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Integer Programming and Polyhedra

I original problem

max cTx
s. t. aTi x ≤ bi ∀i ∈ I

x ∈ Zn ∩ [L,U ]

I L,U ∈ Zn finite bounds on variables

I integer hull

PIP := conv{x ∈ Zn ∩ [L,U ] : aTi x ≤ bi ∀i ∈ I}

I set of feasible solutions to the LP relaxation

PLP := {x ∈ Qn ∩ [L,U ] : aTi x ≤ bi ∀i ∈ I}
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Dantzig-Wolfe Reformulation for IPs

I choose subset I ′ ⊆ I
I let X(I ′) := conv{x ∈ Zn ∩ [L,U ] : aTi x ≤ bi ∀i ∈ I ′}
I remark: X(I) = PIP

I reformulate every x ∈ X(I ′) as convex combination of
extreme points of X(I ′)

I introduce one variable per extreme point

I corresponds to convexification of constraints with index in I ′

→ Dantzig-Wolfe polytope:

PDW (I ′) := {x ∈ Qn ∩ [L,U ] : aTi x ≤ bi ∀i ∈ I \ I ′,
x ∈ X(I ′)}
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Strength of Reformulations

I inclusion relation

PIP

=

PDW (I)

⊆ PDW (I ′) ⊆ PLP

=

PDW (∅)

I we want to investigate the strength of such reformulations

I when is the reformulation weakest possible?
I when is the reformulation strongest possible?
I . . .

I we focus on the stable set problem in this talk!
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Stable Set Problem

I let G = (V,E) be a graph with n := |V | and weights
w ∈ Zn≥0

I S ⊆ V is called stable set if no nodes of S are adjacent
I find stable set S∗ with maximum weight

I maximum weight is called weighted stability number αw(G)

I IP formulation

max
∑
v∈V

wv · xv

s. t. xu + xv ≤ 1 ∀{u, v} ∈ E
x ∈ {0, 1}n
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D-W Reformulation for the Stable Set Problem

I inclusion relation

PIP

y
STAB(G)

⊆ PDW (I ′)

y
DW(G,G′)

⊆ PLP

y
FRAC(G)

I stable set polytope STAB(G)
I fractional stable set polytope FRAC(G)

I choose E′ ⊆ E and define G′ := (V,E′)

DW(G,G′) := {x ∈ [0, 1]n : xu + xv ≤ 1 ∀{u, v} ∈ E\E′,
x ∈ STAB(G′)}
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Bipartite Graphs

Theorem (Nemhauser and Trotter 1974)
STAB(G) = FRAC(G) iff G is bipartite.

Corollary
If G is bipartite, then for all E′ ⊆ E and G′ = (V,E′) holds

STAB(G) = DW(G,G′) = FRAC(G).

I G is bipartite iff G contains no odd cycle
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Odd Cycles/Holes

I odd hole is odd cycle without chords (induced odd cycle)

I 3-cycles/3-cliques/triangles are considered holes in this talk!

I odd cycle inequality for odd cycle C is valid for STAB(G)

∑
v∈V (C)

xv ≤
|V (C)| − 1

2
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Weakest Possible Reformulation

Theorem

DW(G,G′) = FRAC(G) iff . . . ?

Proof sketch “⇐”:

DW(G,G′) = {x ∈ [0, 1]n : xu + xv ≤ 1 ∀{u, v} ∈ E\E′,
x ∈ STAB(G′)}

FRAC(G) = {x ∈ [0, 1]n : xu + xv ≤ 1 ∀{u, v} ∈ E\E′,
xu + xv ≤ 1 ∀{u, v} ∈ E′}

G′ is bipartite ⇔ STAB(G′) = FRAC(G′)
⇒ DW(G,G′) = FRAC(G)
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Weakest Possible Reformulation

Theorem

DW(G,G′) = FRAC(G) iff G′ is bipartite.

Proof sketch “⇒”:

Assume G′ is not bipartite
⇒ G′ contains an odd cycle C

1
2

1
2

1
2

1
2

1
2

I let x̄v =
{1

2 v ∈ V (C)
0 else

I edge ineq.s satisfied
⇒ x̄ ∈ FRAC(G)

I odd cycle ineq. not satisfied
⇒ x̄ 6∈ STAB(G′) ⊇ DW(G,G′)
⇒ x̄ 6∈ DW(G,G′)  
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Strongest Possible Reformulation

Theorem

DW(G,G′) = STAB(G) iff . . . ?

Proof sketch “⇒”: Assume ∃ odd hole H of G with H 6⊆ G′
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1
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1
2

I let x̄v =
{1

2 v ∈ V (H)
0 else

I odd cycle ineq. not satisfied
⇒ x̄ 6∈ STAB(G)

I x̄ ∈ STAB(G′)
(conv. comb. of • and •)

I edge ineq.s satisfied
⇒ x̄ ∈ DW(G,G′)  
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Strongest Possible Reformulation

Theorem

DW(G,G′) = STAB(G) iff G′ contains all odd holes of G.

Proof sketch “⇐”:
I let

∑
v∈V

πvxv ≤ π0 be a facet of STAB(G)

I (neither xv ≥ 0 nor xu + xv ≤ 1)

I idea: prove
∑
v∈V

πvxv ≤ π0 ∀x ∈ DW(G,G′)

I π ≥ 0, π0 > 0, and π0 = απ(G) holds

I V0 := {v ∈ V : πv > 0}, G0 := G[V0] = (V0, E0)
I G0 with weighting π is called facet-graph

p.12
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Strongest Possible Reformulation

Proof sketch “⇐” cont’d:
I e ∈ E0 critical in G0 if απ(G0 − e) > απ(G0)
I G0 is απ-critical if every edge is critical

I ∃ spanning απ-critical subgraph T0 ⊆ G0 with
απ(T0) = απ(G0) (Sewell, 1990)

I (T0 with weighting π is still a facet-graph)

I idea: if T0 is covered by G′, i.e., T0 ⊆ G′, then∑
v∈V0

πvxv ≤ π0 ∀x ∈ STAB(T0) ⊇ STAB(G′)|V0 ⊇ DW(G,G′)|V0

→ prove that every e ∈ E(T0) is part of some odd hole in G0

p.13
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Strongest Possible Reformulation

Proof sketch “⇐” cont’d:

Lemma
∃ spanning απ-critical subgraph T0 ⊆ G0 s.t. every edge e ∈ E(T0)
is part of an odd hole He of G0, i.e., e ∈ E(He).

(Proof sketch later)

⇒ every e ∈ E(T0) is part of some odd hole of G0

⇒ every e ∈ E(T0) is part of some odd hole of G
⇒ T0 covered by G′, i.e., T0 ⊆ G′

⇒
∑
v∈V

πvxv ≤ π0 ∀x ∈ DW(G,G′)

⇒ STAB(G) = DW(G,G′)

p.14
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Strongest Possible Reformulation

Lemma
∃ spanning απ-critical subgraph T0 ⊆ G0 s.t. every edge e ∈ E(T0)
is part of an odd hole He of G0, i.e., e ∈ E(He).

Proof sketch for e = {u, v} ∈ E(T0) critical in G0

I proof idea due to Andrásfai (1966)

I let S be MWSS in G0 with u, v 6∈ S
(∃x : πTx = π0 and xu + xv 6= 1)
(Sewell, 1990)

I let S+ be MWSS in G0 − e
I π(S) < π(S+)
I u, v ∈ S+ holds

(otherwise S+ stable in G0)

S \ S+

...

S+ \ S
u...

...
v

p.15
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Strongest Possible Reformulation

I assume u and v are in different connected components

S \ S+

...

...

...

S+ \ S

u...

...

v...

K1 K+
1

K2 K+
2

K3 K+
3

K1 K+
1

K2 K+
2

K3 K+
3

<

⇒ ∃ i with π(Ki) < π(K+
i )

⇒ S \Ki ∪K+
i is stable in G0 with π(S \Ki ∪K+

i ) > π(S)  
⇒ ∃ u-v-path P in G[S \ S+ ∪ S+ \ S] of even length
⇒ shortest P plus {u, v} is odd hole in G0
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What We Learned

Theorem

DW(G,G′) = FRAC(G) iff G′ is bipartite.

Theorem

DW(G,G′) = STAB(G) iff G′ contains all odd holes of G.

I can we prove similar results for other (related) problems?
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Related Problems

I can we prove similar results for other (related) problems?

I node covering problem
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I set packing problem
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I set covering problem
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I set partitioning problem
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I independence system
problem

7
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Set Packing Problem

I let A ∈ {0, 1}m×n be a matrix and let w ∈ Zn be a vector
I the vector 1 := (1, . . . , 1)T is of suitable dimension

I set packing problem:

max wTx
s. t. Ax ≤ 1

x ∈ {0, 1}n

I columns of A represent sets; rows represent conflicts

p.19
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D-W Reformulation for the Set Packing Problem

I inclusion relation

PIP

y
SP(A)

⊆ PDW (I ′)

y
DW(A,A′)

⊆ PLP

y
FSP(A)

I set packing polytope SP(A)
I fractional set packing polytope FSP(A)

I choose subset I ′ ⊆ {1, . . . ,m} of rows and define A′ := AI′

DW(A,A′) := {x ∈ [0, 1]n : AI\I′ ≤ 1,
x ∈ SP(A′)}

p.20
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(Fractional) Set Packing vs. Stable Set Polytope

I let G(A) = (V (A), E(A)) be the conflict graph of A, i.e.,

V (A) = {1, . . . , n}
E(A) = {ij : ∃r s.t. ari 6= 0, arj 6= 0}

I for the fractional polytopes holds

FSP(A) ⊆ FRAC(G(A))

(added ”some“ clique inequalities)

I for the integer hulls holds

SP(A) = STAB(G(A))

(different description of the same conflicts)
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Weakest Possible Reformulation

Theorem (Sachs 1970)
SP(A) = FSP(A) iff A is perfect.

Corollary

If A′ is perfect, then DW(A,A′) = FSP(A).

Theorem (Chvátal 1975)
A is perfect iff its non-dominated rows form the clique-node matrix
of a perfect graph.

Lemma
If ∃G̃ perfect with G(A′) ⊆ G̃ ⊆ G(A) and clique inequalities of G̃
are dominated by Ax ≤ 1, then DW(A,A′) = FSP(A).
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Strongest Possible Reformulation

Corollary
If for every e ∈ E(A) contained in an odd hole of G(A) holds
e ∈ E(A′), then DW(A,A′) = SP(A).

Lemma
If DW(A,A′) = SP(A), then for every e ∈ E(G(A)) contained in
an odd hole/antihole of G(A) of size ≥ 5 holds e ∈ E(G(A′))

I what to do with edges/conflicts only contained in odd holes of
size 3?
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Future Work

I investigate dual bound instead of polytope

I ideas for detector

I further extend ideas to other problems

p.24
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