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What Is This Talk About?

Duality in integer programming.
Connecting some concepts.

Decomposition methods
Inverse optimization
Separation problem
Primal cutting plane algorithms for MILP

A review of some “well-known”(?) classic results.
Googledipity!
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Setting

We focus on the case of the mixed integer linear optimization problem
(MILP), but many of the concepts are more general.

zIP = min
x∈S

c>x, (MILP)

where, c ∈ Rn, S = {x ∈ Zr × Rn−r | Ax ≤ b} with A ∈ Qm×n, b ∈ Qm.

For most of the talk, we consider the case r = n and P bounded for
simplicity.

Googledipity*
Googling for something and finding something else that turns out to
be incredibly useful.

*I thought I had invented this term until I Googled it!
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Duality in Mathematical Optimization

It is difficult to define precisely what is meant by “duality” in general
mathematics, though the literature is replete with various “dualities.”

Set Theory and Logic (De Morgan Laws)
Geometry (Pascal’s Theorem & Brianchon’s Theorem)
Combinatorics (Graph Coloring)

In optimization, duality is the central concept from which much theory
and computational practice emerges.

Forms of Duality in Optimization

NP versus co-NP (computational complexity)

Separation versus optimization (polarity)

Inverse optimization versus forward optimization

Weyl-Minkowski duality (representation theorem)

Economic duality (pricing and sensitivity)

Primal/dual functions/problems
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What is Duality Used For?

One way of viewing duality is as a tool for transformation.

Primal⇒ Dual

H-representation⇒ V-representation

Membership⇒ Separation

Upper bound⇒ Lower bound

Primal solutions⇒ Valid inequalities

Optimization methodologies exploit these dualities in various ways.

Solution methods based on primal/dual bounding

Generation of valid inequalities

Inverse optimization

Sensitivity analysis, pricing, warm-starting
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Duality in Integer Programming

The following generalized dual can be associated with the base
instance (MILP) (see [Güzelsoy and R(2007)])

max {F(b) | F(β) ≤ φD(β), β ∈ Rm,F ∈ Υm} (D)

where Υm ⊆ {f | f : Rm→R} and φD is the (dual) value function
associated with the base instance (MILP), defined as

φD(β) = min
x∈S(β)

c>x (DVF)

for β ∈ Rm, where S(β) = {x ∈ Zr × Rn−r | Ax ≤ β}.
We call F∗ strong for this instance if F∗ is a feasible dual function and
F∗(b) = φD(b).

Ralphs, Bulut (COR@L Lab) Separation, Inverse Optimization, and Decomposition



The Membership Problem

Membership Problem

Given x∗ ∈ Rn and polyhedron P , determine whether x∗ ∈ P .

For P = conv(S), the membership problem can be formulated as the
following LP.

min
λ∈RE

+

{
0>λ

∣∣∣ Eλ = x∗, 1>λ = 1
}

(MEM)

where E is the set of extreme points of P and E is a matrix whose
columns are in correspondence with the members of E .

When (MEM) is feasible, then we have a proof that x∗ ∈ P .

When (MEM) is infeasible, we obtain a separating hyperplane.

In fact, the dual of (MEM) is a variant of the separation problem.
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The Separation Problem

Separation Problem

Given a polyhedron P and x∗ ∈ Rn, either certify x∗ ∈ P or deter-
mine (π, π0), a valid inequality for P , such that πx∗ > π0.

For P , the separation problem can be formulated as the dual of (MEM).

max
{
πx∗ − π0

∣∣∣ π>x ≤ π0 ∀x ∈ E , (π, π0) ∈ Rn+1
}

(SEP)

where E is the set of extreme points of P .
Note that we need some appropriate normalization.
Assuming 0 is in the interior of P , we can take π0 = 1.
In this case, we are optimizing over the 1-polar of P .
This is equivalent to changing the objective of (MEM) to min 1>λ.
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The 1-Polar

Assuming 0 is in the interior of P , the set of all inequalities valid for P is

P∗ =
{
π ∈ Rn

∣∣∣ π>x ≤ 1 ∀x ∈ P
}

(1)

and is called its 1-polar.

Properties of the 1-Polar

P∗ is a polyhedron;

P∗∗ = P;

x ∈ P if and only if π>x ≤ 1 ∀π ∈ P∗;
If E andR are the extreme points and extreme rays of P ,
respectively, then

P∗ =
{
π ∈ Rn

∣∣∣ π>x ≤ 1 ∀x ∈ E , π>r ≤ 0 ∀r ∈ R
}
.

A converse of the last result also holds.
Separation can be interpreted as optimization over the polar.
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Separation Using an Optimization Oracle

We can solve (SEP) using a cutting plane algorithm that separates
intermediate solutions from the 1-polar.
The separation problem for the 1-polar of P is precisely a linear
optimization problem over P .
We can visualize this in the dual space as column generation wrt (MEM).
Example
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Separation Example: Iteration 1

Figure: Separating x∗ from P (Iteration 1)
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Separation Example: Iteration 2

Figure: Separating x∗ from P (Iteration 2)
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Separation Example: Iteration 3

Figure: Separating x∗ from P (Iteration 3)
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Separation Example: Iteration 4

Figure: Separating x∗ from P (Iteration 4)
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Separation Example: Iteration 5

Figure: Separating x∗ from P (Iteration 5)
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Inverse Problems

What is an inverse problem?
Given a function, an inverse problem is that of determining input that
would produce a given output.

The input may be partially specified.

We may want an answer as close as possible to a given target.

This is precisely the mathematical notion of the inverse of a function.

A value function is a function whose value is the optimal solution of an
optimization problem defined by the given input.

The inverse problem with respect to an optimization problem is to
evaluate the inverse of a given value function.
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Why is Inverse Optimization Useful?

Inverse optimization is useful when we can observe the result of solving an
optimization problem and we want to know what the input was.

Example: Consumer preferences
Let’s assume consumers are rational and are making decisions by
solving an underlying optimization problem.

By observing their choices, we try ascertain their utility function.

Example: Analyzing seismic waves
We know that the path of seismic waves travels along paths that
are optimal with respect to some physical model of the earth.

By observing how these waves travel during an earthquake, we can
infer things about the composition of the earth.
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Formal Setting

We consider the inverse of the (primal) value function φP, defined as

φP(d) = min
x∈S

d>x = min
x∈conv(S)

d>x ∀d ∈ Rn. (PVF)

With respect to a given x0 ∈ S, the inverse problem is defined as

min
{

f (d)
∣∣∣ d>x0 = φP(d)

}
, (INV)

The classical objective function is taken to be f (d) = ‖c− d‖, where
c ∈ Rn is a given target.

If we take f (d) = d>x0 − d>x∗ for given x∗ ∈ Rn, then this is equivalent
to what [Padberg and Grötschel(1985)] called the primal separation
problem (see also [Lodi and Letchford(2003)]).
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A Small Example

The feasible set of the inverse problem is the set of objective vectors that
make x0 optimal.
This is precisely the dual of cone(S − {x0}), which is, roughly, a
translation of the polyhedron described by the inequalities binding at x0.

Figure: conv(S) and cone D of feasible objectives
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Inverse Optimization as a Mathematical Program

To formulate as a mathematical program, we need to represent the
implicit constraints of (INV) explicitly.

The cone of feasible objective vectors can be described as

D =
{

d ∈ Rn
∣∣∣ d>x0 ≤ d>x ∀x ∈ S

}
(IFS)

Since P is bounded, we need only the inequalities corresponding to
extreme points of conv(S).

This set of constraints is exponential in size, but we can generate them
dynamically, as we will see.
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Formulating the Inverse Problem

General Formulation

min f (d)

s.t. d>x0 ≤ d>x ∀x ∈ E (INVMP)

With f (d) = ‖c− d‖, this can be linearized for `1 and `∞ norms.

Note that this is the separation problem for the conic hull of S − {x0}.
If x0 is an extreme point of P , then this is nothing more than the corner
polyhedron associated with x0 wrt conv(S).

Note that if we take f (d) = d>x0 − d>x∗, as mentioned earlier, then we
need a normalization to ensure d 6= 0.

A straightforward option is to take 1>d = 1.
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Separation and Inverse Optimization

It should be clear that inverse optimization and separation are very
closely related.

First, note that the inequality

π>x ≥ π0 (PI)

is valid for P if and only if π0 ≤ φP(π).

We refer to inequalities of the form (PI) for which π0 = φP(π) as primal
inequalities.

This is as opposed to dual inequalities for which π0 = φπD(b), where φπD
is the dual value function of (MILP) with objective function π.

The feasible set of (INV) can be seen as the set of all valid primal
inequalities that are tight at x0.
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Dual of the Inverse Problem

Roughly speaking, the dual of (INVMP) is the membership problem for
cone(S − {x0}).

min
λ∈RE

+

{
0>λ

∣∣∣ Ēλ = x∗ − x0
}

(CMEM)

With the normalization, this becomes

min
λ∈RE

+

{
α
∣∣ Ēλ+ α1 = x∗ − x0} , (CMEMN)

where Ē is the set of extreme rays of the conic hull of conv(S)− {x0}
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Inverse Optimization with Forward Optimization Oracle

We can use an algorithm almost identical to the one from earlier.
We now generate inequalities valid for the corner polyhedron associated
with x0.

Figure: x0 and P
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Inverse Example: Iteration 1

Figure: Solving the inverse problem for P (Iteration 1)
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Inverse Example: Iteration 2

Figure: Solving the inverse problem for P (Iteration 3)
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Inverse Example: Iteration 3

Figure: Solving the inverse problem for P (Iteration 3)
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Solvability of Inverse MILP

Theorem 1 [Bulut and R(2015)] Inverse MILP optimization problem
under `∞/`1 norm is solvable in time polynomial in the size of the prob-
lem input, given an oracle for the MILP decision problem.

This is a direct result of the well-known result
of [Grötschel et al.(1993)Grötschel, Lovász, and Schrijver].

GLS does not, however, tell us the formal complexity.
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Formal Complexity of Inverse MILP

Sets

K(γ) = {d ∈ Rn | ‖c− d‖ ≤ γ}
X (γ) = {x ∈ S | ∃d ∈ K(γ) s.t. d>(x− x0) > 0},
K∗(γ) = {x ∈ Rn | d>(x− x0) ≥ 0 ∀d ∈ K(γ)}.

Inverse MILP Decision Problem (INVD)

Inputs: γ, c, x0 ∈ S and MILP feasible set S.
Problem: Decide whether K(γ) ∩ D is non-empty.

Theorem 2 [Bulut and R(2015)] INVD is coNP–complete.

Theorem 3 [Bulut and R(2015)] Both (MILP) and (INV) optimal
value problems are Dp–complete.
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Connections to Constraint Decomposition

As usual, we divide the constraints into two sets.

min c>x

s.t. A′x ≤ b′ (the “nice” constraints)

A′′x ≤ b′′ (the “complicating” constraints)

x ∈ Zn

P ′ = {x ∈ Rn | A′x ≤ b′},
P ′′ = {x ∈ Rn | A′′x ≤ b′′},
P = P ′ ∩ P ′′,
S = P ∩ Zn, and

SR = P ′ ∩ Zn.
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Reformulation

Using an approach similar to that used in the linear programming case,
we can obtain the following reformulation.

min c>x (2)

s.t.
∑
s∈E

λss = x (3)

A′′x ≤ b′′ (4)∑
s∈E

λs = 1 (5)

λ ∈ RE+ (6)

x ∈ Zn (7)

where E is the set of extreme points of conv(SR).
If we relax the integrality consraints (7), then we can also drop (3) and
we obtain a relaxation which is tractable.
This relaxation may yield a bound better than that of the LP relaxation.
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The Decomposition Bound

Using the aformentioned relaxation, we obtain a formulation for the so-called
decomposition bound.

zIP = min
x∈Zn

{
c>x

∣∣ A′x ≤ b′,A′′x ≤ b′′
}

zLP = min
x∈Rn

{
c>x

∣∣ A′x ≤ b′,A′′x ≤ b′′
}

zD = min
x∈conv(SR)

{
c>x

∣∣ A′′x ≤ b′′
}

zIP ≥ zD ≥ zLP

It is well-known that this bound can be computed using various
decomposition-based algorithms:

Lagrangian relaxation

Dantzig-Wolfe decomposition

Cutting plane method

Shameless plug: Try out DIP/DipPy!
A framework for switching between
various decomp-based algorithms.
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Lagrange Cuts

[Boyd(1990)] observed that for u ∈ Rm
−, a Lagrange cut of the form

(c− uA′′)>x ≥ LR(u)− ub′′ (LC)

is valid for P .
If we take u∗ to be the optimal solution to the Lagrangian dual, then this
inequality reduces to

(c− u∗A′′)>x ≥ zD − ub′′ (OLC)

If we now take

xD ∈ argmin
{

c>x | A′′x ≤ b′′, (c− u∗A′′)>x ≥ zD − ub′′
}
,

then we have c>xD = zD.
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Connecting the Dots

Results

The inequality (OLC) is a primal inequality for conv(SR) wrt xD.

c− uA′′ is a solution to the inverse problem wrt conv(SR) and xD.

These properties also hold for e ∈ E such that λ∗e > 0 in the RMP.

(a) Original LP relaxation (b) After adding Langrange cut
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Conclusions and Future Work

We gave a brief overview of commnections between a number of
different problems and methodologies.

Exploring these connections may be useful to impoving intuition and
understanding.

The connection to primal cutting plane algorithms is still largely
unexplored, but this should lead to new algorithms for the inverse
problem.

We did not touch much on complexity, but it should be possible to
generalize complexity results to the separation/optimization context.

We believe GLS can be extended to show that inverse optimization
forward optimization, and and separation are all complexity-wise
equivalent.

Much of that is discussed here can be further generalized to general
computation via Turing machines (useful?).
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Shameless Promotion: Free Stuff!

CHiPPS: Parallel tree search framework

DIP/DipPy: Decomposition-based modeling language and MILP solver

DiSCO, OsiConic, CglConic: Mixed integer conic solver

MibS: Mixed integer bilevel solver

SYMPHONY: MILP solver framework with bicriteria, MILP dual
construction. warm starting, continuous bilevel (soon to come), etc.

GiMPy, GrUMPy: Visualizations and illustrative implementations for
graph and optimization algorithms.

CuPPy: Cutting planes in Python

Value Function: Algorithm for constructing value functions

And more...

http://github.com/tkralphs
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