The Pickup and Delivery Problem with Scheduling at the Dock

Vitor A. A. Souza

Geraldo Robson Mateus

Introduction

- It is an integration of the Pickup and Delivery Problem and the Cross-Docking Problem
- It is based on the Vehicle Routing Problem with Cross-Docking (VRPCD)
- As far as we know, this problem was not tackled in the literature yet

Introduction

- Classical Vehicle Routing Problem (VRP)

Introduction

- Pickup and Delivery Problem (PDP)

Introduction

- Cross-Docking Problem

Introduction

- Pickup and Delivery with Scheduling at the Dock
- n requests one-to-one (supplier-customer pairs)
- The set of vehicles that pickup the requests is the same that deliver them
- We consider the time spent in the routing instead of distance traveled
- The number of doors is the same of vehicles

Introduction

- Pickup and Delivery with Scheduling at the Dock
- The objective considered in the scheduling is makespan
- Each vehicle unloads their requests at the same time
- The unloading and loading processes can be done at the same time in a vehicle, since it is at the dock

Introduction

- Pickup and Delivery with Scheduling at the Dock

Motivation

- Its practical application
-The VRPCD is still a very simplified version of the real problem

Column Generation

- The formulation is based on the set partitioning and it is indexed by the number of vehicles
- Each column generated represents a route

Column Generation

- The objective function

Column Generation

- Routing related constraints

$$
\begin{gathered}
\sum_{p \in P_{k}^{S}} \alpha_{p}^{k}=1, \quad \forall k \in K \\
\sum_{p \in P_{k}^{C}} \beta_{p}^{k}=1, \quad \forall k \in K \\
\sum_{k \in K} \sum_{p \in P_{k}^{S}} a_{i p} \alpha_{p}^{k}=1, \quad \forall i \in S \\
\sum_{k \in K} \sum_{p \in P_{k}^{C}} b_{i p} \beta_{p}^{k}=1, \quad \forall i \in C
\end{gathered}
$$

Column Generation

- Linking constraints

$$
\begin{aligned}
& \sum_{p \in P_{k}^{S}} a_{i p} \alpha_{p}^{k}=y_{i}^{k}, \quad \forall i \in S, \forall k \in K \\
& \sum_{p \in P_{k}^{C}} b_{i p} \beta_{p}^{k}=z_{i}^{k}, \quad \forall i \in C, \forall k \in K
\end{aligned}
$$

Column Generation

- Scheduling constraints

$$
\begin{aligned}
& t_{i k}^{1} \geq t_{k}^{0}+\sum_{p \in P_{k}^{S}} c_{p} \alpha_{p}^{k}-M_{1}\left(1-y_{i}^{k}\right) \\
& t_{k}^{1} \geq t_{i k}^{1}
\end{aligned}
$$

Column Generation

$$
t_{i k}^{2} \geq t_{i k}^{1}
$$

Column Generation

$$
t_{i k}^{2} \geq t_{i k}^{1}+p_{i}-M_{2} z_{i}^{k}-M_{2}\left(1-y_{i}^{k}\right)
$$

Column Generation

$$
t_{i k^{\prime}}^{2} \geq t_{k^{\prime}}^{1}+p_{i k k^{\prime}}-M_{3}\left(1-z_{i}^{k^{\prime}}\right)-M_{3}\left(1-y_{i}^{k}\right)
$$

Column Generation

$$
t_{i k^{\prime}}^{2} \geq t_{i k}^{2}+p_{i k k^{\prime}}-M_{4}\left(1-z_{i}^{k^{\prime}}\right)-M_{4}\left(1-y_{i}^{k}\right)
$$

Column Generation

$$
t_{\max } \geq t_{i k}^{2}
$$

Column Generation

- Pricing subproblem
- Elementary Shortest Path with Resource Constraints
- It is solved with dynamic programming (Feillet et al. [2004])

Computational Experiments

- The instances used in these experiments were based on the instances of Wen et al. [2009]
- Instances were generated with $|\mathrm{R}|=$ $\{5,7,10,12,15,18,20,22,25,27,30\}$ (5 instances of each size of requests)

Computational Experiments

- To check the quality of the results obtained, we have made a 2-Commodity Flow formulation for the problem
- To try to obtain primal solutions with the CG, we have converted the variables on the Master Problem to integer and solved with the Branch-and-Cut of CPLEX

Computational Experiments

	$\mathbf{C G}$	2CF			
$\mid \mathbf{R}$	dual bound	time(s)	int. relaxation	time(s)	distance (\%)
$\mathbf{5}$	1005.231	0.04	887.176	0.01	13.31
$\mathbf{7}$	1442.498	0.08	1340.108	0.02	7.64
$\mathbf{1 0}$	1819.701	0.44	1674.040	0.06	8.70
$\mathbf{1 2}$	2042.582	0.95	1821.609	0.11	12.13
$\mathbf{1 5}$	2460.845	4.58	2241.795	0.26	9.77
$\mathbf{1 8}$	2773.634	5.94	2475.960	0.40	12.02
$\mathbf{2 0}$	2982.718	14.55	2699.756	0.51	10.48
$\mathbf{2 2}$	3527.272	14.72	3214.250	1.02	9.74
$\mathbf{2 5}$	3820.267	30.59	3494.215	1.55	9.33
$\mathbf{2 7}$	4152.056	76.42	3748.552	2.30	10.76
$\mathbf{3 0}$	4567.208	103.46	4202.981	3.76	8.67

Computational Experiments

	$\mathbf{C G}$				2CF		
$\|\mathbf{R}\|$	primal bound	time(s)	solution	time(s)	distance (\%)		
$\mathbf{5}$	1192.070	0.07	1192.070	0.24	0.00		
$\mathbf{7}$	1629.125	0.24	1620.003	1.84	0.56		
$\mathbf{1 0}$	2035.261	1.52	2019.091	67.24	0.80		
$\mathbf{1 2}$	2344.108	8.19	2328.770	1111.38	0.66		
$\mathbf{1 5}$	2770.199	283.51	2746.495	3267.61	0.86		
$\mathbf{1 8}$	3068.111	620.86	3047.327	3601.81	0.68		
$\mathbf{2 0}$	3270.241	2144.92	3275.914	3602.80	-0.17		
$\mathbf{2 2}$	3838.860	2902.31	3860.496	3605.53	-0.56		
$\mathbf{2 5}$	4126.125	2993.45	4187.432	3605.86	-1.46		
$\mathbf{2 7}$	4474.185	3618.85	4635.888	3608.74	-3.49		
$\mathbf{3 0}$	4868.384	3372.78	5231.508	3609.63	-6.94		

Computational Experiments

	CG	Best primals	
$\|\mathbf{R}\|$	dual bound	solution	dual/primal (\%)
$\mathbf{5}$	1005.231	1192.070	84.33
$\mathbf{7}$	1442.498	1620.003	89.04
$\mathbf{1 0}$	1819.701	2019.091	90.12
$\mathbf{1 2}$	2042.582	2328.770	87.71
$\mathbf{1 5}$	2460.845	2746.495	89.60
$\mathbf{1 8}$	2773.634	3047.327	91.02
$\mathbf{2 0}$	2982.718	3270.241	91.21
$\mathbf{2 2}$	3527.272	3838.860	91.88
$\mathbf{2 5}$	3820.267	4126.125	92.59
$\mathbf{2 7}$	4152.056	4474.185	92.80
$\mathbf{3 0}$	4567.208	4868.384	93.81

Conclusion

- The Column Generation obtained the best dual bounds for all the instances in a reasonable amount of time
- It seems that the CG is a promising approach to solve the studied problem

Thank you!

vitor.andrade@dcc.ufmg.br

