \ \forall \{u, v\} \in E \setminus E', \\ x \in STAB(G') \}$$

Theorem (Nemhauser and Trotter 1974) STAB(G) = FRAC(G) iff G is bipartite.

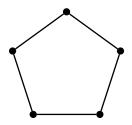
Corollary If G is bipartite, then for all $E' \subseteq E$ and G' = (V, E') holds STAB(G) = DW(G, G') = FRAC(G).

Theorem (Nemhauser and Trotter 1974) STAB(G) = FRAC(G) iff G is bipartite.

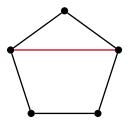
Corollary If G is bipartite, then for all $E' \subseteq E$ and G' = (V, E') holds STAB(G) = DW(G, G') = FRAC(G).

• G is bipartite iff G contains no odd cycle

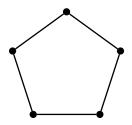
- odd hole is odd cycle without chords (induced odd cycle)
- ► 3-cycles/3-cliques/triangles are considered holes in this talk!



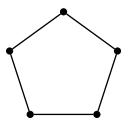
- odd hole is odd cycle without chords (induced odd cycle)
- ► 3-cycles/3-cliques/triangles are considered holes in this talk!



- odd hole is odd cycle without chords (induced odd cycle)
- ► 3-cycles/3-cliques/triangles are considered holes in this talk!



- odd hole is odd cycle without chords (induced odd cycle)
- ► 3-cycles/3-cliques/triangles are considered holes in this talk!



• odd cycle inequality for odd cycle C is valid for STAB(G)

$$\sum_{v \in V(C)} x_v \le \frac{|V(C)| - 1}{2}$$

Theorem

DW(G, G') = FRAC(G) iff ...?

Theorem

DW(G, G') = FRAC(G) iff G' is bipartite.

Theorem

DW(G, G') = FRAC(G) iff G' is bipartite.

Proof sketch " \Leftarrow ":

$$DW(G, G') = \{x \in [0, 1]^n : x_u + x_v \le 1 \ \forall \{u, v\} \in E \setminus E', \\ x \in STAB(G')\}$$

FRAC(G) =
$$\{x \in [0, 1]^n : x_u + x_v \le 1 \ \forall \{u, v\} \in E \setminus E', \\ x_u + x_v \le 1 \ \forall \{u, v\} \in E'\}$$

Theorem

DW(G, G') = FRAC(G) iff G' is bipartite.

Proof sketch " \Leftarrow ":

$$DW(G, G') = \{x \in [0, 1]^n : x_u + x_v \le 1 \ \forall \{u, v\} \in E \setminus E', \\ x \in STAB(G')\}$$

FRAC(G) = $\{x \in [0, 1]^n : x_u + x_v \le 1 \ \forall \{u, v\} \in E \setminus E', \\ x \in FRAC(G')\}$

Theorem

DW(G, G') = FRAC(G) iff G' is bipartite.

Proof sketch " \Leftarrow ":

$$DW(G, G') = \{x \in [0, 1]^n : x_u + x_v \le 1 \ \forall \{u, v\} \in E \setminus E', \\ x \in STAB(G')\}$$

FRAC(G) = $\{x \in [0, 1]^n : x_u + x_v \le 1 \ \forall \{u, v\} \in E \setminus E', \\ x \in FRAC(G')\}$

 $\begin{array}{ll} G' \text{ is bipartite} & \Leftrightarrow & \operatorname{STAB}(G') = \operatorname{FRAC}(G') \\ & \Rightarrow & \operatorname{DW}(G,G') = \operatorname{FRAC}(G) \end{array}$

Theorem

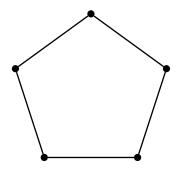
```
DW(G, G') = FRAC(G) iff G' is bipartite.
```

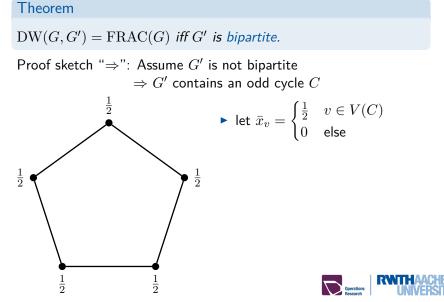
Proof sketch " \Rightarrow ":

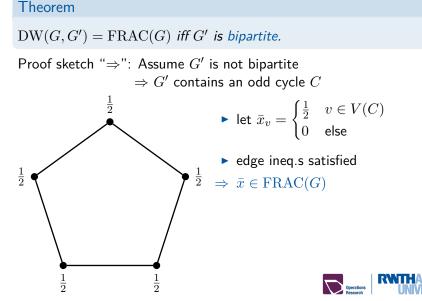
Theorem

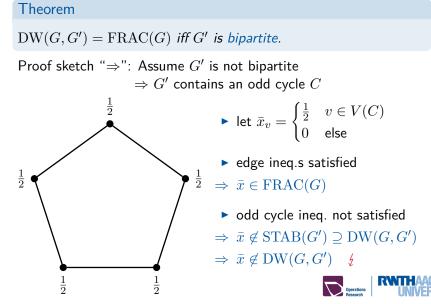
DW(G, G') = FRAC(G) iff G' is bipartite.

Proof sketch " \Rightarrow ": Assume G' is not bipartite \Rightarrow G' contains an odd cycle C









Theorem

DW(G, G') = STAB(G) iff ...?

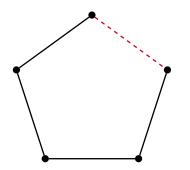
Theorem

DW(G, G') = STAB(G) iff G' contains all odd holes of G.

Theorem

DW(G, G') = STAB(G) iff G' contains all odd holes of G.

Proof sketch " \Rightarrow ": Assume \exists odd hole H of G with $H \not\subseteq G'$



Theorem

DW(G, G') = STAB(G) iff G' contains all odd holes of G.

Proof sketch " \Rightarrow ": Assume \exists odd hole H of G with $H \not\subseteq G'$ $\blacktriangleright \text{ let } \bar{x}_v = \begin{cases} \frac{1}{2} & v \in V(H) \\ 0 & \text{else} \end{cases}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\overline{\overline{2}}$

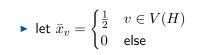
Theorem

DW(G, G') = STAB(G) iff G' contains all odd holes of G.

Proof sketch " \Rightarrow ": Assume \exists odd hole H of G with $H \not\subseteq G'$

 $\frac{1}{2}$

 $\overline{\overline{2}}$



• odd cycle ineq. not satisfied $\Rightarrow \bar{x} \notin STAB(G)$

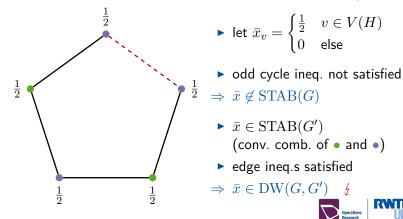
 $\frac{1}{2}$

 $\frac{1}{2}$

Theorem

DW(G, G') = STAB(G) iff G' contains all odd holes of G.

Proof sketch " \Rightarrow ": Assume \exists odd hole H of G with $H \not\subseteq G'$



Theorem

DW(G, G') = STAB(G) iff G' contains all odd holes of G.

Theorem

DW(G, G') = STAB(G) iff G' contains all odd holes of G.

Proof sketch " \Leftarrow ":

▶ let
$$\sum_{v \in V} \pi_v x_v \le \pi_0$$
 be a facet of STAB(G)

• (neither
$$x_v \ge 0$$
 nor $x_u + x_v \le 1$)

► idea: prove
$$\sum_{v \in V} \pi_v x_v \le \pi_0 \quad \forall x \in \mathrm{DW}(G, G')$$

Theorem

DW(G, G') = STAB(G) iff G' contains all odd holes of G.

Proof sketch " \Leftarrow ":

► let
$$\sum_{v \in V} \pi_v x_v \le \pi_0$$
 be a facet of $STAB(G)$

• (neither
$$x_v \ge 0$$
 nor $x_u + x_v \le 1$)

▶ idea: prove
$$\sum_{v \in V} \pi_v x_v \le \pi_0 \quad \forall x \in \mathrm{DW}(G, G')$$

•
$$\pi \ge 0$$
, $\pi_0 > 0$, and $\pi_0 = lpha_\pi(G)$ holds

Theorem

DW(G, G') = STAB(G) iff G' contains all odd holes of G.

Proof sketch "⇐":

► let
$$\sum_{v \in V} \pi_v x_v \le \pi_0$$
 be a facet of $STAB(G)$

• (neither
$$x_v \ge 0$$
 nor $x_u + x_v \le 1$)

▶ idea: prove
$$\sum_{v \in V} \pi_v x_v \le \pi_0 \quad \forall x \in \mathrm{DW}(G, G')$$

•
$$\pi \ge 0$$
, $\pi_0 > 0$, and $\pi_0 = lpha_\pi(G)$ holds

►
$$V_0 := \{v \in V : \pi_v > 0\}, G_0 := G[V_0] = (V_0, E_0)$$

• G_0 with weighting π is called facet-graph

Proof sketch " \Leftarrow " cont'd:

- $e \in E_0$ critical in G_0 if $\alpha_{\pi}(G_0 e) > \alpha_{\pi}(G_0)$
- G_0 is α_{π} -critical if every edge is critical
- ► \exists spanning α_{π} -critical subgraph $T_0 \subseteq G_0$ with $\alpha_{\pi}(T_0) = \alpha_{\pi}(G_0)$ (Sewell, 1990)
- (T_0 with weighting π is still a facet-graph)

Proof sketch " \Leftarrow " cont'd:

- $e \in E_0$ critical in G_0 if $\alpha_{\pi}(G_0 e) > \alpha_{\pi}(G_0)$
- G_0 is α_{π} -critical if every edge is critical
- ► \exists spanning α_{π} -critical subgraph $T_0 \subseteq G_0$ with $\alpha_{\pi}(T_0) = \alpha_{\pi}(G_0)$ (Sewell, 1990)
- (T_0 with weighting π is still a facet-graph)
- ▶ idea: if T_0 is covered by G', i.e., $T_0 \subseteq G'$, then

 $\sum_{v \in V_0} \pi_v x_v \le \pi_0 \quad \forall x \in \operatorname{STAB}(T_0) \supseteq \operatorname{STAB}(G')_{|V_0} \supseteq \operatorname{DW}(G, G')_{|V_0}$

ightarrow prove that every $e \in E(T_0)$ is part of some odd hole in G_0


```
Proof sketch "\Leftarrow" cont'd:
```

Lemma

 \exists spanning α_{π} -critical subgraph $T_0 \subseteq G_0$ s.t. every edge $e \in E(T_0)$ is part of an odd hole H_e of G_0 , i.e., $e \in E(H_e)$.

(Proof sketch later)

Proof sketch " \Leftarrow " cont'd:

Lemma

 \exists spanning α_{π} -critical subgraph $T_0 \subseteq G_0$ s.t. every edge $e \in E(T_0)$ is part of an odd hole H_e of G_0 , i.e., $e \in E(H_e)$.

(Proof sketch later)

- \Rightarrow every $e \in E(T_0)$ is part of some odd hole of G_0
- \Rightarrow every $e \in E(T_0)$ is part of some odd hole of G
- \Rightarrow T_0 covered by G', i.e., $T_0 \subseteq G'$

$$\Rightarrow \sum_{v \in V} \pi_v x_v \le \pi_0 \quad \forall x \in \mathrm{DW}(G, G')$$

 \Rightarrow STAB(G) = DW(G, G')

Lemma

 \exists spanning α_{π} -critical subgraph $T_0 \subseteq G_0$ s.t. every edge $e \in E(T_0)$ is part of an odd hole H_e of G_0 , i.e., $e \in E(H_e)$.

Lemma

 \exists spanning α_{π} -critical subgraph $T_0 \subseteq G_0$ s.t. every edge $e \in E(T_0)$ is part of an odd hole H_e of G_0 , i.e., $e \in E(H_e)$.

Proof sketch for $e = \{u, v\} \in E(T_0)$ critical in G_0

proof idea due to Andrásfai (1966)

Lemma

 \exists spanning α_{π} -critical subgraph $T_0 \subseteq G_0$ s.t. every edge $e \in E(T_0)$ is part of an odd hole H_e of G_0 , i.e., $e \in E(H_e)$.

Proof sketch for $e = \{u, v\} \in E(T_0)$ critical in G_0

proof idea due to Andrásfai (1966)

▶ let S be MWSS in
$$G_0$$
 with $u, v \notin S$
($\exists x : \pi^T x = \pi_0$ and $x_u + x_v \neq 1$)
(Sewell, 1990)

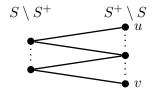
- ▶ let S^+ be MWSS in $G_0 e$
 - $\pi(S) < \pi(S^+)$
 - $u, v \in S^+$ holds (otherwise S^+ stable in G_0)

Lemma

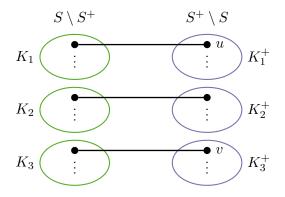
 \exists spanning α_{π} -critical subgraph $T_0 \subseteq G_0$ s.t. every edge $e \in E(T_0)$ is part of an odd hole H_e of G_0 , i.e., $e \in E(H_e)$.

Proof sketch for $e = \{u, v\} \in E(T_0)$ critical in G_0

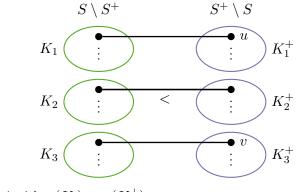
- proof idea due to Andrásfai (1966)
- ▶ let S be MWSS in G_0 with $u, v \notin S$ ($\exists x : \pi^T x = \pi_0$ and $x_u + x_v \neq 1$) (Sewell, 1990)
- ▶ let S^+ be MWSS in $G_0 e$
 - $\blacktriangleright \ \pi(S) < \pi(S^+)$
 - u, v ∈ S⁺ holds
 (otherwise S⁺ stable in G₀)



 \blacktriangleright assume u and v are in different connected components

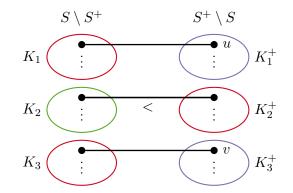


 \blacktriangleright assume u and v are in different connected components



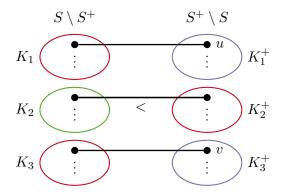
 $\Rightarrow \exists i \text{ with } \pi(K_i) < \pi(K_i^+)$

assume u and v are in different connected components



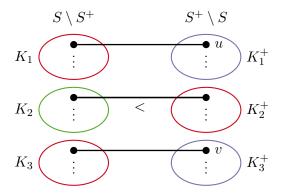
 $\Rightarrow \exists i \text{ with } \pi(K_i) < \pi(K_i^+) \\ \Rightarrow S \setminus K_i \cup K_i^+ \text{ is stable in } G_0 \text{ with } \pi(S \setminus K_i \cup K_i^+) > \pi(S) \notin$

assume u and v are in different connected components



 $\Rightarrow \exists i \text{ with } \pi(K_i) < \pi(K_i^+) \\ \Rightarrow S \setminus K_i \cup K_i^+ \text{ is stable in } G_0 \text{ with } \pi(S \setminus K_i \cup K_i^+) > \pi(S) \notin \\ \Rightarrow \exists u \text{-}v \text{-path } P \text{ in } G[S \setminus S^+ \cup S^+ \setminus S] \text{ of even length}$

assume u and v are in different connected components



 $\Rightarrow \exists i \text{ with } \pi(K_i) < \pi(K_i^+)$

- \Rightarrow $S \setminus K_i \cup K_i^+$ is stable in G_0 with $\pi(S \setminus K_i \cup K_i^+) > \pi(S)$ 4
- $\Rightarrow \ \exists \ u\text{-}v\text{-path} \ P \ \text{in} \ G[S \setminus S^+ \cup S^+ \setminus S] \ \text{of even length}$
- \Rightarrow shortest P plus $\{u, v\}$ is odd hole in G_0

What We Learned

Theorem

DW(G, G') = FRAC(G) iff G' is bipartite.

Theorem

DW(G, G') = STAB(G) iff G' contains all odd holes of G.

What We Learned

Theorem

DW(G, G') = FRAC(G) iff G' is bipartite.

Theorem

DW(G, G') = STAB(G) iff G' contains all odd holes of G.

can we prove similar results for other (related) problems?

- can we prove similar results for other (related) problems?
- node covering problem
- clique problem
- (matching problem)
- ▶ ...

- set packing problem
- set covering problem
- set partitioning problem
- independence system problem

- can we prove similar results for other (related) problems?
- node covering problem
- clique problem
- ► (matching problem) ✓
- ▶ ...

- set packing problem
- set covering problem
- set partitioning problem
- independence system problem

- can we prove similar results for other (related) problems?
- node covering problem
- clique problem
- ► (matching problem) ✓
- ▶ ...

- ▶ set packing problem (✓)
- set covering problem X
- set partitioning problem X
- independence system problem X

- can we prove similar results for other (related) problems?
- node covering problem
- clique problem
- ► (matching problem) ✓
- ▶ ...

- ► set packing problem (✓)
- set covering problem X
- set partitioning problem X
- independence system problem X

Set Packing Problem

- ▶ let $A \in \{0,1\}^{m \times n}$ be a matrix and let $w \in \mathbb{Z}^n$ be a vector
- the vector $\mathbf{1} := (1, \dots, 1)^T$ is of suitable dimension

Set Packing Problem

- let $A \in \{0,1\}^{m imes n}$ be a matrix and let $w \in \mathbb{Z}^n$ be a vector
- the vector $\mathbf{1} := (1, \dots, 1)^T$ is of suitable dimension
- set packing problem:

$$\begin{array}{rcl} \max & w^T x \\ \text{s.t.} & Ax & \leq & \mathbf{1} \\ & x & \in & \{0,1\}^n \end{array}$$

columns of A represent sets; rows represent conflicts

$$P_{IP} \subseteq P_{DW}(I') \subseteq P_{LP}$$

$$P_{IP} \subseteq P_{DW}(I') \subseteq P_{LP}$$

$$\downarrow$$

$$SP(A)$$

$$P_{IP} \subseteq P_{DW}(I') \subseteq P_{LP} \\ \downarrow \\ SP(A) \\ FSP(A)$$

- ▶ set packing polytope SP(A)
- fractional set packing polytope FSP(A)

$$P_{IP} \subseteq P_{DW}(I') \subseteq P_{LP}$$

$$\downarrow \qquad \qquad \downarrow$$

$$SP(A) \qquad \qquad \downarrow \qquad FSP(A)$$

$$DW(A, A')$$

- ▶ set packing polytope SP(A)
- fractional set packing polytope FSP(A)
- choose subset $I' \subseteq \{1, \ldots, m\}$ of rows and define $A' := A_{I'}$

$$DW(A, A') := \{ x \in [0, 1]^n : A_{I \setminus I'} \le \mathbf{1}, \\ x \in SP(A') \}$$

(Fractional) Set Packing vs. Stable Set Polytope

▶ let G(A) = (V(A), E(A)) be the conflict graph of A, i.e.,

$$V(A) = \{1, \dots, n\}$$

$$E(A) = \{ij : \exists r \text{ s.t. } a_{ri} \neq 0, a_{rj} \neq 0\}$$

(Fractional) Set Packing vs. Stable Set Polytope

▶ let G(A) = (V(A), E(A)) be the conflict graph of A, i.e.,

$$V(A) = \{1, ..., n\}$$

 $E(A) = \{ij : \exists r \text{ s.t. } a_{ri} \neq 0, a_{rj} \neq 0\}$

for the fractional polytopes holds

 $FSP(A) \subseteq FRAC(G(A))$

(added "some" clique inequalities)

(Fractional) Set Packing vs. Stable Set Polytope

▶ let G(A) = (V(A), E(A)) be the conflict graph of A, i.e.,

$$V(A) = \{1, ..., n\} \\ E(A) = \{ij : \exists r \text{ s.t. } a_{ri} \neq 0, a_{rj} \neq 0\}$$

for the fractional polytopes holds

 $\mathrm{FSP}(A) \subseteq \mathrm{FRAC}(G(A))$

(added "some" clique inequalities)

for the integer hulls holds

```
SP(A) = STAB(G(A))
```

(different description of the same conflicts)

Weakest Possible Reformulation

Theorem (Sachs 1970) SP(A) = FSP(A) iff A is perfect.

Corollary

If A' is perfect, then DW(A, A') = FSP(A).

Weakest Possible Reformulation

Theorem (Sachs 1970) SP(A) = FSP(A) iff A is perfect.

Corollary

If A' is perfect, then DW(A, A') = FSP(A).

Theorem (Chvátal 1975)

A is perfect iff its non-dominated rows form the clique-node matrix of a perfect graph.

Lemma

If $\exists \tilde{G} \text{ perfect}$ with $G(A') \subseteq \tilde{G} \subseteq G(A)$ and clique inequalities of \tilde{G} are dominated by $Ax \leq \mathbf{1}$, then DW(A, A') = FSP(A).

Corollary

If for every $e \in E(A)$ contained in an odd hole of G(A) holds $e \in E(A')$, then DW(A, A') = SP(A).

Lemma

If DW(A, A') = SP(A), then for every $e \in E(G(A))$ contained in an odd hole/antihole of G(A) of size ≥ 5 holds $e \in E(G(A'))$

Corollary

If for every $e \in E(A)$ contained in an odd hole of G(A) holds $e \in E(A')$, then DW(A, A') = SP(A).

Lemma

If DW(A, A') = SP(A), then for every $e \in E(G(A))$ contained in an odd hole/antihole of G(A) of size ≥ 5 holds $e \in E(G(A'))$

what to do with edges/conflicts only contained in odd holes of size 3?

- investigate dual bound instead of polytope
- ideas for detector
- further extend ideas to other problems

- Andrásfai, B. (1966). On critical graphs. In Theory of Graphs, International Symposium, Rome, pages 1–9.
- Chvátal, V. (1975). On certain polytopes associated with graphs. Journal of Combinatorial Theory, Series B, 18(2):138 – 154.
- Nemhauser, G. and Trotter, L. (1974). Properties of vertex packing and independence system polyhedra. *Mathematical Programming*, 6(1):48–61.
- Sachs, H. (1970). On the Berge conjecture concerning perfect graphs. *Combinatorial Structures and their Applications, Gordon and Beach, New York*, 37:384.
- Sewell, E. (1990). Stability critical graphs and the stable set polytope. PhD thesis.
- Witt, J. and Lübbecke, M. (2015). Dantzig-Wolfe reformulations for the stable set problem. Technical Report 2015–029, Operations Research, RWTH Aachen University.

www.or.rwth-aachen.de/research/publications/2015-DW-stable.pdf.

