Diego Pecin

Polytechnique Montréal and GERAD, Canada

Joint work with C. Contardo, G. Desaulniers, A. Pessoa, M. Poggi and E. Uchoa

> Column Generation Búzios, Brazil, May 23, 2016

Outline

2 Set Partitioning Formulation

3 Limited-memory Subset Row Cuts

Vehicle Routing Problem (VRP)

Capacitated vehicle routing problem (CVRP)

• Given

- unlimited number of identical vehicles with a given capacity, housed in a single depot
- set of customers with known demands (all pickups or all deliveries)
- Find vehicle routes such that
 - all customer demands are met
 - each customer is visited by a single vehicle
 - each route starts and ends at the depot
 - each route satisfies vehicle capacity
 - total cost (distance) is minimized

3/36

Vehicle Routing Problem (VRP)

Vehicle routing problem with time windows (VRPTW)

• Given

- unlimited number of identical vehicles with a given capacity, housed in a single depot
- set of customers with known demands
- a hard time window on service start time for each customer
 - Infeasible if upper bound is exceeded
 - Must wait until lower bound if vehicle arrives too early
- Find vehicle routes such that
 - all customer demands are met
 - each customer is visited by a single vehicle
 - each route starts and ends at the depot
 - each route satisfies vehicle capacity and time windows
 - total cost (distance) is minimized

Vehicle Routing Problem (VRP)

Example of a solution for the VRPTW

Set Partitioning Formulation

Set Partitioning Formulation (SPF)

$$\begin{array}{ll} \min & \sum_{r \in \Omega} c_r \lambda_r & (1) \quad \text{total cost} \\ \text{s.t.} & \sum_{r \in \Omega} a_i^r \lambda_r = 1, \quad \forall i \in \mathbb{N} & (2) \quad \text{visit each customer} \\ & \lambda_r \in \{0, 1\}, \quad \forall r \in \Omega & (3) \quad \text{binary requirements} \end{array}$$

- Ω is the set of routes, a^r_i is the number of times that customer i appears in route r
- Must be solved by column generation. The set Ω is often relaxed (allowing some non-elementary routes) in order to make the pricing subproblem more tractable

Set Partitioning Formulation

Set Partitioning Formulation

- Even if Ω only contains elementary routes, the linear relaxation of SPF is **not** strong enough for efficient branch-and-price
 - Except when routes are very constrained (e.g., very narrow time windows)
- SPF should be combined with cutting, yielding Branch-Cut-and-Price (BCP) algorithms

Set Partitioning Formulation

Cuts over Edge/Arc Formulations

- Depend of the specific VRP variant:
 - CVRP: Rounded Capacity, Strengthened Combs
 - VRPTW: 2-Path
- Improve significantly the relaxations. They are robust, their dual variables are translated into edge/arc costs in the pricing. Lead to efficient algorithms
- Seems to be exhausted. Really good new cuts not found in the last years
 - Exact separation of 2-Path is not practical for instances with large routes

Set Partitioning Formulation

Cuts over the Set Partitioning Formulation

- Valid for most VRP variants
- Potential for big improvements in the relaxations. However, they are **non-robust**, each added cut makes the pricing subproblem harder, quickly making it intractable

Limited-memory Subset Row Cuts

Subset row cuts (SRCs, Jepsen et al., 2008)

Given $C \subseteq N$ and a scalar multiplier p, the (C, p)-Subset Row Cut is:

$$\sum_{r \in \Omega} \left\lfloor p \sum_{i \in C} a_i^r \right\rfloor \lambda_r \le \lfloor p |C| \rfloor$$
(4)

Non-robust cut obtained by a Chvátal-Gomory rounding of |C| constraints (2) in the SPF

3-SRCs: subsets of three customers (|S| = 3, p = 1/2)

$$\sum_{r\in\Omega} a_C^r \lambda_r \le 1, \qquad \forall \ C \subseteq N, |C| = 3$$

where $a_{C}^{r} = 1$ if route r visits 2 or 3 customers in C

10/36

Limited-memory Subset Row Cuts

Subset row cuts (SRCs, Jepsen et al., 2008)

Given $C \subseteq N$ and a scalar multiplier p, the (C, p)-Subset Row Cut is:

$$\sum_{r \in \Omega} \left\lfloor p \sum_{i \in C} a_i^r \right\rfloor \lambda_r \le \lfloor p |C| \rfloor$$
(4)

Non-robust cut obtained by a Chvátal-Gomory rounding of |C| constraints (2) in the SPF

3-SRCs: subsets of three customers (|S| = 3, p = 1/2)

$$\sum_{r\in\Omega}a_C^r\lambda_r\leq 1,\qquad \forall \ C\subseteq N, |C|=3$$

where $a_C^r = 1$ if route r visits 2 or 3 customers in C

10/36

Example of a 3-SRC

- $S = \{1, 2, 3\}$
- Covered by three paths with a flow of 0.5

$$\lambda_{\mathbf{r}} + \lambda_{\mathbf{b}} + \lambda_{\mathbf{g}} \le 1$$

Limited-memory Subset Row Cuts

3-SRCs

- Very efficient to close integrality gap
- Costly to handle in the labeling algorithm
 - For each SRC, you must keep track of the number of visited customers in *S*
 - Dominance rule is modified and less labels are dominated

Limited-memory 3-SRCs (Pecin et al., 2014)

- Weaker version
- λ_r receives coefficient 1 if
 - Route r visits at least two customers i_1 and i_2 in S
 - Nodes between *i*₁ and *i*₂ belong to a pre-specified subset of customers (the memory)

• In the previous example, memory = $\{1, 2, 3, a, b, c, d\}$

3-SRCs

- Very efficient to close integrality gap
- Costly to handle in the labeling algorithm
 - For each SRC, you must keep track of the number of visited customers in *S*
 - Dominance rule is modified and less labels are dominated

Limited-memory 3-SRCs (Pecin et al., 2014)

- Weaker version
- λ_r receives coefficient 1 if
 - Route r visits at least two customers i_1 and i_2 in S
 - Nodes between *i*₁ and *i*₂ belong to a pre-specified subset of customers (the memory)
- In the previous example, memory = $\{1, 2, 3, a, b, c, d\}$

Limited-memory Subset Row Cuts

Why it is good to reduce the set M as much as possible?

Figure: Solid path may only dominate the dashed path because the 3-SRC $\{1, 2, 3\}$ is already forgotten at customer *i*.

Limited Memory Subset Row Cuts (Im-SRCs)

Given $C \subseteq V_+$, a memory set M, $C \subseteq M \subseteq V_+$, and a scalar multiplier p, the limited memory (C, M, p)-Subset Row Cut is:

$$\sum_{r\in\Omega} \alpha(C, M, p, r)\lambda_r \le \lfloor p|C| \rfloor,$$
(5)

where the coefficient of a route r is computed as:

```
1: function \alpha(C, M, p, r)
2: coeff \leftarrow 0, state \leftarrow 0
3: for every vertex i \in r (in order) do
         if i \notin M then
4:
             state \leftarrow 0
 5:
        else if i \in C then
6:
7:
             state \leftarrow state + p
8:
             if state > 1 then
                  coeff \leftarrow coeff + 1, state \leftarrow state - 1
9:
10: return coeff
```

Limited-memory Subset Row Cuts

Limited Memory Subset Row Cuts (Im-SRCs)

```
1: function \alpha(C, M, p, r)

2: coeff \leftarrow 0, state \leftarrow 0

3: for every vertex i \in r (in order) do

4: if i \notin M then

5: state \leftarrow 0

6: else if i \in C then

7: state \leftarrow state + p

8: if state \ge 1 then

9: coeff \leftarrow coeff + 1, state \leftarrow state - 1

10: return coeff
```

- If $M = V_+$, the function returns $\lfloor p \sum_{i \in C} a_i^i \rfloor$
- Otherwise, the Im-SRC may be a weakening of the corresponding SRC

Main components of the BCP

Pricing

- bidirectional search
- $\bullet~\mbox{completion}~\mbox{bounds} + \mbox{DSSR}$
- fast and effective heuristics
- Variable Fixing
 - on arc $(i,j)^d$ for the CVRP and arc (i,j) for VRPTW
- Strong Branching
 - 3 levels, uses history of past branchings
- Route enumeration + Inspection pricing + MIP
 - from this point, cliques and SRCs are separeted
- Non-robustness control

Overall Results for (Pecin et al., 2014)

			LLE04	4		FLL+	-06		BCM08	3		E	3MR11		
Class	NP	Opt	Gap	T(s)	Opt	Gap	T(s)	Opt	Gap	T(s)	Opt	t G	ар	T(s)	
A	22	15	2.06	6638	22	0.81	1961	22	0.2	118	22	2 0.	13	30	
В	20	19	0.61	8178	20	0.47	4763	20	0.16	417	20	0.0	06	67	
E-M	12	3	2.10	39592	9	1.19	126987	8	0.69	1025	<u>ç</u>	0.	49	303	
F	3	3	0.06	1046	3	0.14	2398				2	2 0.	11	164	
Р	24	16	2.26	11219	24	0.76	2892	22	0.28	187	24	1 0.1	23	85	
Total	81	56			78			72			77	7			
Proces	sor	Celer	on 7001	MHz (?)	Pent.	4 2.4	GHz(561)	Pent	. 4 2.6GH	lz(624)	X73	350 2	.93GH	z(1108)	J
			Con1	2		CM	14		Rop	12			PPF	PU14	
Class	NP	Opt	Gap	T(s)	Opt	Gap	T(s)	Opt	Gap	Т	(s)	Opt	Gap	Т	(s)
A	22	22	0.07	59	22	0.09	59	22	0.57		53	22	0.03		5.6
В	20	20	0.05	89	20	0.08	34	20	0.25	2	808	20	0.04		6.2
E-M	12	10	0.30	2807	10	0.27	1548	10	0.96	442	95	12	0.19	36	569
F	3	2	0.06	3	3	0.03	27722	3	0.25	21	63	3	0.00	36	579
Р	24	24	0.13	43	24	0.18	240	24	0.69	2	80	24	0.07	3	2.7
Total	81	78			79			79				81			
Proces	sor	E546	2 2.8GF	Hz(1204)	E546	52 2.80	GHz(1204)	i7-26	520M 2.7	GHz(156	53)	E5-2	667 3.	3GHz(19	96)

Limited-memory Subset Row Cuts

Detailed Results: M-n151-k12

Algo	Machine	Root LB	Final LB	Total Time
BMR11	X7350 2.93GHz	1004.3	1004.3	380
Contardo12	E5462 2.8GHz	1012.5	1015	19699
CM14	E5462 2.8GHz	1012.6	1015	10110
Ropke12	i7-2620M 2.7GHz	1001.5	1015	417146
PPPU14	E5-2667 3.3GHz	1013.0	1015	186

Limited-memory Subset Row Cuts

Detailed Results: M-n200-k17

Algo	Machine	Root LB	Final LB	Total Time
BMR11	X7350 2.93GHz	1258.7	1258.7	436
Contardo12	E5462 2.8GHz	1265.1	1265.1	34350
CM14	E5462 2.8GHz	1269.2	1269.2	432000
Ropke12	i7-2620M 2.7GHz	1255.3	1261.4	7200
PPPU14	E5-2667 3.3GHz	1268.8	1275	3479

Limited-memory Subset Row Cuts

Detailed Results: M-n200-k16

Algo	Machine	Root LB	Final LB	Total Time
BMR11	X7350 2.93GHz	1256.6	1256.6	319
Contardo12	E5462 2.8GHz	1263.0	1263.0	265588
CM14	E5-2667 3.3GHz	1266.9	1266.9	432000
Ropke12	i7-2620M 2.7GHz	1253.0	1258.2	7200
PPPU14	E5-2667 3.3GHz	1266.6	1274	28620

Previous upper bound: 1278

Limited-memory Subset Row Cuts

Optimal solution of M-n200-k16 (Q = 200), cost 1274

Golden Instances

Golden, Wasil, Kelly, and Chao [1998] proposed 12 instances, ranging from 240 to 483 customers.

- Appear frequently in the literature on heuristic methods
- Until now, considered to be far beyond the reach of exact methods

(Pecin et al., 2014) could solve **four instances**, those with 240, 300, 320, and 360 customers.

22/36

Limited-memory Subset Row Cuts

Optimal solution of Golden_14 (320 customers, Q = 1000), cost 1080.55, 30 routes

Limited-memory Subset Row Cuts

Optimal solution of Golden_19 (360 customers, Q = 20), cost 1365.60, 33 routes

Comparison over hard instances (Pecin et al., 2014)

Instance	Algo	IUB	RLB1	RLB2	RT(s)	FLB	Nds	TT(s)
M-n151-k12	BMR11	1015	1004.3	-	380	1004.3	1	380
	Con12	1015	1008.9	1012.5	19041	1015	1	19699
	Rop12	1015	1001.5	-		1015	5268	417146
	CM14	1015	1011.2	1012.6	9942	1015	1	10110
	PPPU14	1015	1011.2	1013.0	180	1015	1	186
M-n200-k16	BMR11		1256.6	-	319	1256.6	1	319
	Con12	1278	1263.0	-	265589	1263.0	1	265589
	Rop12	1278	1253.0	-		1258.2	106	7200
	CM14	1278	1266.9	-	432000	1266.9	1	432000
	PPPU14	1278	1266.6	-	807	1274	75	28620
M-n200-k17	BMR11	1275	1258.7	-	436	1258.7	1	436
	Con12	1275	1265.1	-	34351	1265.1	1	34351
	Rop12	1276	1255.3	-		1261.4	144	7200
	CM14	1275	1269.2	-	432000	1269.2	1	432000
	PPPU14	1275	1268.8	-	695	1275	7	3479
G17 (240)	PPPU14	707.76	705.01	-	345	707.76	15	14693
G13 (252)	PPPU14	857.19	851.63	-	4803	851.63	1	4803
G9 (255)	PPPU14	579.71	576.86	-	9013	576.86	1	9013
G18 (300)	PPPU14	995.13	993.22	-	381	995.13	23	13769
G14 (320)	PPPU14	1080.55	1076.10	-	8124	1080.55	1175	pprox 39 days
G10 (323)	PPPU14	736.26	731.28	-	25689	731.28	1	25689
G19 (360)	PPPU14	1365.60	1362.76	-	467	1365.60	339	162405

25/36

Limited-memory Subset Row Cuts

Improvements from (Pecin et al., 2015)

- (Pecin et al., 2015) present a computational polyhedral study to find the best possible inequalities that can be obtained from up to 5 rows of a SPF
- Experiments with classical CVRP instances show that the newly discovered multipliers lead to significantly improved dual bounds

Improvements from (Pecin et al., 2015)

Average gaps over a set of hard instances ranging from 36 to 199 customers. Full separation until convergence:

	Gap(%)
Only CG (elementary routes)	2.63
+ robust cuts	0.98
+ 3SRCs	0.35
+ 4SRCs $+$ 5SRCs	0.24
Rank 1 Cuts up to 5 rows	0.17

The new cuts removed 30% of the residual gap. They can help to solve some larger open instances.

Limited-memory Subset Row Cuts

Golden_20 (420 customers)

Authors	BKS
(Vidal et al., 2012)	1818.32
(Groër et al., 2011)	1818.25
(Jin et al., 2014)	1817.89
(Liu and Li, 2014)	1817.86

• Optimal solution: 1817.59

-

- Root LB: 1815.0 (1200 active Rank 1 cuts!)
 - Pecin et al., 2014 reaches the Root LB of 1814.4
- B&B Nodes: 370
- Total Time: 7 days (single core i7-3960X 3.30GHz)
 - We estimate between 2 or 3 months for (Pecin et al., 2014)

Limited-memory Subset Row Cuts

Golden_20 (420 customers)

Authors	BKS
(Vidal et al., 2012)	1818.32
(Groër et al., 2011)	1818.25
(Jin et al., 2014)	1817.89
(Liu and Li, 2014)	1817.86

• Optimal solution: 1817.59

-

- Root LB: 1815.0 (1200 active Rank 1 cuts!)
 - Pecin et al., 2014 reaches the Root LB of 1814.4
- B&B Nodes: 370
- Total Time: 7 days (single core i7-3960X 3.30GHz)
 - We estimate between 2 or 3 months for (Pecin et al., 2014)

Limited-memory Subset Row Cuts

Optimal solution of Golden_20, cost 1817.59

Limited-memory Subset Row Cuts

Improvements from (Pecin et al., 2016)

- New memory definition: Arc memory
- In the previous example, memory =
 {(1, a), (a, b), (b, c), (c, 2), (1, d), (d, 3), (3, 2)}
- Experiments with CVRP and VRPTW show that the arc-memory can be decisive in some very hard instances

Improvements from (Pecin et al., 2016)

Arc-memory for CVRP

Inc	LIR	Arc	-mem	ory	Node	e-men	nory
1115		LB	ΡT	TT	LB	ΡT	TT
G13 (252)	857.19	852.65	31	10674	851.89	41	10507

• Final Root LB: 853.0; B&B Nodes: 275; Total Time: 4.3 days

Arc-memory for VRPTW

					Node-memory			
		LB			LB	PT		
	701.1			9621			63864	
C2-2-3 (200)	1763.5	1747.0	24	12849	1747.1			
	2151.2				2150.3		147585	
C2-2-4 (200)	1695.0	1664.7		128684	1656.6	364	135024	
							270216	
	1989.3	1966.5	284		1962.0			

Improvements from (Pecin et al., 2016)

Arc-memory for CVRP

Inc	LIR	Arc	-mem	ory	Node	e-men	nory
1115		LB	ΡT	TT	LB	ΡT	TT
G13 (252)	857.19	852.65	31	10674	851.89	41	10507

• Final Root LB: 853.0; B&B Nodes: 275; Total Time: 4.3 days

Arc-memory for VRPTW

Inc	LIR	Arc	c-mem	nory	Noc	le-mei	mory
1115		LB	ΡT	TT	LB	ΡT	TT
R208 (100)	701.1	697.5	70	9621	697.3	796	63864
C2-2-3 (200)	1763.5	1747.0	24	12849	1747.1	536	74973
RC2-2-8 (200)	2151.2	2150.3	99	83057	2150.3	82	147585
C2-2-4 (200)	1695.0	1664.7	367	128684	1656.6	364	135024
RC2-2-9 (200)	2086.7	2069.6	213	275225	2065.6	295	270216
RC2-210 (200)	1989.3	1966.5	284	335007	1962.0	486	347495

Diego Pecin (Polytechnique Montréal and GERAD)

100-customer Solomon instances (VRPTW)

Class	NI	JPSP08		DLH08		BMR11		Rop12		PCDU16	
		Opt	Time	Opt	Time	Opt	Time	Opt	Time	Opt	Time
C1	9	9	468	9	18	9	25	9	15	9	15
RC1	8	8	11004	8	2150	8	276	8	2907	8	52
R1	12	12	27412	12	2327	12	251	12	2040	12	31
C2	8	7	2795	8	2093	8	40	8	209	8	328
RC2	8	5	3204	6	15394	8	3767	8	2205	8	337
R2	11	4	35292	8	63068	10	28680	11	30592	11	6432
Total	56	45		51		55		56		56	
Average			13288		12920		5867		7209		1375
Processor		Optero	n 2.6GHz	Penti	um 4 3GHz	X735	0 2.93GHz	i7-26	20M 2.7GHz	X-ES	2637 3.5GHz

Limited-memory Subset Row Cuts

200-customer Gehring and Homberger instances (VRPTW)

Class	Ont		All-ro	ot		Unsolved					
Class	Ορι	RGP	GP	Т	RGP	GP	Т	В	TT	Max	Min
C1	10	0.10	0.04	88	0.10	0.04	88	1.60	133	-	-
RC1	8	1.68	0.57	4674	1.56	0.45	3889	46.00	38940	1.27	0.82
R1	10	1.24	0.25	1451	1.24	0.25	1451	25.20	12854	-	-
C2	8	0.83	0.24	20552	0.54	0.00	4096	1.00	4096	1.75	0.64
RC2	7	1.29	0.24	123251	0.77	0.05	26362	1.57	27375	1.13	0.28
R2	8	0.86	0.08	59503	0.79	0.00	13397	1.25	13645	0.59	0.18
Total	51										
Average		1.00	0.24	34920	0.82	0.13	7274	13.03	15195		

Conclusions

- Non-robust cuts should be designed in order to minimize their impact on the specific kind of algorithm used in the pricing
- Limited-memory subset-row cuts together with several recent ideas for the CVRP could more than double the size of the largest instance solved so far
 - All the 81 instances from the traditional benchmark now are solved
 - 6 Golden et al. instances ranging from 240 to 420 customers solved

 \bullet Lm-SRCs also proved to be very useful to VRPTW instances

- All the 56 100-customer Solomon instances now well-solved
- 51 out of 60 200-customer instances solved

Conclusions

- Non-robust cuts should be designed in order to minimize their impact on the specific kind of algorithm used in the pricing
- Limited-memory subset-row cuts together with several recent ideas for the CVRP could more than double the size of the largest instance solved so far
 - All the 81 instances from the traditional benchmark now are solved
 - 6 Golden et al. instances ranging from 240 to 420 customers solved

• Lm-SRCs also proved to be very useful to VRPTW instances

- All the 56 100-customer Solomon instances now well-solved
- 51 out of 60 200-customer instances solved

Conclusions

- Non-robust cuts should be designed in order to minimize their impact on the specific kind of algorithm used in the pricing
- Limited-memory subset-row cuts together with several recent ideas for the CVRP could more than double the size of the largest instance solved so far
 - All the 81 instances from the traditional benchmark now are solved
 - 6 Golden et al. instances ranging from 240 to 420 customers solved
- Lm-SRCs also proved to be very useful to VRPTW instances
 - All the 56 100-customer Solomon instances now well-solved
 - 51 out of 60 200-customer instances solved

Publications

- Pecin, D.; Pessoa, A.; Poggi, M.; Uchoa, E. Improved Branch-Cut-and-Price for Capacitated Vehicle Routing. Integer Programming and Combinatorial Optimization (IPCO), June 2014 (full paper to appear on Mathematical Programing Computational - MPC)
- Pecin, D.; Pessoa, A.; Poggi, M.; Uchoa, E.; H. Santos Limited Memory Rank-1 Cuts for Vehicle Routing Problems. Presentation at the 19th Combinatorial Optimization Workshop, Aussois, France, 2015. Paper Submitted.
- Pecin, D.; Contardo, C.; Desaulniers, G.; Uchoa, E. New Enhancements for the Exact Solution of the Vehicle Routing Problem with Time Windows. Cahiers du GERAD (G-2016-13), 2016. Paper submitted.

Obrigado! Questions?