COLUMN GENERATION with DYNAMIC CONSTRAINT AGGREGATION in the MASTER PROBLEM

> François Soumis and team GERAD

Overview

1. COLUMN GENERATION

To deal with complex constraints and reduce number of variables

2. TASK AGREGATION

To reduce number of constraints

3. **RESULTS ON :**

Integrated pairing-rostering (50-80 tasks per columns) Large scale pairing (40 000 flights/month)

AIRLINE CREW SCHEDULING

COMPLEX COLECTIVE AGREMENT CONSTRAINTS

- NON LINEAR
- NON CONVEX

COMPLEX NON LINEAR COST

- NON DECRESING FUNCTIONS

GLOBAL CONSTRAINTS LINKING CREW MEMBERS

- THOUSANDS OF FLIGHTS TO COVER
- BASE CONTRAINTS

INTEGRALITY

AIRLINE CREW SCHEDULING

COMPLEX COLECTIVE AGREMENT CONSTRAINTS

- NON LINEAR
- NON CONVEX

COMPLEX NON LINEAR COST

- NON DECREASING FUNCTIONS

GLOBAL CONSTRAINTS LINKING CREW MEMBERS - THOUSANDS OF FLIGHTS TO COVER

INTEGRALITY

LARGE SCALE AND COMPLEX PROBLEMS

SET PARTITIONING FORMULATION

VARIABLES = FEASIBLE PAIRINGS

ADVANTAGES

- SIMPLER CONSTRAINTS
- LESS CONSTRAINTS
- COMPLEX COSTS CAN BE PRECALCULATED

DIFFICULTY

- MILLIONS OF MILLIONS OF VARIABLES

COLUMN GENERATION

SUB-PROBLEM

- MIN COST PATH WITH RESSOURCES CONSTRAINTS
- **•NON LINEAR, NON CONVEX BUT NON DECREASING FUNCTIONS**
- SOLVED AT INTEGRALITY BY DYNAMIC PROGRAMMING

ColGen 2016

ADVANTAGES OF COLUMN GENERATION

ADVANTAGES

- SOLVE SUB-PROBLEM AT INTEGRALITY
- REDUCE INTEGRALITY GAP
- EASIER BRANCH AND BOUND

• M.P. IS SLOW

– SIMPLEX DEGENERATES WHEN SOLUTION IS CLOSE TO INTEGRALITY

- PERTURBATIONS PRODUCE SMALL STEEPS
- INTEGER POINTS METHODS PRODUCE MORE FRACTIONAL SOLUTIONS

• M.P. IS SLOW

– SIMPLEX DEGENERATES WHEN SOLUTION IS CLOSE TO INTEGRALITY

- PERTURBATIONS PRODUCE SMALL STEEPS
- INTEGER POINTS METHODS PRODUCE MORE FRACTIONAL SOLUTIONS

• S.P. IS SLOW

- NUMBER OF ARCS GROW QUADRATICALY WITH NUMBER OF FLIGHTS

• M.P. IS SLOW

- SIMPLEX DEGENERATES WHEN SOLUTION IS CLOSE TO INTEGRALITY
 - PERTURBATIONS PRODUCE SMALL STEEPS
 - INTEGER POINTS METHODS PRODUCE MORE FRACTIONAL SOLUTIONS

• S.P. IS SLOW

- NUMBER OF ARCS GROW QUADRATICALY WITH NUMBER OF FLIGHTS

• B+B IS SLOW

- THE TREE GROW RAPIDLY WITH NUMBER OF FRACTIONAL VARIABLES

• M.P. IS SLOW

- SIMPLEX DEGENERATES WHEN SOLUTION IS CLOSE TO INTEGRALITY
 - PERTURBATIONS PRODUCE SMALL STEEPS
 - INTEGER POINTS METHODS PRODUCE MORE FRACTIONAL SOLUTIONS

• S.P. IS SLOW

- NUMBER OF ARCS GROW QUADRATICALY WITH NUMBER OF FLIGHTS

• B+B IS SLOW

- THE TREE GROW RAPIDLY WITH NUMBER OF FRACTIONAL VARIABLES

WORST WHEN THE NUMBER OF TASKS PER COLUMN IS LARGE

TASK AGREGATION to OVERCOME WEAKNESS of COLUMN GENERATION for LARGE SCALE PROBLEMS

• M.P. IS SLOW

– SIMPLEX DEGENERATES WHEN SOLUTION IS CLOSE TO INTEGRALITY

- PERTURBATIONS PRODUCE SMALL STEEPS
- INTEGER POINTS METHODS PRODUCE MORE FRACTIONAL SOLUTIONS
- REDUCE NUMBER OF CONTRAINTS AND DEGENERANCY

TASK AGREGATION to OVERCOME WEAKNESS of COLUMN GENERATION for LARGE SCALE PROBLEMS

• M.P. IS SLOW

– SIMPLEX DEGENERATES WHEN SOLUTION IS CLOSE TO INTEGRALITY

- PERTURBATIONS PRODUCE SMALL STEEPS
- INTEGER POINTS METHODS PRODUCE MORE FRACTIONAL SOLUTIONS
- REDUCE NUMBER OF CONTRAINTS AND DEGENERANCY

• S.P. IS SLOW

- NUMBER OF ARCS GROW QUADRATICALY WITH NUMBER OF FLIGHTS
- REDUCE NUMBERS OF ARCS

TASK AGREGATION to OVERCOME WEAKNESS of COLUMN GENERATION for LARGE SCALE PROBLEMS

• M.P. IS SLOW

- SIMPLEX DEGENERATES WHEN SOLUTION IS CLOSE TO INTEGRALITY
 - PERTURBATIONS PRODUCE SMALL STEEPS
 - INTEGER POINTS METHODS PRODUCE MORE FRACTIONAL SOLUTIONS
 - REDUCE NUMBER OF CONTRAINTS AND DEGENERANCY
- S.P. IS SLOW
 - NUMBER OF ARCS GROW QUADRATICALY WITH NUMBER OF FLIGHTS
 - REDUCE NUMBERS OF ARCS

• B+B IS SLOW

- THE TREE GROW RAPIDLY WITH NUMBER OF FRACTIONAL VARIABLES
- REDUCE NUMBER OF FRACTIONAL VARIABLES

AGGREGATE TASKS IN CLUSTER

AGGREGATE TASKS IN CLUSTER

- CLUSTERS CAN COME FROM ANY INITIAL SOLUTION
 - Crew follow aircrafts
 - Any heuristic (windowing, reduced problems, lazy B+B)
 - Solution to reoptimize

• AGGREGATE TASKS IN CLUSTERS

- FAST OPT. ON CLUSTERS Blue var. only
 - Smaller master problem (one constraint per cluster)
 - Smaller sub-problem network (less arcs)

AGGREGATE LEGS IN CLUSTERS

- FAST OPT. ON CLUSTERS Blue var. only
- MODIFY CLUSTERING TO REACH OPTIMALITY
 - Add some red var.
 - Arc with negative reduced cost indentified in the sub-problem
 - Solve the sub-problem with all arcs time to time

AGGREGATE LEGS IN CLUSTERS

- FAST OPT. ON CLUSTERS Blue var. only
- MODIFY CLUSTERING TO REACH OPTIMALITY
 - Add some red var.
 - Arc with negative reduced cost indentified in the sub-problem
 - Start with partial pricing in the sub-problem (arcs between clusters with large dual variables) ColGen 2016

DUAL VARIABLES FOR PRICING IN THE SUB-PROBLEM (m tasks, p clusters, n variables)

• p DUAL VARIABLES ARE GIVEN BY THE REDUCED PROBLEM

- REDUCED COSTS OF p COLUMNS (without red arcs) ARE ZERO

• FIND m-p DUAL VARIABLES BY COMPLETING THE BASE

- m-p SELECTED COLUMNS (with red arcs) WILL HAVE REDUCED COSTS = 0
- C^{m-p}_{n-p} WAYS TO SELECT m-p VARIABLES
- REDUCED COSTS OF OTHERS VARIABLES (with red arcs) WILL VARY DEEPLY

DUAL VARIABLES FOR PRICING IN THE SUB-PROBLEM (m tasks, p clusters, n variables)

- p DUAL VARIABLES ARE GIVEN BY THE REDUCED PROBLEM
 - REDUCED COSTS OF p COLUMNS (without red arcs) ARE ZERO
- FIND m-p DUAL VARIABLES BY COMPLETING THE BASE
 - m-p SELECTED COLUMNS (with red arcs) WILL HAVE REDUCED COSTS = 0
 - C^{m-p}_{n-p} WAYS TO SELECT m-p VARIABLES
 - REDUCED COSTS OF OTHERS VARIABLES (with red arcs) WILL VARY DEEPLY
- **COMPLENENTARY PROBLEM** (π_i are variables)
 - $\mathbf{Z}^{\mathbf{MAX}} = \mathbf{MAX} \mathbf{Z}$
 - REDUCED COSTS OF p COLUMNS (without red arcs) = 0
 - REDUCED COSTS OF COLUMNS (with red arcs generated up to date) \geq Z

• COMPLENENTARY PROBLEM

- $\mathbf{Z}^{MAX} = \mathbf{MAX} \mathbf{Z}$
- REDUCED COSTS OF p COLUMNS (without red arcs)
 = 0
- REDUCED COSTS OF COLUMNS (with red arcs generated up to date) $\geq Z$
- PROPOSITION 1: THE COMPLENMENTARY PROBLEM PRODUCES CENTRAL REDUCED COSTS

 $\overline{\mathbf{c}}_{\mathbf{j}} = \mathbf{c}_{\mathbf{j}} - \Sigma \pi_{\mathbf{i}} \mathbf{a}_{\mathbf{ij}} \longrightarrow \text{decreasing linear relation } \pi_{\mathbf{i}} < ----> \overline{\mathbf{c}}_{\mathbf{j}}$

• COMPLENENTARY PROBLEM

- $\mathbf{Z}^{\mathbf{MAX}} = \mathbf{MAX} \mathbf{Z}$
- REDUCED COSTS OF p COLUMNS (without red arcs) = 0
- REDUCED COSTS OF COLUMNS (with red arcs generated up to date) $\geq Z$
- PROPOSITION 1: THE COMPLENMENTARY PROBLEM PRODUCES CENTRAL REDUCED COSTS

$$\overline{c_j} = c_j - \Sigma \pi_i a_{ij} \longrightarrow \text{decreasing linear relation } \pi_i < ----> \overline{c_j}$$

$$\Sigma \pi_i \cdot 1 = \Sigma c_j x_j = \text{constant} \longrightarrow \text{decreasing some dual variables}$$
increase some other dual variables

• COMPLENENTARY PROBLEM

- $\mathbf{Z}^{\mathbf{MAX}} = \mathbf{MAX} \mathbf{Z}$
- REDUCED COSTS OF p COLUMNS (without red arcs)
 = 0
- REDUCED COSTS OF COLUMNS (with red arcs generated up to date) $\geq Z$
- PROPOSITION 1 : THE COMPLENMENTARY PROBLEM PRODUCES CENTRAL REDUCED COSTS

$$\overline{c_j} = c_j - \Sigma \pi_i a_{ij} \longrightarrow \text{decreasing linear relation } \pi_i < ----> \overline{c_j}$$

$$\Sigma \pi_i \cdot 1 = \Sigma c_j x_j = \text{constant} \longrightarrow \text{decreasing some dual variables}$$
increase some other dual variables

• COMPLENENTARY PROBLEM

 $- \mathbf{Z}^{\mathbf{MAX}} = \mathbf{MAX} \mathbf{Z}$

REDUCED COSTS OF p COLUMNS (without red arcs)
 = 0

- REDUCED COSTS OF COLUMNS (with red arcs generated up to date) $\geq Z$

• PROPOSITION 1 : THE COMPLENMENTARY PROBLEM PRODUCES CENTRAL REDUCED COSTS

 $\overline{c_j} = c_j - \Sigma \pi_i a_{ij} \longrightarrow \text{decreasing linear relation } \pi_i < ----> \overline{c_j}$ $\sum \pi_i \cdot 1 = \Sigma c_j x_j = \text{constant} \longrightarrow \text{decreasing some dual variables}$ increase some other dual variables

Maximizing the min reduced cost equalize the reduced costs

It stabilizes the column generation

ColGen 2016

• COMPLENENTARY PROBLEM

- $-\mathbf{Z}^{MAX} = \mathbf{MAX} \mathbf{Z}$
- REDUCED COSTS OF p COLUMNS (without red arcs)
 = 0
- REDUCED COSTS OF COLUMNS (with red arcs generated up to date) $\geq Z$
- **PROPOSITION 2** : AT LESS m REDUCED COSTS = Z in the COMPLENMENTARY PROBLEM SOLUTION

CP SOLUTION

ColGen 2016

INTERACTION BETWEEN: AGREG. PROB. COMP. PROB. and SUB-PROB.

• Z^{MAX} SIGNIFICANTLY NEGATIVE

- THE SOLUTION CAN BE SIGNIFICANTLY IMPROVED WITH EXISTING COLUMNS

INTERACTION BETWEEN: AGREG. PROB. COMP. PROB. and SUB-PROB.

• Z^{MAX} SIGNIFICANTLY NEGATIVE

- THE SOLUTION CAN BE SIGNIFICANTLY IMPROVED WITH EXISTING COLUMNS
- $\mathbf{Z}^{\mathbf{MAX}} = \mathbf{0}$
 - AGREGATED PROBLEM IS OPTIMAL FOR COLUMNS GENERATED UP TO DATE

INTERACTION BETWEEN: AGREG. PROB. COMP. PROB. and SUB-PROB.

• Z^{MAX} SIGNIFICANTLY NEGATIVE

- THE SOLUTION CAN BE SIGNIFICANTLY IMPROVED WITH EXISTING COLUMNS
- $\mathbf{Z}^{\mathbf{MAX}} = \mathbf{0}$
 - AGREGATED PROBLEM IS OPTIMAL FOR COLUMNS GENERATED UP TO DATE
- $Z^{MAX} = 0$ or SMALL NEGATIVE VALUE
 - SOLVE THE SUB-PROBLEM
 - $Z^{SP} \iff Z^{MAX}$ ADD THE GENERATED COLUMNS TO IMPROVE THE SOLUTION
 - $Z^{SP} \cong Z^{MAX} \cong 0$ STOP. THE SOLUTION IS NEAR OPTIMAL

EXPERIMENTATION

• INTEGRATED PAIRING-ROSTERING PROBLEMS

- MONTHLY PROBLEMS

- MEDIUM SIZE: 1000 - 8000 FLIGHTS/MONTH

• GLOBAL OPTIMIZATION for PAIRING PROBLEMS

- MEDIUM SIZE: 1000 - 8000 FLIGHTS/MONTH

-LARGE SCALE 40 000 FLIGHTS/MONTH

INTEGRATED CREW PLANNING

INTEGRATED PLANNING WITH CONSTRAINT AGGREGATION

- SOLVE PAIRING PROBLEM
- OPTIMIZE ROSTERS WITH FIXED PAIRINGS

- AGGREGATE FLIGHTS IN THE SAME PAIRING
- REOPTIMISE with CONSTRAINTS AGREGATION CHANGING THE PAIRINGS

• (REACH OPTIMAL SOLUTION BY SOLVING SMALL PROBLEMS)

RESULTS WITH COL. GENERATION AND CONSTRAINT AGREGATION

Problem		Sequ	ential appro	oach *	Integrated approach			
Instance	Flights	CPU (min)	Total cost	Number scheds	CPU (min)	CPU Int/Seq	Cost Svgs %	Scheds Svgs %
I-1	1011	4.0	767 754	33	6.4	1.73	5.74	6.06
I-2	1463	5.8	957 989	34	14.7	2.53	3.60	8.82
I-3	1793	11.4	1 313 391	47	34.7	3.04	3.07	8.51
I-4	5466	522.6	3 502 527	145	996.3	1.84	3.42	5.51
I-5	5639	231.9	4 835 090	247	1401.7	6.04	4.09	2.42
I-6	5755	260.0	5 144 122	223	783.0	3.01	6.75	6.27
I-7	7527	507.6	6 536 094	305	1518.2	2.99	1.50	0.98
Average						3.02	4.02	5.51

(*) NEAR OPTIMAL: L.P. TOLERANCE =10⁻⁶, INTEGRALITY GAPS: PAIRING ~0.3%, BLOCS ~0.5%

GLOBAL OPT. for PAIRING PROB.

- SOLVED FIRST with a COMMERCIAL SOLVER ROLING HORIZON: 3 DAYS WINDOWS, 1 DAY OVERLAP
- GLOBAL OPTIMIZATION for PAIRING PROBLEMS MEDIUM SIZE: 1000 – 8000 FLIGHTS/MONTH LARGE SCALE 10 000 FLIGHTS/WEEK
- ROLING HORIZON for PAIRING PROBLEMS

 1 WEEK WINDOWS

 LARGE SCALE 40 000 FLIGHTS/MONTH

MID-SIZE MONTHLY PROBLEMS

Instance	Flights	Stations	CPU	Gap	No.	Degeneracy	Fat	Deadheads	Reduction
			(min)	(%)	Itrs	(%)	reduction	reduction	in cost
							(%)	(%)	(%)
I-1	1011	26	17	0.15	6150	87.33	59.55	77.5	4.52
I-2	1463	35	25	0.29	4667	79.42	32.11	100	1.08
I-3	1793	41	28	0.01	2417	81.03	19.34	100	3.70
I-4	5466	49	278	0.36	1675	80.50	3.2	15.62	0.37
I-5	5639	34	56	0.00	1540	74.35	27.33	18.30	0.38
I-6	5755	52	237	0.13	19279	83.25	72.97	27.69	1.94
I-7	7527	54	141	0.37	1261	79.03	40.37	12.76	1.36
Average							36.41	25.63	1.90

WEEKLY PROBLEMS

- CYCLIC JUNE 2014 > 10 000 FLIGHTS
- INITIAL SOLUTION 3552018, 170 DEAD HEADS

Coût	DH	Temps	Borne	Var. Fract.	Noeuds	Version
			N0	N0		
3515062.02 (1.04 %)	144	6h01m	3477624.6	1370	166	30/06/2015
3429615.70 (3.45%)	133	4h38m	3473938.0	1347	39	04/02/2016

- CYCLIC JULY 2014 > 10 000 FLIGHTS
- INITIAL SOLUTION 55156445, 88 DEAD HEADS
- PENALTIES: BASE CONST., DISTRIBUTION OF DURATION OF PAIRINGS,...

Coût	DH	Temps	Borne	Var. Fract.	Noeuds	Version
			N0	N0		
4827421.57 (12.47%)	101	4h09m	4966350.3	1093	65	30/06/2015
4572950.60 (17.09%)	109	4h39m	4806035.0	2149	255	04/02/2016

• LARGE SAVING ON PENALTIES: 33%, 44%

MONTLY PROBLEM > 40 000 FLIGHTS

START WITH COPIES OF A WEEKLY SOLUTION REOPTIMIZE WITH 5 WINDOWS OF 1 WEEK WITHOUT GLOBAL CONSTRAINTS WITH GLOBAL CONSTRAINTS

R= \$\$\$, S= SOFT COSTS, Contr. = PENALTY OF GLOBAL CONTR.

Coût Total	Coût	Coût	Temps	Cycl.	DCA	Version
	R+S	Contr.		DCA		
15517694.27 (0%)	15517658.27 (0%)	36.0 (0%)	60h12m	Non	Non	30/06/15
14877947.62 (4.12%)	14877947.62 (4.12%)	$0.0 \ (100\%)$	46h35m	Non	Oui	30/06/15
20796331.80 (0%)	16718702.15 (0%)	4077629.65~(0%)	92h03m	Non	Non	30/06/15
18318902.66 (11.91%)	$15805630.64 \ (\mathbf{5.46\%})$	2513272.02 (38.36 %)	50h48m	Non	Oui	30/06/15
16756416.41 (19.43%)	$15194680.80 \ (9.12\%)$	$1561735.61 \ (61.70\%)$	87h28m	Oui	Non	30/06/15
$16454739.40 \ (20.88\%)$	15171286.98 (9.26%)	$1283452.42 \ (68.52\%)$	65h29m	Oui	Oui	30/06/15
17786735.91 (14.47%)	$15542190.98 \ (7.04\%)$	2244544.93 (44.95%)	38h39m	Oui	Oui	24/01/16
16072276.35 (22.72%)	15163078.72 (9.30 %)	909197.63 (77.70%)	62h44m	Oui	Oui	04/02/16
15837013.10 (23.85 %)	15147603.21 (9.40 %)	$689409.89 \ (83.09\%)$	61h20m	Oui	Oui	04/02/16

CONCLUSIONS ON REDUCING THE NUMBER OF CONSTRAINTS

WE CAN SOLVE HUGE PROBLEMS

CONCLUSIONS ON REDUCING THE NUMBER OF CONSTRAINTS

WE CAN SOLVE HUGE PROBLEMS

• SOLVING ONLY A KERNEL PROBLEM MANY TIME

- REDUCE NUMBER OF VARIABLES WITH COLUMN GENERATION
- REDUCE NUMBER OF CONSTRAINTS WITH TASK AGGREGATION

• THE KERNEL PROBLEM IS ADJUSTED DYNAMICLY

TO REACH OPTIMALITY

REFERENCE LIST REDUCING THE NUMBER OF CONSTRAINTS

- 1. Elhallaoui, I., Villeneuve, D., Soumis, F., Desaulniers, G., "Dynamic Aggregation of Set Partitioning Constraints in Column Generation", *Operations Research*, *53*(*4*), *632–645*, 2005.
- 2. Elhallaoui, I., Metrane, A., Soumis, F., Desaulniers, G., "Multi-phase dynamic constraint aggregation for set partitioning type problems", *Mathematical Programming A*, 123(2), 345-370, 2010.
- 3. Elhallaoui,I., Desaulniers,G., Metrane, A., Soumis, F., "Bi-Dynamic Constraint Aggregation and Subproblem Reduction", *Computers and Operations Research*, *35(5)*, *1713*–1724, mai 2008.
- 4. Elhallaoui, I., Metrane, A., Desaulniers, G., Soumis, F., "An improved primal simplex algorithm for degenerate linear programs", *INFORMS Journal on Computing* 23(4), 569-577 (2011).
- 5. Raymond, V., Soumis, F., Orban, D., "A New Version of the Improved Primal Simplex for Degenerate Linear Program", *Computers & Operations Research*, *37(1)*, *91-98*, *2010*.

- 6. Elhallaoui, I., Metrane, A., Soumis, F., "Column Generation Decomposition With the Degenerate Constraints in the Subproblem", *European Journal of Operational Research*, 207(1), 37–44, 2010.
- 7. Benchimol, P., Desaulniers, G., Desrosiers, J., "Stabilized dynamic constraint aggregation for solving set partitioning problems" *European Journal of Operational Research. (submited)*
- 8. Zaghrouti, A., El Hallaoui, I., Soumis, F., "Integral simplex using decomposition" Operational Research . (submited)
- 9. Towhidi, M., Desrosiers, J., Soumis, F., "Implementing the Positive Edge Method Using Two-Dimensional Reduced Cost Computation
- 13. SADDOUNE, M., DESAULNIERS, G., ELHALLAOUI, I., SOUMIS, F. Integrated airline crew pairing and crew assignment by dynamic constraint aggregation. *Transportation Science* 46(1), 39-55 (2012).
- 14. SADDOUNE, M., DESAULNIERS, G., ELHALLAOUI, I., SOUMIS, F. Integrated airline crew scheduling: A bi-dynamic constraint aggregation method using neighborhoods. *European Journal of Operational Research* 212(3), 445-454 (2011).
- 15. BOUBAKER, K., DESAULNIERS, G., ELHALLAOUI, I. Bidline scheduling with equity by heuristic dynamic constraint aggregation. *Transportation Research Part B* 44(1), 50-61 (2010).
- Omer, J., Rosat, S., Raymond, V.,Soumis, F. Improved Primal Simplex: A More General Theoretical Framework and an Extended Experimental Analysis. INFORMD Journal on Computing. Vol. 27, No. 4, Fall 2015, pp.1-15