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Integer Programming and Polyhedra

» original problem
b; Viel
Z"N[L,U]
» L, U € Z" finite bounds on variables
> integer hull

Prp:=conv{z € Z"N[L,U] : al x < b; Vi € I}

> set of feasible solutions to the LP relaxation

Prp:={xeQ"N[L,U|:alz <b; Viel}



Dantzig-Wolfe Reformulation for IPs

>

>

>

choose subset I’ C I
let X(I') :=conv{zx € Z"N[L,U]:afx <b; Viecl}
remark: X (I) = Prp

reformulate every x € X (I') as convex combination of
extreme points of X (I’)

introduce one variable per extreme point



Dantzig-Wolfe Reformulation for IPs

>

>

>

choose subset I’ C I
let X(I') :=conv{zx € Z"N[L,U]:afx <b; Viecl}
remark: X (I) = Prp

reformulate every x € X (I') as convex combination of
extreme points of X (I’)

introduce one variable per extreme point
corresponds to convexification of constraints with index in I’
Dantzig-Wolfe polytope:

Pow(I'):={x € Q"N[L,U]:a]x<b;Vic I\,
e X(I'}
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Strength of Reformulations

» inclusion relation

Prp C Ppw(I') C Prp

I I
Ppw (1) Ppw (0)

> we want to investigate the strength of such reformulations

» when is the reformulation weakest possible?
» when is the reformulation strongest possible?
> ..

» we focus on the stable set problem in this talk!



Stable Set Problem

» let G = (V, E) be a graph with n := |V and weights
w € ZY,

» S C V is called stable set if no nodes of S are adjacent

> find stable set S* with maximum weight

» maximum weight is called weighted stability number a,,(G)



Stable Set Problem

v

let G = (V, E) be a graph with n := |V and weights
w € ZY,

» S C V is called stable set if no nodes of S are adjacent

v

find stable set .S* with maximum weight

» maximum weight is called weighted stability number a,,(G)

IP formulation

v
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» inclusion relation

Pip C Ppw(I') C Prp
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D-W Reformulation for the Stable Set Problem

» inclusion relation

Pip C Ppw(I') C Prp
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STAB(G) FRAC(G)

» stable set polytope STAB(G)
» fractional stable set polytope FRAC(G)



D-W Reformulation for the Stable Set Problem

» inclusion relation
Pip C Ppw(I') C Prp
! !
STAB(G) FRAC(G)
DW(G, G)

» stable set polytope STAB(G)
» fractional stable set polytope FRAC(G)

» choose £’ C E and define G' := (V| E)

DW(G,G") = {x € [0,1]" : 2 + 2, < 1 YV{u,v} € E\F/,
z € STAB(G')}



Bipartite Graphs

Theorem (Nemhauser and Trotter 1974)
STAB(G) = FRAC(G) iff G is bipartite.

Corollary
If G is bipartite, then for all E' C E and G' = (V, E’) holds

STAB(G) = DW(G, G') = FRAC(G).



Bipartite Graphs

Theorem (Nemhauser and Trotter 1974)
STAB(G) = FRAC(G) iff G is bipartite.

Corollary
If G is bipartite, then for all E' C E and G' = (V, E’) holds

STAB(G) = DW(G, G') = FRAC(G).

» G is bipartite iff G contains no odd cycle
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» odd hole is odd cycle without chords (induced odd cycle)

» 3-cycles/3-cliques/triangles are considered holes in this talk!
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Odd Cycles/Holes

» odd hole is odd cycle without chords (induced odd cycle)

» 3-cycles/3-cliques/triangles are considered holes in this talk!

» odd cycle inequality for odd cycle C'is valid for STAB(G)
Vo) -1

> 7 < 5

veV(C)
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Theorem

DW(G, G') = FRAC(G) iff ... 7
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Weakest Possible Reformulation

Theorem
DW(G,G") = FRAC(G) iff G’ is bipartite.
Proof sketch “<«=":
DW(G,G") ={z € [0,1]": 2y + 2, <1 V{u,v} € E\F/,
r € STAB(G')}

FRAC(G) ={z € [0,1]" : 2y + , <1 V{u,v} € E\F,
Ty + 3y < 1V{u,v} € E'}
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Weakest Possible Reformulation

Theorem
DW(G,G") = FRAC(G) iff G’ is bipartite.
Proof sketch “<«=":
DW(G,G") ={z € [0,1]": 2y + 2, <1 V{u,v} € E\F/,
r € STAB(G')}

FRAC(G) ={z € [0,1]" : 2y + , <1 V{u,v} € E\F,
r € FRAC(G')}

G’ is bipartite < STAB(G') = FRAC(G)
~ DW(G,@) = FRAC(G)
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Theorem
DW(G,G’) = FRAC(G) iff G’ is bipartite.

Proof sketch “=": Assume G’ is not bipartite

= G’ contains an odd cycle C
1

z 1
2 - letz, — )2 veV(C)
0 else

DN|—
D=
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Theorem
DW(G,G’) = FRAC(G) iff G’ is bipartite.

Proof sketch “=": Assume G’ is not bipartite

= G’ contains an odd cycle C
1

z 1
2 - letz, — )2 veV(C)
0 else

e edge ineq.s satisfied
2 = x € FRAC(G)

D=
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Weakest Possible Reformulation

Theorem
DW(G,G’) = FRAC(G) iff G’ is bipartite.

Proof sketch “=": Assume G’ is not bipartite

= G’ contains an odd cycle C
1

z 1
2 - letz, — )2 veV(C)
0 else

e edge ineq.s satisfied
2 = x € FRAC(G)

D=

» odd cycle ineq. not satisfied
= & ¢ STAB(G') > DW(G,G)
= ¢ DW(G,G") ¢
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Strongest Possible Reformulation

Theorem
DW(G,G") = STAB(G) iff G' contains all odd holes of G.
Proof sketch “=": Assume 3 odd hole H of G with H ¢ G’

1

= V(H
> let 7, =< 2 veV(H)

0 else

» odd cycle ineq. not satisfied
= 1 ¢ STAB(G)

N[




Strongest Possible Reformulation

Theorem
DW(G,G") = STAB(G) iff G' contains all odd holes of G.
Proof sketch “=": Assume 3 odd hole H of G with H ¢ G’

{; veV(H)

> let z, =
0 else

e odd cycle ineq. not satisfied
2 = 7 ¢STAB(G)

» 7 € STAB(G)

(conv. comb. of e and e)
> edge ineq.s satisfied
= r € DW(G,G") ¢
E::::::‘::‘ ‘ '
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Theorem
DW(G,G") = STAB(G) iff G' contains all odd holes of G.

Proof sketch "<«<":

> let Z Ty < mo be a facet of STAB(G)
veV
» (neither z, > 0 nor =, + x, < 1)

» idea: prove Z Ty, < my Vo € DW(G, G)
veV
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Strongest Possible Reformulation

Theorem

DW(G,G") = STAB(G) iff G' contains all odd holes of G.

Proof sketch "<«<":

> let Z Ty < mo be a facet of STAB(G)
veV

> (neither z, > 0 nor =, + x, < 1)

» idea: prove Z Ty, < my Vo € DW(G, G)
veV

» 1 >0, m >0, and 79 = a,(G) holds

v

Vo:i={veV:m >0}, Gy:= GV = (W, Eo)
G with weighting 7 is called facet-graph

v
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Strongest Possible Reformulation

Proof sketch “<" cont'd:
> e € Ey critical in G if az(Go —€) > a-(Go)
> (g is a-critical if every edge is critical

»  spanning o -critical subgraph Ty C G with
ax(Th) = ax(Go) (Sewell, 1990)
» (Tp with weighting 7 is still a facet-graph)



Strongest Possible Reformulation

Proof sketch “<" cont'd:
» e € Ey critical in Gy if az(Go —e€) > ar(Go)
> (g is a-critical if every edge is critical

»  spanning o -critical subgraph Ty C G with
ax(Th) = ax(Go) (Sewell, 1990)

» (Tp with weighting 7 is still a facet-graph)

» idea: if Ty is covered by G’, i.e., Ty C G’, then

> mewy <my Vo € STAB(Ty) 2 STAB(G')y, 2 DW(G. Gy,
veVy

— prove that every e € E(T)) is part of some odd hole in Gg
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Proof sketch “«<" cont'd:

Lemma

3 spanning a-critical subgraph Ty C Gy s.t. every edge e € E(Tp)
is part of an odd hole H, of Gy, i.e., e € E(H,).

(Proof sketch later)



Strongest Possible Reformulation

Proof sketch “«<" cont'd:

Lemma
3 spanning a-critical subgraph Ty C Gy s.t. every edge e € E(Tp)
is part of an odd hole H, of Gy, i.e., e € E(H,).

(Proof sketch later)

every e € E(Tp) is part of some odd hole of Gy

Ty covered by G/, i.e., Ty C G’
Z Ty < my Vo € DW(G, G)

veV
. STAB(G) = DW(G, G")

=

= every e € E(T)) is part of some odd hole of G
=

=
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Strongest Possible Reformulation

Lemma
3 spanning au-critical subgraph Ty C Gy s.t. every edge e € E(Tp)
is part of an odd hole H, of Gy, i.e., e € E(H,).

Proof sketch for e = {u,v} € E(T}) critical in Gy
» proof idea due to Andrasfai (1966)

> let S be MWSS in Gg with u,v &€ S
(Fz: 772 =g and wy + 2, # 1) S\ St ST\ S
(Sewell, 1990) > u

> let ST be MWSS in Gy — e

» 7(S) < 7w(ST)
» u,v € ST holds
(otherwise ST stable in Gy)
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Strongest Possible Reformulation

» assume u and v are in different connected components

S\ S+ S+\ S

[ ® U
T

@ L
T

@ ® U
T

= Ji with 7(K;) < 7(K;)
= S\ K; UK is stable in Gy with 7(S\ K; UK;") > n(9) 4
= Ju-v-path Pin G[S\ ST UST\ 5] of even length

= shortest P plus {u,v} is odd hole in Gy
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Related Problems

» can we prove similar results for other (related) problems?

» node covering problem v/ » set packing problem (V)

» clique problem v/ > set covering problem X

» (matching problem) v/ > set partitioning problem X

> ... » independence system
problem X
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Set Packing Problem

> let A € {0,1}"*"™ be a matrix and let w € Z" be a vector

» the vector 1 := (1,...,1)7 is of suitable dimension

> set packing problem:

max w!x
s.t. Ax < 1
z € {0,1}"

» columns of A represent sets; rows represent conflicts
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» inclusion relation

» set packing polytope SP(A)

nnnnnnnnnn
nnnnnnnn



D-W Reformulation for the Set Packing Problem

» inclusion relation

» set packing polytope SP(A)
» fractional set packing polytope FSP(A)



D-W Reformulation for the Set Packing Problem

» inclusion relation

l l
SP(A) FSP(A)
DW(A, A"
» set packing polytope SP(A)
» fractional set packing polytope FSP(A)

» choose subset I’ C {1,...,m} of rows and define A" := A/

DW(A,A/) = {l’ € [0, l]n : A[\I/ S ].7
x € SP(A)}



(Fractional) Set Packing vs. Stable Set Polytope
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(Fractional) Set Packing vs. Stable Set Polytope

> let G(A) = (V(A), E(A)) be the conflict graph of A4, i.e.,

V(A) = ;n}
E(A) = {’L] 31" s.t. ap; #0,a,5 # 0}

» for the fractional polytopes holds
FSP(A) C FRAC(G(A))
(added "some" clique inequalities)
» for the integer hulls holds
SP(A) = STAB(G(A))

(different description of the same conflicts)



Weakest Possible Reformulation

Theorem (Sachs 1970)
SP(A) = FSP(A) iff A is perfect.

Corollary

If A" is perfect, then DW(A, A’) = FSP(A).
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Weakest Possible Reformulation

Theorem (Sachs 1970)
SP(A) = FSP(A) iff A is perfect.

Corollary

If A" is perfect, then DW(A, A’) = FSP(A).

Theorem (Chvatal 1975)

A is perfect iff its non-dominated rows form the clique-node matrix
of a perfect graph.

Lemma

If 3G perfect with G(A') C G C G(A) and clique inequalities of G
are dominated by Ax < 1, then DW(A, A’) = FSP(A).



Strongest Possible Reformulation

Corollary

If for every e € E(A) contained in an odd hole of G(A) holds
ec E(A'), then DW(A, A") = SP(A).

Lemma

IfDW(A, A") = SP(A), then for every e € E(G(A)) contained in
an odd hole/antihole of G(A) of size > 5 holds e € E(G(A"))



Strongest Possible Reformulation

Corollary

If for every e € E(A) contained in an odd hole of G(A) holds
ec E(A'), then DW(A, A") = SP(A).

Lemma

IfDW(A, A") = SP(A), then for every e € E(G(A)) contained in
an odd hole/antihole of G(A) of size > 5 holds e € E(G(A"))

» what to do with edges/conflicts only contained in odd holes of
size 37



Future Work

> investigate dual bound instead of polytope
» ideas for detector

» further extend ideas to other problems
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