The fixed charge transportation problem 00000000000000

Concluding comments

The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation

Yixin Zhao, Torbjörn Larsson and Elina Rönnberg Department of Mathematics, Linköping University, Sweden

Column generation 2016

(日) (同) (三) (三)

What is this talk about?

Strong lower bounding for the fixed charge transportation problem by

- Lagrangian decomposition: supply and demand side copies of the shipping variables
- ▶ Dual cutting plane method (column generation)

What is this talk about?

Strong lower bounding for the fixed charge transportation problem by

- Lagrangian decomposition: supply and demand side copies of the shipping variables
- ▶ Dual cutting plane method (column generation)

Why?

- ► Lagrangian decomposition can give strong formulations
- Strong formulations of interest in column generation
- Combination not utilised in many papers
- Preliminary work to study the strength of the formulation: theoretically and empirically

Outline

Introduction and background

The fixed charge transportation problem

Concluding comments

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Lagrangian decomposition / Lagrangian relaxation

Consider the problem

(P) min{ $cx \text{ s.t. } Ax \leq b, \ Cx \leq d, \ x \in X$ } = min{ $cx \text{ s.t. } Ay \leq b, \ Cx \leq d, \ x = y, \ x \in X, \ y \in Y$ }, where Y is such that $X \subseteq Y$

≡ nar

・ロト ・回ト ・ヨト ・ヨト

Lagrangian decomposition / Lagrangian relaxation

Consider the problem

(P)
$$\min\{cx \text{ s.t. } Ax \leq b, Cx \leq d, x \in X\} = \min\{cx \text{ s.t. } Ay \leq b, Cx \leq d, x = y, x \in X, y \in Y\},$$

where Y is such that $X \subseteq Y$

Lagrangian decomposition

(LD)
$$\min\{cx + u(x - y) \text{ s.t. } Ay \le b, \ Cx \le d, \ x \in X, \ y \in Y\} = \min\{(c + u)x \text{ s.t. } Cx \le d, \ x \in X\} + \min\{-uy \text{ s.t. } Ay \le b, \ y \in Y\}$$

Lagrangian decomposition / Lagrangian relaxation

Consider the problem

(P)
$$\min\{cx \text{ s.t. } Ax \leq b, Cx \leq d, x \in X\} = \min\{cx \text{ s.t. } Ay \leq b, Cx \leq d, x = y, x \in X, y \in Y\},$$

where Y is such that $X \subseteq Y$

Lagrangian decomposition

(LD)
$$\min\{cx + u(x - y) \text{ s.t. } Ay \le b, \ Cx \le d, \ x \in X, \ y \in Y\} = \min\{(c + u)x \text{ s.t. } Cx \le d, \ x \in X\} + \min\{-uy \text{ s.t. } Ay \le b, \ y \in Y\}$$

Lagrangian relaxation w.r.t. one of the constraint groups, for example $Ax \leq b$

(LR)
$$\min\{cx + v(Ax - b) \text{ s.t. } Cx \le d, x \in X\} = \min\{(c + vA)x \text{ s.t. } Cx \le d, x \in X\} + vb, \text{ where } v \ge 0$$

The fixed charge transportation problem

Strength of bounds

[*Guignard and Kim(1987)*]: The Lagrangian decomposition bound is as least as strong as the strongest of

- ▶ the Lagrangian relaxation bound when $Ax \leq b$ is relaxed
- ▶ the Lagrangian relaxation bound when $Cx \le d$ is relaxed and there is a chance that it is stronger!

Elina Rönnberg

Related work

Very few papers on Lagrangian decomposition and column generation:

- [Pimentel et al.(2010)]: The multi-item capacitated lot sizing problem
 - Branch-and-price implementations for two types of Lagrangian relaxation and for Lagrangian decomposition
 - Lagrangian decomposition: No gain in bound compared to Lagrangian relaxation when capacity is relaxed
- ▶ [Letocart et al.(2012)]:

The 0-1 bi-dimensional knapsack problem and the generalised assignment problem

- Illustrates the concept
- No full comparison of bounds, conclusions not possible

Related work

Very few papers on Lagrangian decomposition and column generation:

 [Pimentel et al.(2010)]: The multi-item capacitated lot sizing problem

- Branch-and-price implementations for two types of Lagrangian relaxation and for Lagrangian decomposition
- Lagrangian decomposition: No gain in bound compared to Lagrangian relaxation when capacity is relaxed

▶ [Letocart et al.(2012)]:

The 0-1 bi-dimensional knapsack problem and the generalised assignment problem

- Illustrates the concept
- No full comparison of bounds, conclusions not possible

Our work this far:

Find an application where we gain in strength compared to the strongest obtainable from Lagrangian relaxation and investigate further ...

The fixed charge transportation problem ••••••••• Concluding comments

3

Fixed charge transportation problem (FCTP)

For each arc (i,j), $i \in I$, $j \in J$: $u_{ij} = \min(s_i, d_j) = \text{upper bound}$ $c_{ij} = \text{unit cost for shipping}$ $f_{ij} = \text{fixed cost for shipping}$

(日) (同) (三) (三)

Supply at source $i \in I$: s_i

Demand at sink $j \in J: d_i$

The fixed charge transportation problem ••••••••• Concluding comments

Fixed charge transportation problem (FCTP)

For each arc (i, j), $i \in I$, $j \in J$: $u_{ij} = \min(s_i, d_j) = \text{upper bound}$ $c_{ij} = \text{unit cost for shipping}$ $f_{ij} = \text{fixed cost for shipping}$

イロン イボン イヨン イヨン

3

Supply at source $i \in I$: s_i

Demand at sink $j \in J: d_j$

Variables:

 x_{ij} = amount shipped from source i to sink j, $i \in I$, $j \in J$

Concave cost function:

$$g_{ij}(x_{ij}) = \begin{cases} f_{ij} + c_{ij}x_{ij} & \text{if } x_{ij} > 0 \\ 0 & \text{if } x_{ij} = 0 \end{cases} \quad i \in I, j \in J$$

Concluding comments

Fixed charge transportation problem (FCTP)

min

$$\sum_{i \in I} \sum_{j \in J} g_{ij}(x_{ij})$$
s.t.

$$\sum_{j \in J} x_{ij} = s_i \quad i \in I$$

$$\sum_{i \in I} x_{ij} = d_j \quad j \in J$$

$$x_{ii} \ge 0 \quad i \in I, \ j \in J$$

▶ Polytope of feasible solutions, minimisation of concave objective ⇒ Optimal solution at an extreme point (can be non-global local optima at extreme points)

► MIP-formulation:

A binary variable to indicate if there is flow on an arc or not

The fixed charge transportation problem OOOOOOOOOOOOOOO

Concluding comments

MIP-formulation of FCTP

$$\begin{array}{ll} \min & \sum_{i \in I} \sum_{j \in J} \left(c_{ij} x_{ij} + f_{ij} y_{ij} \right) \\ \text{s.t.} & \sum_{j \in J} x_{ij} = s_i \quad i \in I \\ & \sum_{i \in I} x_{ij} = d_j \quad j \in J \\ & x_{ij} \leq u_{ij} y_{ij} \quad i \in I, \ j \in J \\ & x_{ij} \geq 0 \quad i \in I, \ j \in J \\ & y_{ij} \in \{0, 1\} \quad i \in I, \ j \in J \end{array}$$

The reformulation: variable splitting

Supply and demand side duplicates of the shipping variables: x_{ij}^s and x_{ij}^d Introduce a parameter ν : $0 \le \nu \le 1$

$$\begin{array}{ll} \min & \nu \sum_{i \in I} \sum_{j \in J} g_{ij}(x_{ij}^s) + (1 - \nu) \sum_{j \in J} \sum_{i \in I} g_{ij}(x_{ij}^d) \\ \text{s.t.} & x_{ij}^s = x_{ij}^d \quad i \in I, \ j \in J \\ & \sum_{j \in J} x_{ij}^s = s_i \quad i \in I \\ & \sum_{i \in I} x_{ij}^d = d_j \quad j \in J \\ & x_{ij}^s, x_{ij}^d \ge 0 \quad i \in I, \ j \in J, \end{array}$$

The reformulation: inner representation

Let each column correspond to an extreme point of a set

$$\begin{aligned} X_i^s &= \{ x_{ij}^s, \ j \in J \mid \sum_{j \in J} x_{ij}^s = s_i, \ 0 \le x_{ij}^s \le u_{ij}, \ j \in J \}, \quad i \in I, \\ \text{or of a set} \\ X_i^d &= \{ x_{ii}^d, \ i \in I \mid \sum_{i \in I} x_{ii}^d = d_j, \ 0 \le x_{ii}^d \le u_{ij}, \ i \in I \}, \quad j \in J \end{aligned}$$

The flow from one source / to one sink is a convex combination of extreme point flows, introduce:

 $\lambda_{ip}^s =$ convexity weight for extreme point $p \in \tilde{P}_i^s$ of set $X_i^s, \ i \in I$ and

$$\lambda_{jp}^d=$$
 convexity weight for extreme point $p\in ilde{P_j^d}$ of set $X_j^d,\ j\in J$

Concluding comments

The reformulation: column oriented formulation

$$\begin{array}{ll} \min & \nu \sum_{i \in I} \sum_{j \in J} g_{ij} \left(\sum_{p \in \tilde{P}_i^s} \lambda_{ip}^s x_{ip}^s \right) + (1 - \nu) \sum_{j \in J} \sum_{i \in I} g_{ij} \left(\sum_{p \in \tilde{P}_j^i} \lambda_{jp}^d x_{ijp}^d \right) \\ \text{s.t.} & \sum_{p \in \tilde{P}_i^s} x_{ijp}^s \lambda_{ip}^s = \sum_{p \in \tilde{P}_j^d} x_{ijp}^d \lambda_{jp}^d \quad i \in I, \ j \in J \\ & \sum_{p \in \tilde{P}_i^s} \lambda_{ip}^s = 1 \quad i \in I \\ & \sum_{p \in \tilde{P}_j^d} \lambda_{jp}^d = 1 \quad j \in J \\ & \lambda_{ip}^s \ge 0 \quad p \in \tilde{P}_i^s, \ i \in I \\ & \lambda_{jp}^d \ge 0 \quad p \in \tilde{P}_j^d, \ j \in J \end{array}$$

≡ nar

・ロト ・回ト ・ヨト ・ヨト

The reformulation: approximating the objective

The objective is bound below by its linearisation:

$$\begin{split} \nu \sum_{i \in I} \sum_{j \in J} g_{ij} \left(\sum_{p \in \tilde{P}_i^s} \lambda_{ip}^s x_{ijp}^s \right) + (1 - \nu) \sum_{j \in J} \sum_{i \in I} g_{ij} \left(\sum_{p \in \tilde{P}_j^d} \lambda_{jp}^d x_{ijp}^d \right) \\ \geq \nu \sum_{i \in I} \sum_{p \in \tilde{P}_i^s} \left(\sum_{j \in J} g_{ij}(x_{ijp}^s) \right) \lambda_{ip}^s + (1 - \nu) \sum_{j \in J} \sum_{p \in \tilde{P}_j^d} \left(\sum_{i \in I} g_{ij}(x_{ijp}^d) \right) \lambda_{jp}^d \end{split}$$

What is lost by the linearisation?

Concluding comments

The reformulation: arc cost

True cost

Concluding comments

The reformulation: arc cost

True cost

In LP-relaxation of MIP-formulation

The reformulation: arc cost

True cost

In LP-relaxation of MIP-formulation

(日) (同) (三) (三)

After our reformulation (here for supply side, similarly for sink side):

- ► Extreme points: true cost
- Non-extreme points:

$$\begin{split} \mathbf{x}_{ij}^{s} &= \sum_{p \in \tilde{P}_{i}^{s}: \ \lambda_{ip}^{s} > 0} \mathbf{x}_{ijp}^{s} \lambda_{ip}^{s} \\ &- \text{ if } \mathbf{x}_{ij}^{s} > 0 \text{ and there is } p \in \tilde{P}_{i}^{s}: \\ \lambda_{ip}^{s} > 0 \text{ and } \mathbf{x}_{ip}^{s} = 0, \text{ then } f_{ij} \text{ is } \\ \text{ decreased by } \\ \Delta &= \sum_{p \in \tilde{P}_{i}^{s}: \ \lambda_{ip}^{s} > 0, \ \mathbf{x}_{ip}^{s} = 0} f_{ij} \lambda_{ip}^{s} \\ &- \text{ otherwise: true cost} \end{split}$$

The reformulation: arc cost

True cost

In LP-relaxation of MIP-formulation

After our reformulation (here for supply side, similarly for sink side):

- Extreme points: true cost ►
- Non-extreme points:
 - $x_{ij}^{s} = \sum_{p \in \tilde{P}_{i}^{s}: \lambda_{ip}^{s} > 0} x_{ijp}^{s} \lambda_{ip}^{s}$ $\begin{array}{l} - \quad \text{if } x^s_{ij} > 0 \text{ and there is } p \in \tilde{P^s_i}:\\ \lambda^s_{ip} > 0 \text{ and } x^s_{ip} = 0, \text{ then } f_{ij} \text{ is} \end{array}$ decreased by otherwise: true cost

Concluding comments

The reformulation: column generation subproblem

For a single source $i \in I$ (and similarly for the sinks):

min
s.t.

$$\sum_{j \in J} \left(\nu g_{ij}(x_{ij}^s) - \alpha_{ij} x_{ij}^s \right) - \beta_j$$

$$\sum_{j \in J} x_{ij}^s = s_i$$

$$x_{ij}^s \le u_{ij} \quad j \in J$$

$$x_{ij}^s \ge 0 \quad j \in J$$

- Concave minimization problem with an optimal solution at an extreme point of X^s_i
- MIP-formulation:

Binary variable to indicate if there is flow on an arc or not

(日)

3

Theoretical strength

[*Guignard and Kim*(1987)]: The Lagrangian decomposition bound (= convexification over source and sink side) as least as strong as the strongest of

- ▶ the Lagrangian relaxation bound when Ax ≤ b is relaxed (= convexification over source side)
- ► the Lagrangian relaxation bound when Cx ≤ d is relaxed (= convexification over sink side)

and there is a chance that it is stronger!

≡ nar

イロン 不同 とくほう イヨン

Theoretical strength: type of strength?

The constraints in the MIP-formulation of the column generation subproblem (source side, similarly for the sink side):

$$\sum_{j \in J} x_{ij}^{s} = s_{i}$$

$$x_{ij}^{s} \leq u_{ij}y_{ij}^{s}, \ j \in J$$

$$y_{ij}^{s} \in \{0, 1\}, \ j \in J$$

$$0 \leq x_{ij}^{s}, \ j \in J$$

≡ nar

イロン 不同 とくほう イヨン

Theoretical strength: type of strength?

The constraints in the MIP-formulation of the column generation subproblem (source side, similarly for the sink side):

$$\sum_{j \in J} x_{ij}^{s} = s_{i}$$
Implied inequality:

$$x_{ij}^{s} \leq u_{ij}y_{ij}^{s}, \ j \in J + \sum_{j \in J} u_{ij}y_{ij}^{s} \geq s_{i}$$

$$y_{ij}^{s} \in \{0, 1\}, \ j \in J$$

$$0 \leq x_{ij}^{s}, \ j \in J$$

Theoretical strength: type of strength?

The constraints in the MIP-formulation of the column generation subproblem (source side, similarly for the sink side):

- $\sum_{j \in J} x_{ij}^{s} = s_{i}$ Implied inequality: $x_{ij}^{s} \leq u_{ij}y_{ij}^{s}, \ j \in J + \sum_{j \in J} u_{ij}y_{ij}^{s} \geq s_{i}$ $y_{ij}^{s} \in \{0, 1\}, \ j \in J$ $0 \leq x_{ij}^{s}, \ j \in J$ $\sum_{j \in J} u_{ij}y_{ij}^{s} \geq s_{i}$ $y_{ij}^{s} \in \{0, 1\}, \ j \in J$ $\sum_{j \in J} u_{ij}y_{ij}^{s} \geq s_{i}$ $y_{ij}^{s} \in \{0, 1\}, \ j \in J$ $0 \leq x_{ij}^{s}, \ j \in J$
- Knapsack constraints over the binary variables
- ► At least (exactly?) that type of strength

Empirical strength

Comparison:

- ▶ Convexification over both sides = Lagrangian decomposition
- Convexifiation over one side, see bounds obtained by [Roberti et al.(2015)] (A new formulation based on extreme flow patterns from each source; derive valid inequalities; exact branch and price; column generation to compute lower bounds)

Empirical strength

Table: Instance characteristics

	total	r. v. c.		r. f. c.			
type	ID	size	supply	inf	sup	inf	sup
Roberti-set3	Table5-(1-10)	70×70	682-819	0	0	200	800
Roberti-set3	Table6-(1-10)	70×70	705-760	7	32	200	800
Roberti-set3	Table7-(1-10)	70×70	654-808	18	83	200	800

r.v.c. = range of variable costs; r.f.c. = range of fixed costs

- Compare LBDs by comparing gaps (relative deviations) calculated as (UBD-LBD)/LBD in percent
- The UBDs used are the best known, most of them are verified to be optimal

The fixed charge transportation problem

Empirical strength

instance	cost		gap (%)			instance	cost		gap (%)	
ID	ratio (%)	FCTP-LP	Roberti et al.	our		ID	ratio (%)	FCTP-LP	Roberti et al.	our
Table5-1	100	19.4	9.7	6.0		Table6-1	79	16.1	10.3	5.0
Table5-2	100	16.7	10.6	5.2		Table6-2	78	14.0	8.2	4.7
Table5-3	100	16.3	10.0	5.7		Table6-3	78	16.6	8.3	4.8
Table5-4	100	18.9	8.8	4.5		Table6-4	79	12.9	8.6	4.0
Table5-5	100	17.3	9.1	4.5		Table6-5	79	16.4	8.4	4.7
Table5-6	100	18.5	9.1	4.2		Table6-6	78	14.5	7.9	4.6
Table5-7	100	18.8	10.4	5.8		Table6-7	78	15.6	6.8	4.8
Table5-8	100	17.2	8.0	4.4		Table6-8	79	16.0	9.1	5.6
Table5-9	100	16.2	8.1	4.4		Table6-9	79	15.5	9.7	4.4
Table5-10	100	16.8	9.7	5.4		Table6-10	79	14.5	8.2	4.7
AVG		17.6	9.3	5.0	_	AVG		15.2	8.6	4.7

instance	cost	gap (%)	p (%)		
ID	ratio (%)	FCTP-LP	Roberti et al.	our	
Table7-1	58	10.0	5.4	3.5	
Table7-2	58	12.9	8.1	6.2	
Table7-3	59	11.2	5.6	3.5	
Table7-4	60	13.3	7.9	4.8	
Table7-5	60	13.7	6.4	5.3	
Table7-6	58	10.1	6.4	3.5	
Table7-7	59	11.2	7.1	3.9	
Table7-8	59	11.5	6.6	3.9	
Table7-9	59	11.4	6.9	4.4	
Table7-10	59	10.8	6.9	3.1	
AVG		11.6	6.7	4.2	

Average improvement in gap thanks to convexification,

"from first side" + "from second side"

- ► Table5: 47% + 46%
- ► Table6: 43% + 45%
- ► Table7: 42% + 37%

Both convexifications contribute!

Other observations this far

- \blacktriangleright Property of the dual function: Constant along the direction e
- ▶ Stabilsation: No improvement the opposite!
- Because of the property of the dual function: Tried regularisation instead to favour solutions with a small l₁-norm

Conclusions ...

... this far:

- ▶ Strong formulation for the fixed charge transportation problem
- Empirically we gain significantly in strength from the convexification over both sides

Further studies:

- Properties of the dual function, cf. experiences from subgradient methods?
- ▶ Understand the effects of stabilization. Customized techniques?
- ▶ How strength depends on instance characteristics

Bibliography

Guignard M, Kim S (1987) Lagrangean decomposition: a model yielding stronger lagrangean bounds. Mathematical Programming 39 (2):215–228.

Letocart L, Nagih A, Touati-Moungla N (2012) Dantzig-Wolfe and Lagrangian decompositions in integer linear programming. International Journal of Mathematics in Operational Research 4(3):247–262.

Pimentel CMO, Alvelos FP, de Carvalho JMV (2010) Comparing Dantzig-Wolfe decompositions and branch-and-price algorithms for the multi-item capacitated lot sizing problem. Optimization Methods and Software 25(2):299–319.

Thanks for listening!

