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Overview 
 
1.  COLUMN GENERATION 

 To deal with complex constraints  
 and  reduce number of variables 

2.  TASK AGREGATION 
 To reduce number of constraints 

3.  RESULTS ON : 
            Integrated  pairing-rostering (50-80 tasks per columns)  

 Large scale pairing (40 000 flights/month) 
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AIRLINE CREW SCHEDULING 

COMPLEX COLECTIVE AGREMENT CONSTRAINTS  
        -  NON LINEAR 
        -  NON CONVEX 
 
COMPLEX NON LINEAR COST 
        -  NON DECRESING FUNCTIONS 
 
GLOBAL CONSTRAINTS LINKING CREW MEMBERS 
        -  THOUSANDS OF FLIGHTS TO COVER 

   -  BASE CONTRAINTS 
 
INTEGRALITY 
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AIRLINE CREW SCHEDULING 
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        -  NON CONVEX 
 
COMPLEX NON LINEAR COST 
        -  NON DECREASING FUNCTIONS 
 
GLOBAL CONSTRAINTS LINKING CREW MEMBERS 
        -  THOUSANDS OF FLIGHTS TO COVER 
 
INTEGRALITY 
 
           LARGE SCALE AND COMPLEX PROBLEMS 
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SET  PARTITIONING FORMULATION 

VARIABLES = FEASIBLE PAIRINGS 
 
ADVANTAGES 
        - SIMPLER CONSTRAINTS 
        -  LESS CONSTRAINTS 
        -  COMPLEX COSTS CAN BE PRECALCULATED 
DIFFICULTY 
        -  MILLIONS OF MILLIONS OF VARIABLES 
   

= 1  TASKS   

   PATH 

{   
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COLUMN GENERATION 

 
   

= 1    

    

BASE UNKNOWN COLUMNS 

REDUCED 
PROBLEM 

SUB-PROBLEM 

REDUCED COST 

NEW COLUMNS 

DUAL 
VARIABLES 
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§  SUB-PROBLEM 

§  MIN COST PATH  WITH RESSOURCES CONSTRAINTS 

§ NON LINEAR, NON CONVEX BUT NON DECREASING  FUNCTIONS 

§  SOLVED AT INTEGRALITY BY DYNAMIC  PROGRAMMING 

   



PROBLEM  
    MIN   CX 
               AX  ≤  a 
               BX  ≤  b 
           X  INTEGER 
 
 
  
 
ADVANTAGES 
    - SOLVE SUB-PROBLEM AT INTEGRALITY 
    - REDUCE INTEGRALITY GAP 
    - EASIER BRANCH AND BOUND 

ADVANTAGES OF COLUMN 
GENERATION 

OPT SOL.  

L. P. SOLUTION 

COL. GEN. SOLUTION 

COST FUNCTION 

INTEGER 
SOLUTIONS 
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 WEAKNESS of COLUMN GENERATION 
for LARGE SCALE PROBLEMS  

 
• M.P. IS SLOW 

–  SIMPLEX DEGENERATES WHEN SOLUTION IS CLOSE TO INTEGRALITY 
•  PERTURBATIONS PRODUCE SMALL STEEPS  
•  INTEGER POINTS METHODS PRODUCE MORE FRACTIONAL SOLUTIONS 
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 WEAKNESS of COLUMN GENERATION 
for LARGE SCALE PROBLEMS  

 
• M.P. IS SLOW 

–  SIMPLEX DEGENERATES WHEN SOLUTION IS CLOSE TO INTEGRALITY 
•  PERTURBATIONS PRODUCE SMALL STEEPS  
•  INTEGER POINTS METHODS PRODUCE MORE FRACTIONAL SOLUTIONS 

• S.P. IS SLOW 
–  NUMBER OF ARCS GROW QUADRATICALY WITH NUMBER OF FLIGHTS  

• B+B IS SLOW 
–  THE TREE GROW RAPIDLY WITH NUMBER OF FRACTIONAL VARIABLES 

      WORST WHEN THE NUMBER OF TASKS PER COLUMN IS LARGE 
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 TASK AGREGATION to OVERCOME 
WEAKNESS of COLUMN GENERATION 

for LARGE SCALE PROBLEMS  
• M.P. IS SLOW   

–  SIMPLEX DEGENERATES WHEN SOLUTION IS CLOSE TO INTEGRALITY 
•  PERTURBATIONS PRODUCE SMALL STEEPS  
•  INTEGER POINTS METHODS PRODUCE MORE FRACTIONAL SOLUTIONS 
•  REDUCE NUMBER OF CONTRAINTS AND DEGENERANCY 
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TASK AGREGATION 
• AGGREGATE TASKS IN CLUSTER 

 

 

leg 
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TASK AGREGATION 
• AGGREGATE TASKS IN CLUSTER 

 

• CLUSTERS CAN COME FROM ANY INITIAL SOLUTION 

-  Crew follow aircrafts 

-  Any heuristic (windowing, reduced problems, lazy B+B) 

-  Solution to reoptimize 

leg 
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TASK AGREGATION 
• AGGREGATE TASKS IN CLUSTERS 

 

 

• OPTIMIZE 

–  FAST OPT. ON CLUSTERS    Blue var. only  

•  Smaller master problem (one constraint per cluster) 

•  Smaller sub-problem network (less arcs) 
 

leg 
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TASK AGREGATION 

• AGGREGATE LEGS IN CLUSTERS  

 

• OPTIMIZE 

–  FAST OPT. ON CLUSTERS    Blue var. only  

–  MODIFY CLUSTERING TO REACH OPTIMALITY 

•  Add some red var. 

–  Arc with negative reduced cost indentified in the sub-problem 

–  Solve the sub-problem with all arcs time to time 

 

leg 
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TASK AGREGATION 

• AGGREGATE LEGS IN CLUSTERS  

 

• OPTIMIZE 

–  FAST OPT. ON CLUSTERS    Blue var. only  

–  MODIFY CLUSTERING TO REACH OPTIMALITY 

•  Add some red var. 

–  Arc with negative reduced cost indentified in the sub-problem 

–  Start with partial pricing in the sub-problem 
      (arcs between clusters with large dual variables) 

leg 
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  DUAL VARIABLES FOR PRICING 
 IN THE SUB-PROBLEM  

                     (m tasks, p clusters, n variables) 
•  p DUAL VARIABLES ARE GIVEN BY THE REDUCED PROBLEM    

–  REDUCED COSTS OF p COLUMNS (without red arcs) ARE ZERO 

•  FIND m-p  DUAL VARIABLES BY COMPLETING THE BASE   
– m-p SELECTED COLUMNS (with red arcs) WILL HAVE REDUCED COSTS = 0 
–  Cm-p

n-p     WAYS TO SELECT m-p VARIABLES 
–  REDUCED COSTS OF OTHERS VARIABLES (with red arcs) WILL VARY DEEPLY    
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  DUAL VARIABLES FOR PRICING 
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                     (m tasks, p clusters, n variables) 
•  p DUAL VARIABLES ARE GIVEN BY THE REDUCED PROBLEM    

–  REDUCED COSTS OF p COLUMNS (without red arcs) ARE ZERO 

•  FIND m-p  DUAL VARIABLES BY COMPLETING THE BASE   
– m-p SELECTED COLUMNS (with red arcs) WILL HAVE REDUCED COSTS = 0 
–  Cm-p

n-p     WAYS TO SELECT m-p VARIABLES 
–  REDUCED COSTS OF OTHERS VARIABLES (with red arcs) WILL VARY DEEPLY    

• COMPLENENTARY PROBLEM   (πi  are variables) 
–  ZMAX =  MAX  Z 
–  REDUCED COSTS OF p COLUMNS (without red arcs)                               =   0 

–  REDUCED COSTS OF COLUMNS (with red arcs generated up to date)   ≥    Z  
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  QUALITY of the DUAL SOLUTION 
 
•   COMPLENENTARY PROBLEM 

–  ZMAX =  MAX  Z 
–  REDUCED COSTS OF p COLUMNS (without red arcs)                               =   0 

–  REDUCED COSTS OF COLUMNS (with red arcs generated up to date)   ≥    Z  

•  PROPOSITION 1: THE COMPLENMENTARY PROBLEM  
                                 PRODUCES CENTRAL REDUCED COSTS 

 cj = cj     -  Σ πi  aij                      decreasing linear relation πi  <----->  cj  
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              Σ πi . 1 =  Σ cj xj = constant             decreasing some dual variables 
                                                                        increase some other dual variables 
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  QUALITY of the DUAL SOLUTION 
 
•   COMPLENENTARY PROBLEM 

–  ZMAX =  MAX  Z 
–  REDUCED COSTS OF p COLUMNS (without red arcs)                               =   0 

–  REDUCED COSTS OF COLUMNS (with red arcs generated up to date)   ≥    Z  

•  PROPOSITION 1 : THE COMPLENMENTARY PROBLEM  
                                 PRODUCES CENTRAL REDUCED COSTS 

 cj = cj     -  Σ πi  aij                      decreasing linear relation πi  <----->  cj  

 

              Σ πi . 1 =  Σ cj xj = constant             decreasing some dual variables 
                                                                        increase some other dual variables 
              Maximizing the min reduced cost equalize the reduced costs 
                                It stabilizes the column generation 
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  QUALITY of the DUAL SOLUTION 
 
•   COMPLENENTARY PROBLEM 

–  ZMAX =  MAX  Z 
–  REDUCED COSTS OF p COLUMNS (without red arcs)                               =   0 

–  REDUCED COSTS OF COLUMNS (with red arcs generated up to date)   ≥    Z  

•  PROPOSITION 2 : AT LESS m REDUCED COSTS = Z  in the         
  COMPLENMENTARY PROBLEM SOLUTION 

       ANY DUAL SOLUTION                                                                CP   SOLUTION                    
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cj  
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  INTERACTION BETWEEN: AGREG. PROB. 
COMP. PROB. and SUB-PROB.  

 
• ZMAX  SIGNIFICANTLY NEGATIVE 

– THE SOLUTION CAN BE SIGNIFICANTLY IMPROVED WITH EXISTING 
COLUMNS 
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  INTERACTION BETWEEN: AGREG. PROB. 
COMP. PROB. and SUB-PROB.  

 
• ZMAX  SIGNIFICANTLY NEGATIVE 

– THE SOLUTION CAN BE SIGNIFICANTLY IMPROVED WITH EXISTING 
COLUMNS 

• ZMAX = 0   
– AGREGATED PROBLEM IS OPTIMAL FOR COLUMNS GENERATED UP TO 

DATE 

• ZMAX = 0  or SMALL NEGATIVE VALUE 
– SOLVE THE SUB-PROBLEM 

•  ZSP  <<  ZMAX   ADD THE GENERATED COLUMNS TO IMPROVE THE SOLUTION 
•  ZSP   ≅	  ZMAX  ≅		0			 STOP.   THE SOLUTION IS NEAR OPTIMAL 
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EXPERIMENTATION 

• INTEGRATED PAIRING-ROSTERING PROBLEMS   
– MONTHLY PROBLEMS 
– MEDIUM SIZE: 1000 – 8000 FLIGHTS/MONTH 

• GLOBAL OPTIMIZATION for PAIRING PROBLEMS 
– MEDIUM SIZE: 1000 – 8000 FLIGHTS/MONTH 
– LARGE SCALE 40 000 FLIGHTS/MONTH  
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PAIRING 

ROSTERING 

INTEGRATED 
OPTIMISATION 

COVER FLIGHTS WITH PAIRINGS 
    (≈10-12 flights/column) 

COVER PAIRINGS WITH ROSTERS    
    (≈ 5-7 pairings/column) 

INTEGRATED CREW PLANNING 

COVER FLIGHTS WITH ROSTERS, 
VERY DENSE COLUMNS  
 (50-80 flights/columns) 
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INTEGRATED PLANNING WITH 
CONSTRAINT AGGREGATION 

 

•   SOLVE PAIRING PROBLEM 

•   OPTIMIZE  ROSTERS WITH FIXED PAIRINGS 

•   AGGREGATE FLIGHTS IN THE SAME PAIRING 

•   REOPTIMISE with CONSTRAINTS AGREGATION 
       CHANGING THE PAIRINGS 

•  (REACH OPTIMAL SOLUTION BY SOLVING SMALL PROBLEMS) 
 

32 

CLASSICAL 
SEQUENTIAL 
APPROACH 

CONSTRAINT  
AGREGATION 
ALGORITHM 
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RESULTS WITH COL. GENERATION 
AND CONSTRAINT AGREGATION 

 
 

ColGen   2016 33 

Problem Sequential approach * Integrated approach 
 

Instance 
 

Flights 
CPU 
(min) 

Total 
cost 

Number 
scheds 

CPU 
(min) 

CPU 
Int/Seq 

Cost 
Svgs % 

Scheds 
Svgs % 

I-1 1011 4.0 767 754 33 6.4 1.73 5.74 6.06 

I-2 1463 5.8 957 989  34 14.7 2.53 3.60 8.82 

I-3 1793 11.4 1 313 391 47 34.7 3.04 3.07 8.51 

I-4 5466 522.6 3 502 527 145 996.3 1.84 3.42 5.51 

I-5 5639 231.9 4 835 090 247 1401.7 6.04 4.09 2.42 

I-6 5755 260.0 5 144 122 223 783.0 3.01 6.75 6.27 

I-7 7527 507.6 6 536 094 305 1518.2 2.99 1.50 0.98 

Average 3.02 4.02 5.51 

(*)  NEAR OPTIMAL: L.P. TOLERANCE =10-6, INTEGRALITY GAPS: PAIRING ~0.3%,  BLOCS ~0.5% 



GLOBAL OPT. for PAIRING PROB. 
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•  SOLVED FIRST with a COMMERCIAL SOLVER   
ROLING HORIZON: 3 DAYS WINDOWS, 1 DAY OVERLAP 
 

•  GLOBAL OPTIMIZATION for PAIRING PROBLEMS 
MEDIUM SIZE: 1000 – 8000 FLIGHTS/MONTH 
LARGE SCALE 10 000 FLIGHTS/WEEK 

 
•  ROLING HORIZON for PAIRING PROBLEMS 
     1 WEEK WINDOWS 

LARGE SCALE 40 000 FLIGHTS/MONTH  

 



  MID-SIZE MONTHLY PROBLEMS   
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Instance Flights Stations CPU 
(min) 

Gap 
(%) 

No. 
Itrs 

Degeneracy 
(%) 

Fat 
reduction 

(%) 

Deadheads 
reduction 

(%) 

Reduction 
in cost 

(%) 
I-1 1011 26 17 0.15 6150 87.33 59.55 77.5 4.52 
I-2 1463 35 25 0.29 4667 79.42 32.11 100 1.08 
I-3 1793 41 28 0.01 2417 81.03 19.34 100 3.70 
I-4 5466 49 278 0.36 1675 80.50 3.2 15.62 0.37 
I-5 5639 34 56 0.00 1540 74.35 27.33 18.30 0.38 
I-6 5755 52 237 0.13 19279 83.25 72.97 27.69 1.94 
I-7 7527 54 141 0.37 1261 79.03 40.37 12.76 1.36 

Average       36.41 25.63 1.90 
 



WEEKLY PROBLEMS 
•  CYCLIC   JUNE 2014    > 10 000 FLIGHTS 
•  INITIAL SOLUTION 3552018,  170 DEAD HEADS 

 
•  CYCLIC   JULY 2014    > 10 000 FLIGHTS 
•  INITIAL SOLUTION 55156445,  88 DEAD HEADS 
•  PENALTIES: BASE CONST. ,  DISTRIBUTION OF DURATION OF PAIRINGS,… 

 

•  LARGE SAVING ON PENALTIES:  33%,  44% 
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MONTLY PROBLEM > 40 000 FLIGHTS 
   
START WITH COPIES OF A WEEKLY SOLUTION 
REOPTIMIZE WITH 5 WINDOWS OF 1 WEEK 
WITHOUT GLOBAL CONSTRAINTS 
WITH GLOBAL CONSTRAINTS 
 
R=  $$$$,  S= SOFT COSTS,   Contr. = PENALTY OF GLOBAL CONTR. 

ColGen   2016 37 



WE CAN SOLVE HUGE PROBLEMS 

CONCLUSIONS ON REDUCING THE 
NUMBER OF CONSTRAINTS 

MILLIONS OF MILLIONS OF VARIABLES 

10 000 
CONSTRAINTS 
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WE CAN SOLVE HUGE PROBLEMS 

CONCLUSIONS ON REDUCING THE 
NUMBER OF CONSTRAINTS  

MILLIONS OF MILLIONS OF VARIABLES 

10 000 
CONSTRAINTS 

•  SOLVING ONLY A KERNEL PROBLEM MANY TIME 
•  REDUCE NUMBER OF VARIABLES WITH COLUMN  GENERATION 
•  REDUCE NUMBER OF CONSTRAINTS WITH  TASK AGGREGATION 

•  THE KERNEL PROBLEM IS ADJUSTED DYNAMICLY  
     TO  REACH OPTIMALITY 

KERNEL 
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