Dantzig-Wolfe Reformulations for the Stable Set Problem (and Possible Extensions to Related Problems)

Jonas Witt Marco Lübbecke

RWTH Aachen University

Column Generation 2016 • Búzios • 05/25/2016

Integer Programming and Polyhedra

- original problem

$$
\begin{array}{rrll}
\max & c^{T} x & & \\
\text { s.t. } & a_{i}^{T} x & \leq b_{i} \\
& x & \in \mathbb{Z}^{n} \cap[L, U]
\end{array} \forall i \in I
$$

- $L, U \in \mathbb{Z}^{n}$ finite bounds on variables

Integer Programming and Polyhedra

- original problem

$$
\begin{array}{rlll}
\max & c^{T} x & \\
\text { s.t. } & a_{i}^{T} x & \leq b_{i} \\
& x & \in \mathbb{Z}^{n} \cap[L, U]
\end{array} \forall i \in I
$$

- $L, U \in \mathbb{Z}^{n}$ finite bounds on variables
- integer hull

$$
P_{I P}:=\operatorname{conv}\left\{x \in \mathbb{Z}^{n} \cap[L, U]: a_{i}^{T} x \leq b_{i} \forall i \in I\right\}
$$

- set of feasible solutions to the LP relaxation

$$
P_{L P}:=\left\{x \in \mathbb{Q}^{n} \cap[L, U]: a_{i}^{T} x \leq b_{i} \forall i \in I\right\}
$$

Dantzig-Wolfe Reformulation for IPs

- choose subset $I^{\prime} \subseteq I$
- let $X\left(I^{\prime}\right):=\operatorname{conv}\left\{x \in \mathbb{Z}^{n} \cap[L, U]: a_{i}^{T} x \leq b_{i} \quad \forall i \in I^{\prime}\right\}$
- remark: $X(I)=P_{I P}$
- reformulate every $x \in X\left(I^{\prime}\right)$ as convex combination of extreme points of $X\left(I^{\prime}\right)$
- introduce one variable per extreme point

Dantzig-Wolfe Reformulation for IPs

- choose subset $I^{\prime} \subseteq I$
- let $X\left(I^{\prime}\right):=\operatorname{conv}\left\{x \in \mathbb{Z}^{n} \cap[L, U]: a_{i}^{T} x \leq b_{i} \quad \forall i \in I^{\prime}\right\}$
- remark: $X(I)=P_{I P}$
- reformulate every $x \in X\left(I^{\prime}\right)$ as convex combination of extreme points of $X\left(I^{\prime}\right)$
- introduce one variable per extreme point
- corresponds to convexification of constraints with index in I^{\prime}
\rightarrow Dantzig-Wolfe polytope:

$$
\begin{gathered}
P_{D W}\left(I^{\prime}\right):=\left\{x \in \mathbb{Q}^{n} \cap[L, U]: a_{i}^{T} x \leq b_{i} \forall i \in I \backslash I^{\prime},\right. \\
\left.x \in X\left(I^{\prime}\right)\right\}
\end{gathered}
$$

Strength of Reformulations

- inclusion relation

$$
P_{I P} \subseteq P_{D W}\left(I^{\prime}\right) \subseteq P_{L P}
$$

Strength of Reformulations

- inclusion relation

$$
\underset{\|}{P_{I P}} \subseteq \underset{P_{D W}\left(I^{\prime}\right) \subseteq}{\substack{P_{L P} \\
P_{D W}(I)}} \begin{array}{|l}
P_{D W}(\emptyset)
\end{array}
$$

Strength of Reformulations

- inclusion relation

- we want to investigate the strength of such reformulations
- when is the reformulation weakest possible?
- when is the reformulation strongest possible?
- ...

Strength of Reformulations

- inclusion relation

- we want to investigate the strength of such reformulations
- when is the reformulation weakest possible?
- when is the reformulation strongest possible?
- ...
- we focus on the stable set problem in this talk!

Stable Set Problem

- let $G=(V, E)$ be a graph with $n:=|V|$ and weights $w \in \mathbb{Z}_{\geq 0}^{n}$
- $S \subseteq V$ is called stable set if no nodes of S are adjacent
- find stable set S^{*} with maximum weight
- maximum weight is called weighted stability number $\alpha_{w}(G)$

Stable Set Problem

- let $G=(V, E)$ be a graph with $n:=|V|$ and weights $w \in \mathbb{Z}_{\geq 0}^{n}$
- $S \subseteq V$ is called stable set if no nodes of S are adjacent
- find stable set S^{*} with maximum weight
- maximum weight is called weighted stability number $\alpha_{w}(G)$
- IP formulation

$$
\left.\begin{array}{ll}
\max & \sum_{v \in V} w_{v} \cdot x_{v} \\
\text { s.t. } & x_{u}+x_{v} \\
& x
\end{array}\right]=\{0,1\}^{n} \quad \forall\{u, v\} \in E
$$

RWIHAACHEN

D-W Reformulation for the Stable Set Problem

- inclusion relation

$$
P_{I P} \subseteq P_{D W}\left(I^{\prime}\right) \subseteq P_{L P}
$$

D-W Reformulation for the Stable Set Problem

- inclusion relation

$$
\begin{gathered}
\quad P_{I P} \subseteq P_{D W}\left(I^{\prime}\right) \subseteq P_{L P} \\
\downarrow \\
\operatorname{STAB}(G)
\end{gathered}
$$

- stable set polytope $\operatorname{STAB}(G)$

D-W Reformulation for the Stable Set Problem

- inclusion relation

- stable set polytope $\operatorname{STAB}(G)$
- fractional stable set polytope $\operatorname{FRAC}(G)$

D-W Reformulation for the Stable Set Problem

- inclusion relation

- stable set polytope $\operatorname{STAB}(G)$
- fractional stable set polytope $\operatorname{FRAC}(G)$
- choose $E^{\prime} \subseteq E$ and define $G^{\prime}:=\left(V, E^{\prime}\right)$

$$
\begin{gathered}
\operatorname{DW}\left(G, G^{\prime}\right):=\left\{x \in[0,1]^{n}: x_{u}+x_{v} \leq 1 \forall\{u, v\} \in E \backslash E^{\prime},\right. \\
\left.x \in \operatorname{STAB}\left(G^{\prime}\right)\right\}
\end{gathered}
$$

Bipartite Graphs

Theorem (Nemhauser and Trotter 1974) $\operatorname{STAB}(G)=\operatorname{FRAC}(G)$ iff G is bipartite.

Corollary
If G is bipartite, then for all $E^{\prime} \subseteq E$ and $G^{\prime}=\left(V, E^{\prime}\right)$ holds

$$
\operatorname{STAB}(G)=\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{FRAC}(G) .
$$

Bipartite Graphs

Theorem (Nemhauser and Trotter 1974) $\operatorname{STAB}(G)=\operatorname{FRAC}(G)$ iff G is bipartite.

Corollary
If G is bipartite, then for all $E^{\prime} \subseteq E$ and $G^{\prime}=\left(V, E^{\prime}\right)$ holds

$$
\operatorname{STAB}(G)=\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{FRAC}(G) .
$$

- G is bipartite iff G contains no odd cycle

Odd Cycles/Holes

- odd hole is odd cycle without chords (induced odd cycle)
- 3-cycles/3-cliques/triangles are considered holes in this talk!

Odd Cycles/Holes

- odd hole is odd cycle without chords (induced odd cycle)
- 3-cycles/3-cliques/triangles are considered holes in this talk!

Odd Cycles/Holes

- odd hole is odd cycle without chords (induced odd cycle)
- 3-cycles/3-cliques/triangles are considered holes in this talk!

Odd Cycles/Holes

- odd hole is odd cycle without chords (induced odd cycle)
- 3-cycles/3-cliques/triangles are considered holes in this talk!

- odd cycle inequality for odd cycle C is valid for $\operatorname{STAB}(G)$

$$
\sum_{v \in V(C)} x_{v} \leq \frac{|V(C)|-1}{2}
$$

Weakest Possible Reformulation

Theorem
$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{FRAC}(G)$ iff \ldots ?

Weakest Possible Reformulation

Theorem
$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{FRAC}(G)$ iff G^{\prime} is bipartite.

Weakest Possible Reformulation

Theorem
$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{FRAC}(G)$ iff G^{\prime} is bipartite.
Proof sketch " \Leftarrow ":

$$
\begin{aligned}
\operatorname{DW}\left(G, G^{\prime}\right)=\left\{x \in[0,1]^{n}:\right. & x_{u}+x_{v} \leq 1 \forall\{u, v\} \in E \backslash E^{\prime}, \\
& \left.x \in \operatorname{STAB}\left(G^{\prime}\right)\right\} \\
\operatorname{FRAC}(G)=\left\{x \in[0,1]^{n}:\right. & x_{u}+x_{v} \leq 1 \forall\{u, v\} \in E \backslash E^{\prime}, \\
& \left.x_{u}+x_{v} \leq 1 \forall\{u, v\} \in E^{\prime}\right\}
\end{aligned}
$$

Weakest Possible Reformulation

Theorem
$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{FRAC}(G)$ iff G^{\prime} is bipartite.
Proof sketch " \Leftarrow ":

$$
\begin{aligned}
\operatorname{DW}\left(G, G^{\prime}\right)=\left\{x \in[0,1]^{n}:\right. & x_{u}+x_{v} \leq 1 \forall\{u, v\} \in E \backslash E^{\prime}, \\
& \left.x \in \operatorname{STAB}\left(G^{\prime}\right)\right\} \\
\operatorname{FRAC}(G)=\left\{x \in[0,1]^{n}:\right. & x_{u}+x_{v} \leq 1 \forall\{u, v\} \in E \backslash E^{\prime}, \\
& \left.x \in \operatorname{FRAC}\left(G^{\prime}\right)\right\}
\end{aligned}
$$

Weakest Possible Reformulation

Theorem

$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{FRAC}(G)$ iff G^{\prime} is bipartite.
Proof sketch " \Leftarrow ":

$$
\begin{aligned}
\operatorname{DW}\left(G, G^{\prime}\right)=\left\{x \in[0,1]^{n}:\right. & x_{u}+x_{v} \leq 1 \forall\{u, v\} \in E \backslash E^{\prime}, \\
& \left.x \in \operatorname{STAB}\left(G^{\prime}\right)\right\} \\
\operatorname{FRAC}(G)=\left\{x \in[0,1]^{n}:\right. & x_{u}+x_{v} \leq 1 \forall\{u, v\} \in E \backslash E^{\prime}, \\
& \left.x \in \operatorname{FRAC}\left(G^{\prime}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
G^{\prime} \text { is bipartite } & \Leftrightarrow \operatorname{STAB}\left(G^{\prime}\right)=\operatorname{FRAC}\left(G^{\prime}\right) \\
& \Rightarrow \operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{FRAC}(G)
\end{aligned}
$$

Weakest Possible Reformulation

Theorem
$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{FRAC}(G)$ iff G^{\prime} is bipartite.
Proof sketch " \Rightarrow ":

Weakest Possible Reformulation

Theorem

$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{FRAC}(G)$ iff G^{\prime} is bipartite.
Proof sketch " \Rightarrow ": Assume G^{\prime} is not bipartite $\Rightarrow G^{\prime}$ contains an odd cycle C

Weakest Possible Reformulation

Theorem

$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{FRAC}(G)$ iff G^{\prime} is bipartite.
Proof sketch " \Rightarrow ": Assume G^{\prime} is not bipartite $\Rightarrow G^{\prime}$ contains an odd cycle C

Weakest Possible Reformulation

Theorem

$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{FRAC}(G)$ iff G^{\prime} is bipartite.
Proof sketch " \Rightarrow ": Assume G^{\prime} is not bipartite $\Rightarrow G^{\prime}$ contains an odd cycle C

Weakest Possible Reformulation

Theorem

$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{FRAC}(G)$ iff G^{\prime} is bipartite.
Proof sketch " \Rightarrow ": Assume G^{\prime} is not bipartite $\Rightarrow G^{\prime}$ contains an odd cycle C

- let $\bar{x}_{v}= \begin{cases}\frac{1}{2} & v \in V(C) \\ 0 & \text { else }\end{cases}$
- edge ineq.s satisfied
$\Rightarrow \bar{x} \in \operatorname{FRAC}(G)$
- odd cycle ineq. not satisfied
$\Rightarrow \bar{x} \notin \operatorname{STAB}\left(G^{\prime}\right) \supseteq \operatorname{DW}\left(G, G^{\prime}\right)$
$\Rightarrow \bar{x} \notin \mathrm{DW}\left(G, G^{\prime}\right)$ z

Strongest Possible Reformulation

Theorem
$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{STAB}(G) i f f \ldots$?

Strongest Possible Reformulation

Theorem
$\mathrm{DW}\left(G, G^{\prime}\right)=\operatorname{STAB}(G)$ iff G^{\prime} contains all odd holes of G.

Strongest Possible Reformulation

Theorem
$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{STAB}(G)$ iff G^{\prime} contains all odd holes of G.
Proof sketch " \Rightarrow ": Assume \exists odd hole H of G with $H \nsubseteq G^{\prime}$

Strongest Possible Reformulation

Theorem

$\mathrm{DW}\left(G, G^{\prime}\right)=\operatorname{STAB}(G)$ iff G^{\prime} contains all odd holes of G.
Proof sketch " \Rightarrow ": Assume \exists odd hole H of G with $H \nsubseteq G^{\prime}$

- let $\bar{x}_{v}= \begin{cases}\frac{1}{2} & v \in V(H) \\ 0 & \text { else }\end{cases}$

RWTHAACHEN

Strongest Possible Reformulation

Theorem

$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{STAB}(G)$ iff G^{\prime} contains all odd holes of G.
Proof sketch " \Rightarrow ": Assume \exists odd hole H of G with $H \nsubseteq G^{\prime}$

Strongest Possible Reformulation

Theorem

$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{STAB}(G)$ iff G^{\prime} contains all odd holes of G.
Proof sketch " \Rightarrow ": Assume \exists odd hole H of G with $H \nsubseteq G^{\prime}$

- let $\bar{x}_{v}= \begin{cases}\frac{1}{2} & v \in V(H) \\ 0 & \text { else }\end{cases}$
- odd cycle ineq. not satisfied
$\Rightarrow \bar{x} \notin \operatorname{STAB}(G)$
- $\bar{x} \in \operatorname{STAB}\left(G^{\prime}\right)$
(conv. comb. of • and •)
- edge ineq.s satisfied
$\Rightarrow \bar{x} \in \operatorname{DW}\left(G, G^{\prime}\right)$ z

Strongest Possible Reformulation

Theorem
$\mathrm{DW}\left(G, G^{\prime}\right)=\operatorname{STAB}(G)$ iff G^{\prime} contains all odd holes of G.

Strongest Possible Reformulation

Theorem

$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{STAB}(G)$ iff G^{\prime} contains all odd holes of G.
Proof sketch " \Leftarrow ":

- let $\sum_{v \in V} \pi_{v} x_{v} \leq \pi_{0}$ be a facet of $\operatorname{STAB}(G)$
- (neither $x_{v} \geq 0$ nor $x_{u}+x_{v} \leq 1$)
- idea: prove $\sum_{v \in V} \pi_{v} x_{v} \leq \pi_{0} \quad \forall x \in \mathrm{DW}\left(G, G^{\prime}\right)$

Strongest Possible Reformulation

Theorem

$\mathrm{DW}\left(G, G^{\prime}\right)=\operatorname{STAB}(G)$ iff G^{\prime} contains all odd holes of G.
Proof sketch " \Leftarrow ":

- let $\sum_{v \in V} \pi_{v} x_{v} \leq \pi_{0}$ be a facet of $\operatorname{STAB}(G)$
- (neither $x_{v} \geq 0$ nor $\left.x_{u}+x_{v} \leq 1\right)$
- idea: prove $\sum_{v \in V} \pi_{v} x_{v} \leq \pi_{0} \quad \forall x \in \mathrm{DW}\left(G, G^{\prime}\right)$
- $\pi \geq 0, \pi_{0}>0$, and $\pi_{0}=\alpha_{\pi}(G)$ holds

Strongest Possible Reformulation

Theorem

$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{STAB}(G)$ iff G^{\prime} contains all odd holes of G.
Proof sketch " \Leftarrow ":

- let $\sum_{v \in V} \pi_{v} x_{v} \leq \pi_{0}$ be a facet of $\operatorname{STAB}(G)$
- (neither $x_{v} \geq 0$ nor $\left.x_{u}+x_{v} \leq 1\right)$
- idea: prove $\sum_{v \in V} \pi_{v} x_{v} \leq \pi_{0} \quad \forall x \in \mathrm{DW}\left(G, G^{\prime}\right)$
- $\pi \geq 0, \pi_{0}>0$, and $\pi_{0}=\alpha_{\pi}(G)$ holds
- $V_{0}:=\left\{v \in V: \pi_{v}>0\right\}, G_{0}:=G\left[V_{0}\right]=\left(V_{0}, E_{0}\right)$
- G_{0} with weighting π is called facet-graph

Strongest Possible Reformulation

Proof sketch " \Leftarrow " cont'd:

- $e \in E_{0}$ critical in G_{0} if $\alpha_{\pi}\left(G_{0}-e\right)>\alpha_{\pi}\left(G_{0}\right)$
- G_{0} is α_{π}-critical if every edge is critical
- \exists spanning α_{π}-critical subgraph $T_{0} \subseteq G_{0}$ with $\alpha_{\pi}\left(T_{0}\right)=\alpha_{\pi}\left(G_{0}\right)$ (Sewell, 1990)
- (T_{0} with weighting π is still a facet-graph)

Strongest Possible Reformulation

Proof sketch " \Leftarrow " cont'd:

- $e \in E_{0}$ critical in G_{0} if $\alpha_{\pi}\left(G_{0}-e\right)>\alpha_{\pi}\left(G_{0}\right)$
- G_{0} is α_{π}-critical if every edge is critical
- \exists spanning α_{π}-critical subgraph $T_{0} \subseteq G_{0}$ with $\alpha_{\pi}\left(T_{0}\right)=\alpha_{\pi}\left(G_{0}\right)$ (Sewell, 1990)
- (T_{0} with weighting π is still a facet-graph)
- idea: if T_{0} is covered by G^{\prime}, i.e., $T_{0} \subseteq G^{\prime}$, then

$$
\sum_{v \in V_{0}} \pi_{v} x_{v} \leq \pi_{0} \quad \forall x \in \operatorname{STAB}\left(T_{0}\right) \supseteq \operatorname{STAB}\left(G^{\prime}\right)_{\mid V_{0}} \supseteq \operatorname{DW}\left(G, G^{\prime}\right)_{\mid V_{0}}
$$

\rightarrow prove that every $e \in E\left(T_{0}\right)$ is part of some odd hole in G_{0}

Strongest Possible Reformulation

Proof sketch " \Leftarrow " cont'd:

Lemma

\exists spanning α_{π}-critical subgraph $T_{0} \subseteq G_{0}$ s.t. every edge $e \in E\left(T_{0}\right)$ is part of an odd hole H_{e} of G_{0}, i.e., $e \in E\left(H_{e}\right)$.
(Proof sketch later)

Strongest Possible Reformulation

Proof sketch " \Leftarrow " cont'd:

Lemma

\exists spanning α_{π}-critical subgraph $T_{0} \subseteq G_{0}$ s.t. every edge $e \in E\left(T_{0}\right)$ is part of an odd hole H_{e} of G_{0}, i.e., $e \in E\left(H_{e}\right)$.
(Proof sketch later)
\Rightarrow every $e \in E\left(T_{0}\right)$ is part of some odd hole of G_{0}
\Rightarrow every $e \in E\left(T_{0}\right)$ is part of some odd hole of G
$\Rightarrow T_{0}$ covered by G^{\prime}, i.e., $T_{0} \subseteq G^{\prime}$
$\Rightarrow \sum_{v \in V} \pi_{v} x_{v} \leq \pi_{0} \quad \forall x \in \operatorname{DW}\left(G, G^{\prime}\right)$
$\Rightarrow \operatorname{STAB}(G)=\mathrm{DW}\left(G, G^{\prime}\right)$

Strongest Possible Reformulation

Lemma
\exists spanning α_{π}-critical subgraph $T_{0} \subseteq G_{0}$ s.t. every edge $e \in E\left(T_{0}\right)$ is part of an odd hole H_{e} of G_{0}, i.e., $e \in E\left(H_{e}\right)$.

Strongest Possible Reformulation

Lemma
\exists spanning α_{π}-critical subgraph $T_{0} \subseteq G_{0}$ s.t. every edge $e \in E\left(T_{0}\right)$ is part of an odd hole H_{e} of G_{0}, i.e., $e \in E\left(H_{e}\right)$.

Proof sketch for $e=\{u, v\} \in E\left(T_{0}\right)$ critical in G_{0}

- proof idea due to Andrásfai (1966)

Strongest Possible Reformulation

Lemma

\exists spanning α_{π}-critical subgraph $T_{0} \subseteq G_{0}$ s.t. every edge $e \in E\left(T_{0}\right)$ is part of an odd hole H_{e} of G_{0}, i.e., $e \in E\left(H_{e}\right)$.

Proof sketch for $e=\{u, v\} \in E\left(T_{0}\right)$ critical in G_{0}

- proof idea due to Andrásfai (1966)
- let S be MWSS in G_{0} with $u, v \notin S$
$\left(\exists x: \pi^{T} x=\pi_{0}\right.$ and $\left.x_{u}+x_{v} \neq 1\right)$
(Sewell, 1990)
- let S^{+}be MWSS in $G_{0}-e$
- $\pi(S)<\pi\left(S^{+}\right)$
- $u, v \in S^{+}$holds (otherwise S^{+}stable in G_{0})

Strongest Possible Reformulation

Lemma

\exists spanning α_{π}-critical subgraph $T_{0} \subseteq G_{0}$ s.t. every edge $e \in E\left(T_{0}\right)$ is part of an odd hole H_{e} of G_{0}, i.e., $e \in E\left(H_{e}\right)$.

Proof sketch for $e=\{u, v\} \in E\left(T_{0}\right)$ critical in G_{0}

- proof idea due to Andrásfai (1966)
- let S be MWSS in G_{0} with $u, v \notin S$
$\left(\exists x: \pi^{T} x=\pi_{0}\right.$ and $\left.x_{u}+x_{v} \neq 1\right)$
(Sewell, 1990)
- let S^{+}be MWSS in $G_{0}-e$
- $\pi(S)<\pi\left(S^{+}\right)$
- $u, v \in S^{+}$holds
 (otherwise S^{+}stable in G_{0})

Strongest Possible Reformulation

- assume u and v are in different connected components

Strongest Possible Reformulation

- assume u and v are in different connected components

$\Rightarrow \exists i$ with $\pi\left(K_{i}\right)<\pi\left(K_{i}^{+}\right)$

Strongest Possible Reformulation

- assume u and v are in different connected components

$\Rightarrow \exists i$ with $\pi\left(K_{i}\right)<\pi\left(K_{i}^{+}\right)$
$\Rightarrow S \backslash K_{i} \cup K_{i}^{+}$is stable in G_{0} with $\pi\left(S \backslash K_{i} \cup K_{i}^{+}\right)>\pi(S)$ 文

Strongest Possible Reformulation

- assume u and v are in different connected components

$\Rightarrow \exists i$ with $\pi\left(K_{i}\right)<\pi\left(K_{i}^{+}\right)$
$\Rightarrow S \backslash K_{i} \cup K_{i}^{+}$is stable in G_{0} with $\pi\left(S \backslash K_{i} \cup K_{i}^{+}\right)>\pi(S)$ 文
$\Rightarrow \exists u$-v-path P in $G\left[S \backslash S^{+} \cup S^{+} \backslash S\right]$ of even length

Strongest Possible Reformulation

- assume u and v are in different connected components

$\Rightarrow \exists i$ with $\pi\left(K_{i}\right)<\pi\left(K_{i}^{+}\right)$
$\Rightarrow S \backslash K_{i} \cup K_{i}^{+}$is stable in G_{0} with $\pi\left(S \backslash K_{i} \cup K_{i}^{+}\right)>\pi(S)$ 文
$\Rightarrow \exists u$-v-path P in $G\left[S \backslash S^{+} \cup S^{+} \backslash S\right]$ of even length
\Rightarrow shortest P plus $\{u, v\}$ is odd hole in G_{0}

What We Learned

Theorem

$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{FRAC}(G)$ iff G^{\prime} is bipartite.

Theorem
$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{STAB}(G)$ iff G^{\prime} contains all odd holes of G.

What We Learned

Theorem

$\mathrm{DW}\left(G, G^{\prime}\right)=\operatorname{FRAC}(G)$ iff G^{\prime} is bipartite.

Theorem
$\operatorname{DW}\left(G, G^{\prime}\right)=\operatorname{STAB}(G)$ iff G^{\prime} contains all odd holes of G.

- can we prove similar results for other (related) problems?

Related Problems

- can we prove similar results for other (related) problems?
- node covering problem
- clique problem
- (matching problem)
- set packing problem
- set covering problem
- set partitioning problem
- independence system problem

Related Problems

- can we prove similar results for other (related) problems?
- node covering problem \checkmark
- clique problem
- (matching problem)
- set packing problem
- set covering problem
- set partitioning problem
- independence system problem

Related Problems

- can we prove similar results for other (related) problems?
- node covering problem \checkmark
- clique problem
- (matching problem)
- set packing problem (\checkmark)
- set covering problem X
- set partitioning problem X
- independence system problem X

Related Problems

- can we prove similar results for other (related) problems?
- node covering problem \checkmark
- clique problem $\sqrt{ }$
- (matching problem)
- ...
- set packing problem (\checkmark)
- set covering problem X
- set partitioning problem X
- independence system problem X

Set Packing Problem

- let $A \in\{0,1\}^{m \times n}$ be a matrix and let $w \in \mathbb{Z}^{n}$ be a vector
- the vector $\mathbf{1}:=(1, \ldots, 1)^{T}$ is of suitable dimension

Set Packing Problem

- let $A \in\{0,1\}^{m \times n}$ be a matrix and let $w \in \mathbb{Z}^{n}$ be a vector
- the vector $\mathbf{1}:=(1, \ldots, 1)^{T}$ is of suitable dimension
- set packing problem:

$$
\begin{array}{rrl}
\max & w^{T} x & \\
\text { s.t. } & A x & \leq \mathbf{1} \\
& x & \in\{0,1\}^{n}
\end{array}
$$

- columns of A represent sets; rows represent conflicts

D-W Reformulation for the Set Packing Problem

- inclusion relation

$$
P_{I P} \subseteq P_{D W}\left(I^{\prime}\right) \subseteq P_{L P}
$$

D-W Reformulation for the Set Packing Problem

- inclusion relation

$$
\begin{aligned}
& P_{I P} \subseteq P_{D W}\left(I^{\prime}\right) \subseteq P_{L P} \\
& \quad \downarrow \\
& \operatorname{SP}(A)
\end{aligned}
$$

- set packing polytope $\mathrm{SP}(A)$

D-W Reformulation for the Set Packing Problem

- inclusion relation

- set packing polytope $\mathrm{SP}(A)$
- fractional set packing polytope $\operatorname{FSP}(A)$

D-W Reformulation for the Set Packing Problem

- inclusion relation

- set packing polytope $\mathrm{SP}(A)$
- fractional set packing polytope $\operatorname{FSP}(A)$
- choose subset $I^{\prime} \subseteq\{1, \ldots, m\}$ of rows and define $A^{\prime}:=A_{I^{\prime}}$

$$
\begin{aligned}
\operatorname{DW}\left(A, A^{\prime}\right):=\left\{x \in[0,1]^{n}:\right. & A_{I \backslash I^{\prime}} \leq \mathbf{1}, \\
& \left.x \in \operatorname{SP}\left(A^{\prime}\right)\right\}
\end{aligned}
$$

(Fractional) Set Packing vs. Stable Set Polytope

- let $G(A)=(V(A), E(A))$ be the conflict graph of A, i.e.,

$$
\begin{aligned}
& V(A)=\{1, \ldots, n\} \\
& E(A)=\left\{i j: \exists r \text { s.t. } a_{r i} \neq 0, a_{r j} \neq 0\right\}
\end{aligned}
$$

(Fractional) Set Packing vs. Stable Set Polytope

- let $G(A)=(V(A), E(A))$ be the conflict graph of A, i.e.,

$$
\begin{aligned}
& V(A)=\{1, \ldots, n\} \\
& E(A)=\left\{i j: \exists r \text { s.t. } a_{r i} \neq 0, a_{r j} \neq 0\right\}
\end{aligned}
$$

- for the fractional polytopes holds

$$
\operatorname{FSP}(A) \subseteq \operatorname{FRAC}(G(A))
$$

(added "some" clique inequalities)

(Fractional) Set Packing vs. Stable Set Polytope

- let $G(A)=(V(A), E(A))$ be the conflict graph of A, i.e.,

$$
\begin{aligned}
& V(A)=\{1, \ldots, n\} \\
& E(A)=\left\{i j: \exists r \text { s.t. } a_{r i} \neq 0, a_{r j} \neq 0\right\}
\end{aligned}
$$

- for the fractional polytopes holds

$$
\operatorname{FSP}(A) \subseteq \operatorname{FRAC}(G(A))
$$

(added "some" clique inequalities)

- for the integer hulls holds

$$
\operatorname{SP}(A)=\operatorname{STAB}(G(A))
$$

(different description of the same conflicts)

Weakest Possible Reformulation

Theorem (Sachs 1970) $\operatorname{SP}(A)=\operatorname{FSP}(A)$ iff A is perfect.

Corollary
If A^{\prime} is perfect, then $\mathrm{DW}\left(A, A^{\prime}\right)=\operatorname{FSP}(A)$.

Weakest Possible Reformulation

Theorem (Sachs 1970) $\mathrm{SP}(A)=\mathrm{FSP}(A)$ iff A is perfect.

Corollary

If A^{\prime} is perfect, then $\mathrm{DW}\left(A, A^{\prime}\right)=\operatorname{FSP}(A)$.

Theorem (Chvátal 1975)
A is perfect iff its non-dominated rows form the clique-node matrix of a perfect graph.

Lemma

If $\exists \tilde{G}$ perfect with $G\left(A^{\prime}\right) \subseteq \tilde{G} \subseteq G(A)$ and clique inequalities of \tilde{G} are dominated by $A x \leq 1$, then $\mathrm{DW}\left(A, A^{\prime}\right)=\operatorname{FSP}(A)$.

Strongest Possible Reformulation

Corollary

If for every $e \in E(A)$ contained in an odd hole of $G(A)$ holds $e \in E\left(A^{\prime}\right)$, then $\operatorname{DW}\left(A, A^{\prime}\right)=\operatorname{SP}(A)$.

Lemma
If $\mathrm{DW}\left(A, A^{\prime}\right)=\mathrm{SP}(A)$, then for every $e \in E(G(A))$ contained in an odd hole/antihole of $G(A)$ of size ≥ 5 holds $e \in E\left(G\left(A^{\prime}\right)\right)$

Strongest Possible Reformulation

Corollary
 If for every $e \in E(A)$ contained in an odd hole of $G(A)$ holds $e \in E\left(A^{\prime}\right)$, then $\operatorname{DW}\left(A, A^{\prime}\right)=\operatorname{SP}(A)$.

Lemma

If $\mathrm{DW}\left(A, A^{\prime}\right)=\operatorname{SP}(A)$, then for every $e \in E(G(A))$ contained in an odd hole/antihole of $G(A)$ of size ≥ 5 holds $e \in E\left(G\left(A^{\prime}\right)\right)$

- what to do with edges/conflicts only contained in odd holes of size 3 ?

Future Work

- investigate dual bound instead of polytope
- ideas for detector
- further extend ideas to other problems

References

Andrásfai, B. (1966). On critical graphs. In Theory of Graphs, International Symposium, Rome, pages 1-9.
Chvátal, V. (1975). On certain polytopes associated with graphs. Journal of Combinatorial Theory, Series B, 18(2):138-154.
Nemhauser, G. and Trotter, L. (1974). Properties of vertex packing and independence system polyhedra. Mathematical Programming, 6(1):48-61.
Sachs, H. (1970). On the Berge conjecture concerning perfect graphs. Combinatorial Structures and their Applications, Gordon and Beach, New York, 37:384.

Sewell, E. (1990). Stability critical graphs and the stable set polytope. PhD thesis.
Witt, J. and Lübbecke, M. (2015). Dantzig-Wolfe reformulations for the stable set problem. Technical Report 2015-029, Operations Research, RWTH Aachen University.
www.or.rwth-aachen.de/research/publications/2015-DW-stable.pdf.

