

DCC

UNIVERSIDADE FEDERAL DE MINAS GERAIS

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

The Pickup and Delivery Problem with Scheduling at the Dock

Vitor A. A. Souza

Geraldo Robson Mateus

 It is an integration of the Pickup and Delivery Problem and the Cross-Docking Problem

 It is based on the Vehicle Routing Problem with Cross-Docking (VRPCD)

 As far as we know, this problem was not tackled in the literature yet

Classical Vehicle Routing Problem (VRP)

Pickup and Delivery Problem (PDP)

Cross-Docking Problem

- Pickup and Delivery with Scheduling at the Dock
 - n requests one-to-one (supplier-customer pairs)
 - The set of vehicles that pickup the requests is the same that deliver them
 - We consider the time spent in the routing instead of distance traveled
 - The number of doors is the same of vehicles

- Pickup and Delivery with Scheduling at the Dock
 - The objective considered in the scheduling is makespan
 - Each vehicle unloads their requests at the same time
 - The unloading and loading processes can be done at the same time in a vehicle, since it is at the dock

Pickup and Delivery with Scheduling at the Dock

Motivation

Its practical application

 The VRPCD is still a very simplified version of the real problem

 The formulation is based on the set partitioning and it is indexed by the number of vehicles

Each column generated represents a route

The objective function

$$\min \sum_{k \in K} \sum_{p \in P_k^S} c_p \alpha_p^k + \sum_{k \in K} \sum_{p \in P_k^C} c_p \beta_p^k + t_{max}$$

Routing related constraints

Linking constraints

$$\sum_{p \in P_k^S} a_{ip} \alpha_p^k = y_i^k,$$
$$\sum_{p \in P_k^C} b_{ip} \beta_p^k = z_i^k,$$

$$\forall i \in S, \forall k \in K$$

$\forall i \in C, \forall k \in K$

Scheduling constraints

$$t_{ik}^{1} \ge t_{k}^{0} + \sum_{p \in P_{k}^{S}} c_{p} \alpha_{p}^{k} - M_{1} (1 - y_{i}^{k})$$

 $t_k^1 \ge t_{ik}^1$

$$t_{ik}^2 \ge t_{ik}^1 + p_i - M_2 z_i^k - M_2 \left(1 - y_i^k\right)$$

$$t_{max} \ge t_{ik}^2$$

- Pricing subproblem
 - Elementary Shortest Path with Resource Constraints

 It is solved with dynamic programming (Feillet et al. [2004])

 The instances used in these experiments were based on the instances of Wen et al.
[2009]

 Instances were generated with |R| = {5,7,10,12,15,18,20,22,25,27,30} (5 instances of each size of requests)

 To check the quality of the results obtained, we have made a 2-Commodity Flow formulation for the problem

 To try to obtain primal solutions with the CG, we have converted the variables on the Master Problem to integer and solved with the Branch-and-Cut of CPLEX

	CG		2CF		
R	dual bound	time(s)	int. relaxation	time(s)	distance (%)
5	1005.231	0.04	887.176	0.01	13.31
7	1442.498	0.08	1340.108	0.02	7.64
10	1819.701	0.44	1674.040	0.06	8.70
12	2042.582	0.95	1821.609	0.11	12.13
15	2460.845	4.58	2241.795	0.26	9.77
18	2773.634	5.94	2475.960	0.40	12.02
20	2982.718	14.55	2699.756	0.51	10.48
22	3527.272	14.72	3214.250	1.02	9.74
25	3820.267	30.59	3494.215	1.55	9.33
27	4152.056	76.42	3748.552	2.30	10.76
30	4567.208	103.46	4202.981	3.76	8.67

_	CG		2CF		
R	primal bound	time(s)	solution	time(s)	distance (%)
5	1192.070	0.07	1192.070	0.24	0.00
7	1629.125	0.24	1620.003	1.84	0.56
10	2035.261	1.52	2019.091	67.24	0.80
12	2344.108	8.19	2328.770	1111.38	0.66
15	2770.199	283.51	2746.495	3267.61	0.86
18	3068.111	620.86	3047.327	3601.81	0.68
20	3270.241	2144.92	3275.914	3602.80	-0.17
22	3838.860	2902.31	3860.496	3605.53	-0.56
25	4126.125	2993.45	4187.432	3605.86	-1.46
27	4474.185	3618.85	4635.888	3608.74	-3.49
30	4868.384	3372.78	5231.508	3609.63	-6.94

	CG	Best primals	
<u> </u> R	dual bound	solution	dual/primal (%)
5	1005.231	1192.070	84.33
7	1442.498	1620.003	89.04
10	1819.701	2019.091	90.12
12	2042.582	2328.770	87.71
15	2460.845	2746.495	89.60
18	2773.634	3047.327	91.02
20	2982.718	3270.241	91.21
22	3527.272	3838.860	91.88
25	3820.267	4126.125	92.59
27	4152.056	4474.185	92.80
30	4567.208	4868.384	93.81

Conclusion

 The Column Generation obtained the best dual bounds for all the instances in a reasonable amount of time

 It seems that the CG is a promising approach to solve the studied problem

Thank you!

vitor.andrade@dcc.ufmg.br