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What is this talk about?

Strong lower bounding for the fixed charge transportation problem by

I Lagrangian decomposition:
supply and demand side copies of the shipping variables

I Dual cutting plane method (column generation)

Why?

I Lagrangian decomposition can give strong formulations

I Strong formulations of interest in column generation

I Combination not utilised in many papers

I Preliminary work to study the strength of the formulation:
theoretically and empirically
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Elina Rönnberg



Introduction and background The fixed charge transportation problem Concluding comments

Outline

Introduction and background

The fixed charge transportation problem

Concluding comments

Elina Rönnberg



Introduction and background The fixed charge transportation problem Concluding comments

Lagrangian decomposition / Lagrangian relaxation
Consider the problem

(P) min{cx s.t. Ax ≤ b, Cx ≤ d , x ∈ X} =
min{cx s.t. Ay ≤ b, Cx ≤ d , x = y , x ∈ X , y ∈ Y },
where Y is such that X ⊆ Y

Lagrangian decomposition

(LD) min{cx + u(x − y) s.t. Ay ≤ b, Cx ≤ d , x ∈ X , y ∈ Y } =
min{(c + u)x s.t. Cx ≤ d , x ∈ X}+ min{−uy s.t. Ay ≤ b, y ∈ Y }

Lagrangian relaxation w.r.t. one of the constraint groups,
for example Ax ≤ b

(LR) min{cx + v(Ax − b) s.t. Cx ≤ d , x ∈ X} =
min{(c + vA)x s.t. Cx ≤ d , x ∈ X}+ vb,
where v ≥ 0
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Elina Rönnberg



Introduction and background The fixed charge transportation problem Concluding comments

Lagrangian decomposition / Lagrangian relaxation
Consider the problem

(P) min{cx s.t. Ax ≤ b, Cx ≤ d , x ∈ X} =
min{cx s.t. Ay ≤ b, Cx ≤ d , x = y , x ∈ X , y ∈ Y },
where Y is such that X ⊆ Y

Lagrangian decomposition

(LD) min{cx + u(x − y) s.t. Ay ≤ b, Cx ≤ d , x ∈ X , y ∈ Y } =
min{(c + u)x s.t. Cx ≤ d , x ∈ X}+ min{−uy s.t. Ay ≤ b, y ∈ Y }

Lagrangian relaxation w.r.t. one of the constraint groups,
for example Ax ≤ b

(LR) min{cx + v(Ax − b) s.t. Cx ≤ d , x ∈ X} =
min{(c + vA)x s.t. Cx ≤ d , x ∈ X}+ vb,
where v ≥ 0

Elina Rönnberg
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Strength of bounds

[Guignard and Kim(1987)]: The Lagrangian decomposition bound is
as least as strong as the strongest of

I the Lagrangian relaxation bound when Ax ≤ b is relaxed

I the Lagrangian relaxation bound when Cx ≤ d is relaxed

and there is a chance that it is stronger!

Elina Rönnberg
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Related work

Very few papers on Lagrangian decomposition and column generation:

I [Pimentel et al.(2010)]:
The multi-item capacitated lot sizing problem

− Branch-and-price implementations for two types of Lagrangian
relaxation and for Lagrangian decomposition

− Lagrangian decomposition: No gain in bound compared to
Lagrangian relaxation when capacity is relaxed

I [Letocart et al.(2012)]:
The 0-1 bi-dimensional knapsack problem and the generalised
assignment problem

− Illustrates the concept
− No full comparison of bounds, conclusions not possible

Our work this far:
Find an application where we gain in strength compared to the strongest
obtainable from Lagrangian relaxation and investigate further ...
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Fixed charge transportation problem (FCTP)

For each arc (i , j), i ∈ I , j ∈ J:
uij= min(si , dj) = upper bound
cij= unit cost for shipping
fij= fixed cost for shipping

Variables:
xij = amount shipped from source i to sink j , i ∈ I , j ∈ J

Concave cost function:

gij(xij) =

{
fij + cijxij if xij > 0
0 if xij = 0

i ∈ I , j ∈ J
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Fixed charge transportation problem (FCTP)

min
∑
i∈I

∑
j∈J

gij(xij)

s.t.
∑
j∈J

xij = si i ∈ I

∑
i∈I

xij = dj j ∈ J

xij ≥ 0 i ∈ I , j ∈ J

I Polytope of feasible solutions, minimisation of concave objective ⇒
Optimal solution at an extreme point
(can be non-global local optima at extreme points)

I MIP-formulation:
A binary variable to indicate if there is flow on an arc or not
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MIP-formulation of FCTP

min
∑
i∈I

∑
j∈J

(
cijxij + fijyij

)
s.t.

∑
j∈J

xij = si i ∈ I

∑
i∈I

xij = dj j ∈ J

xij ≤ uijyij i ∈ I , j ∈ J

xij ≥ 0 i ∈ I , j ∈ J

yij ∈ {0, 1} i ∈ I , j ∈ J
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The reformulation: variable splitting

Supply and demand side duplicates of the shipping variables: x sij and xdij
Introduce a parameter ν: 0 ≤ ν ≤ 1

min ν
∑
i∈I

∑
j∈J

gij(x
s
ij) + (1− ν)

∑
j∈J

∑
i∈I

gij(x
d
ij )

s.t. x sij = xdij i ∈ I , j ∈ J∑
j∈J

x sij = si i ∈ I

∑
i∈I

xdij = dj j ∈ J

x sij , x
d
ij ≥ 0 i ∈ I , j ∈ J,
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The reformulation: inner representation

Let each column correspond to an extreme point of a set

X s
i = {x sij , j ∈ J |

∑
j∈J x

s
ij = si , 0 ≤ x sij ≤ uij , j ∈ J}, i ∈ I ,

or of a set

X d
j = {xdij , i ∈ I |

∑
i∈I x

d
ij = dj , 0 ≤ xdij ≤ uij , i ∈ I}, j ∈ J

The flow from one source / to one sink is a convex combination of
extreme point flows, introduce:

λsip = convexity weight for extreme point p ∈ P̃s
i of set X s

i , i ∈ I

and

λdjp = convexity weight for extreme point p ∈ P̃d
j of set X d

j , j ∈ J
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The reformulation: column oriented formulation

min ν
∑
i∈I

∑
j∈J

gij

∑
p∈P̃s

i

λsipx
s
ijp

+ (1− ν)
∑
j∈J

∑
i∈I

gij

∑
p∈P̃d

j

λdjpx
d
ijp


s.t.

∑
p∈P̃s

i

x sijpλ
s
ip =

∑
p∈P̃d

j

xdijpλ
d
jp i ∈ I , j ∈ J

∑
p∈P̃s

i

λsip = 1 i ∈ I

∑
p∈P̃d

j

λdjp = 1 j ∈ J

λsip ≥ 0 p ∈ P̃s
i , i ∈ I

λdjp ≥ 0 p ∈ P̃d
j , j ∈ J
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The reformulation: approximating the objective

The objective is bound below by its linearisation:

ν
∑
i∈I

∑
j∈J

gij

∑
p∈P̃s

i

λsipx
s
ijp

+ (1− ν)
∑
j∈J

∑
i∈I

gij

∑
p∈P̃d

j

λdjpx
d
ijp


≥ ν

∑
i∈I

∑
p∈P̃s

i

∑
j∈J

gij(x
s
ijp)

λsip + (1− ν)
∑
j∈J

∑
p∈P̃d

j

∑
i∈I

gij(x
d
ijp)

λdjp

What is lost by the linearisation?

Elina Rönnberg



Introduction and background The fixed charge transportation problem Concluding comments

The reformulation: arc cost

True cost

In LP-relaxation of MIP-formulation

After our reformulation (here for supply side, similarly for sink side):
I Extreme points: true cost

I Non-extreme points:

xsij =
∑

p∈P̃s
i

: λs
ip>0 x

s
ijpλ

s
ip

− if xsij > 0 and there is p ∈ P̃s
i :

λsip > 0 and xsip = 0, then fij is
decreased by
∆ =

∑
p∈P̃s

i
: λs

ip>0, xsip=0 fijλ
s
ip

− otherwise: true cost

Example: For xsij = 4 = 6 2
3

+ 0 1
3

we have

xsij1 = 6, λsi1 = 2
3

; xsij2 = 0, λsi2 = 1
3

; ∆ = 1
3
fij
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The reformulation: column generation subproblem

For a single source i ∈ I (and similarly for the sinks):

min
∑
j∈J

(
νgij(x

s
ij)− αijx

s
ij

)
− βi

s.t.
∑
j∈J

x sij = si

x sij ≤ uij j ∈ J

x sij ≥ 0 j ∈ J

I Concave minimization problem with an optimal solution at an
extreme point of X s

i

I MIP-formulation:
Binary variable to indicate if there is flow on an arc or not
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Theoretical strength

[Guignard and Kim(1987)]: The Lagrangian decomposition bound
(= convexification over source and sink side )
as least as strong as the strongest of

I the Lagrangian relaxation bound when Ax ≤ b is relaxed
(= convexification over source side )

I the Lagrangian relaxation bound when Cx ≤ d is relaxed
(= convexification over sink side )

and there is a chance that it is stronger!
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Theoretical strength: type of strength?

The constraints in the MIP-formulation of the column generation
subproblem (source side, similarly for the sink side):

∑
j∈J

x sij = si

x sij ≤ uijy
s
ij , j ∈ J

y s
ij ∈ {0, 1}, j ∈ J

0 ≤ x sij , j ∈ J

+

Implied inequality:∑
j∈J

uijy
s
ij ≥ si =

∑
j∈J

x sij = si

x sij ≤ uijy
s
ij , j ∈ J∑

j∈J

uijy
s
ij ≥ si

y s
ij ∈ {0, 1}, j ∈ J

0 ≤ x sij , j ∈ J

I Knapsack constraints over the binary variables

I At least (exactly?) that type of strength
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Empirical strength

Comparison:

I Convexification over both sides = Lagrangian decomposition

I Convexifiation over one side, see bounds obtained by
[Roberti et al.(2015)] (A new formulation based on extreme flow
patterns from each source; derive valid inequalities; exact branch
and price; column generation to compute lower bounds)

Elina Rönnberg
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Empirical strength

Table: Instance characteristics

instance total r. v. c. r. f. c.
type ID size supply inf sup inf sup

Roberti-set3 Table5-(1-10) 70×70 682-819 0 0 200 800
Roberti-set3 Table6-(1-10) 70×70 705-760 7 32 200 800
Roberti-set3 Table7-(1-10) 70×70 654-808 18 83 200 800

r.v.c. = range of variable costs; r.f.c. = range of fixed costs

I Compare LBDs by comparing gaps (relative deviations) calculated as
(UBD-LBD)/LBD in percent

I The UBDs used are the best known, most of them are verified to be
optimal

Elina Rönnberg
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Empirical strength
instance cost gap (%)

ID ratio (%) FCTP-LP Roberti et al. our

Table5-1 100 19.4 9.7 6.0
Table5-2 100 16.7 10.6 5.2
Table5-3 100 16.3 10.0 5.7
Table5-4 100 18.9 8.8 4.5
Table5-5 100 17.3 9.1 4.5
Table5-6 100 18.5 9.1 4.2
Table5-7 100 18.8 10.4 5.8
Table5-8 100 17.2 8.0 4.4
Table5-9 100 16.2 8.1 4.4
Table5-10 100 16.8 9.7 5.4

AVG 17.6 9.3 5.0

instance cost gap (%)

ID ratio (%) FCTP-LP Roberti et al. our

Table6-1 79 16.1 10.3 5.0
Table6-2 78 14.0 8.2 4.7
Table6-3 78 16.6 8.3 4.8
Table6-4 79 12.9 8.6 4.0
Table6-5 79 16.4 8.4 4.7
Table6-6 78 14.5 7.9 4.6
Table6-7 78 15.6 6.8 4.8
Table6-8 79 16.0 9.1 5.6
Table6-9 79 15.5 9.7 4.4
Table6-10 79 14.5 8.2 4.7

AVG 15.2 8.6 4.7

instance cost gap (%)

ID ratio (%) FCTP-LP Roberti et al. our

Table7-1 58 10.0 5.4 3.5
Table7-2 58 12.9 8.1 6.2
Table7-3 59 11.2 5.6 3.5
Table7-4 60 13.3 7.9 4.8
Table7-5 60 13.7 6.4 5.3
Table7-6 58 10.1 6.4 3.5
Table7-7 59 11.2 7.1 3.9
Table7-8 59 11.5 6.6 3.9
Table7-9 59 11.4 6.9 4.4
Table7-10 59 10.8 6.9 3.1

AVG 11.6 6.7 4.2

Average improvement in gap thanks to
convexification,
”from first side” + ”from second side”

I Table5: 47% + 46%

I Table6: 43% + 45%

I Table7: 42% + 37%

Both convexifications contribute!
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Other observations this far

I Property of the dual function: Constant along the direction e

I Stabilsation: No improvement – the opposite!

I Because of the property of the dual function: Tried regularisation
instead to favour solutions with a small l1-norm
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Conclusions ...

... this far:

I Strong formulation for the fixed charge transportation problem

I Empirically we gain significantly in strength from the convexification
over both sides

Further studies:

I Properties of the dual function, cf. experiences from subgradient
methods?

I Understand the effects of stabilization. Customized techniques?

I How strength depends on instance characteristics

Elina Rönnberg
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Thanks for listening!
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