Improved Lower Bounds using Im-SRCs for the Capacitated Arc Routing Problem

 ${\sf Rafael \ Martinelli^{\dagger} \quad Marcelo \ Malta^{\ddagger} \quad Marcus \ Poggi^{\ddagger}}$

[†]Departamento de Engenharia Industrial – PUC-Rio

[‡]Departamento de Informática – PUC-Rio

Column Generation 2016

The Capacitated Arc Routing Problem

- Connected undirected graph G = (V, E)
- Costs $c: E \to \mathbb{Z}^+$
- Demands $d: E \to \mathbb{Z}^+$
- Set I containing k identical vehicles with capacity ${\boldsymbol{Q}}$
- Depot vertex labeled 0
- Set $E_R = \{e \in E \mid d_e > 0\}$ of required edges

A 回下 A 三下 A 三下

The Capacitated Arc Routing Problem

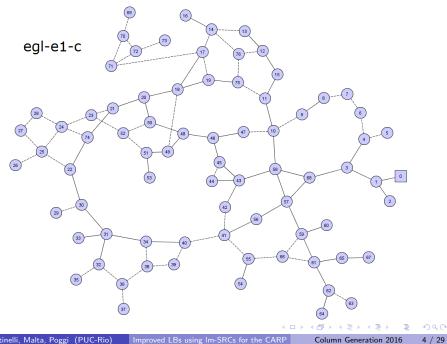
A set ${\cal F}$ of closed routes starting and ending at the depot is a feasible CARP solution if:

- Each required edge is serviced by exactly one route in F;
- The sum of demands of the serviced edges in each route in *F* does not exceed the vehicle capacity.

Edges in a route can be either *serviced* or *deadheaded*.

GoalFind a feasible F solution minimizing the sum of the costs of the
routes.Golden and Wong, 1981

.



The Capacitated Arc Routing Problem

- Golden and Wong, 1981
- Strongly NP-Hard
- Applications:
 - Garbage collection
 - Street sweeping
 - Winter gritting
 - Electric meter reading
 - Airline scheduling
- Hard to solve for more than 30 required edges

The Set Partitioning Approach

- The number of possible routes is exponentially large
- Dantzig-Wolfe decomposition of flow formulation
- This decomposition does not enforce the routes to be elementary

Mathematical Notation

- Ω Set containing all possible routes
- λ_r Binary variable, 1 if route r is used
- a_r^e The number of times edge e is serviced by route r
- b_r^e The number of times edge e is deadheaded by route r

1 E N 1 E N

The Set Partitioning Approach

Mathematical Formulation

Robust Cuts

Robust Cuts

Odd Degree Cutset Cuts

$$\sum_{r\in\Omega}\sum_{e\in\delta(S)}b^e_r\lambda_r\geq 1\quad \forall S\subseteq V\backslash\{0\}, |\delta_R(S)| \text{ odd }$$

Capacity Cuts

$$\sum_{r \in \Omega} \sum_{e \in \delta(S)} b_r^e \lambda_r \ge 2k(S) - |\delta_R(S)| \quad \forall S \subseteq V \setminus \{0\}$$

< 47 ▶

∃ ► < ∃ ►</p>

Odd Degree Cutset Cuts Separation

- Use the exact algorithm proposed by Padberg and Rao in 1982
- The algorithm builds a Gomory-Hu tree (Gomory and Hu, 1961)
- It can be done in polynomial time running |V|-1 times any max flow algorithm

Capacity Cuts Separation

- Use the exact algorithm proposed by Martinelli et al. in 2011
- Inspired on the exact separation of Chvátal-Gomory Cuts done by Fischetti and Lodi in 2007
- It uses a mixed-integer formulation to find a violated cut

Reduced Costs

$$\bar{c}_r = c_r - \gamma - \sum_{e \in E_R} a_r^e \beta_e - \sum_{S \subseteq V \setminus \{0\}} \sum_{e \in \delta(S)} b_r^e \pi_S$$
$$= -\gamma + \sum_{e \in E_R} a_r^e \left(c_e - \beta_e\right) + \sum_{e \in E} b_r^e \left(c_e - \sum_{S \subseteq V \setminus \{0\}: e \in \delta(S)} \pi_S\right)$$

Martinelli, Malta, Poggi (PUC-Rio) Improved LBs using Im-SRCs for the CARP Column Generation 2016 10 / 29

- 4 回 ト - 4 三 ト

- Since an optimal solution to the CARP does not include routes which service a required more than once, ideally we want to price elementary routes.
- This corresponds to solve the Elementary Shortest Path Problem with Resource Constraints (ESPPRC) as a pricing subproblem.
- An alternative to deal with this complexity is to relax the elementarily constraint of the path, that means solving the Shortest Path Problem with Resource Constraints (SPPRC), also known as the *q*-route problem.
- The SPPRC can be tackled using a pseudo-polynomial dynamic programming algorithm, as described in the seminal work of Christofides et al.

A B A A B A

- Aiming to have a better compromise between pricing efficiency and lower bounds, Baldacci, Mingozzi and Roberti proposed the ng-route relaxation.
- This relaxation defines for each required $e \in E_R$ a subset of requireds $N_e \subseteq E_R$ which have a relationship with the required e.
- A possible representation for this relationship can be a neighborhood relationship, i.e., N_e contains the nearest required edges of e.

A B A A B A

Column Generation

Given a path P = (0,...,e_i,...,e_p), let E_R(P) be the set of required edges visited by P. A function Π(P) of prohibited extensions for the path P can be defined as

$$\Pi(P) = \left\{ e_i \in E_R(P) : e_i \in \bigcap_{s=i+1}^p N_s, i = 1, \dots, p-1 \right\} \cup \{e_p\}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

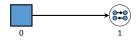
$$N_1 = \{1, 2\}, N_2 = \{2, 1\}, N_3 = \{3, 1\}$$

 $\pi_0 = \{\}$

A D N A B N A B N A B N

2

$$N_1 = \{1, 2\}, N_2 = \{2, 1\}, N_3 = \{3, 1\}$$

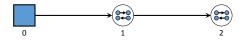


 $\pi_0 = \{\} \\ \pi_1 = \pi_0 \cap N_1 \cup \{1\} \\ \pi_1 = \{1\}$

イロト イポト イヨト イヨト

3

$$N_1 = \{1, 2\}, N_2 = \{2, 1\}, N_3 = \{3, 1\}$$



 $\pi_1 = \{1\} \\ \pi_2 = \pi_1 \cap N_2 \cup \{2\} \\ \pi_2 = \{1, 2\}$

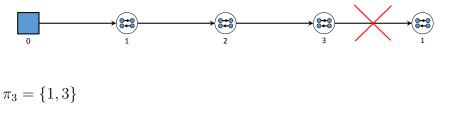
A D N A B N A B N A B N

$$N_1 = \{1, 2\}, N_2 = \{2, 1\}, N_3 = \{3, 1\}$$

 $\pi_2 = \{1, 2\} \\ \pi_3 = \pi_2 \cap N_3 \cup \{3\} \\ \pi_3 = \{1, 3\}$

・ 同下 ・ ヨト ・ ヨト

$$N_1 = \{1, 2\}$$
, $N_2 = \{2, 1\}$, $N_3 = \{3, 1\}$



The extension is **not** allowed!

A D N A B N A B N A B N

$$N_1 = \{1, 2\}, N_2 = \{2, 1\}, N_3 = \{3, 2\}$$

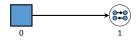
 $\pi_0 = \{\}$

Martinelli, Malta, Poggi (PUC-Rio) Improved LBs using Im-SRCs for the CARP Column Generation 2016 15 / 29

A D N A B N A B N A B N

æ

$$N_1 = \{1, 2\}$$
, $N_2 = \{2, 1\}$, $N_3 = \{3, 2\}$

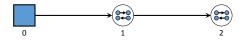


 $\pi_0 = \{\} \\ \pi_1 = \pi_0 \cap N_1 \cup \{1\} \\ \pi_1 = \{1\}$

イロト イポト イヨト イヨト

3

$$N_1 = \{1, 2\}, N_2 = \{2, 1\}, N_3 = \{3, 2\}$$



 $\pi_1 = \{1\} \\ \pi_2 = \pi_1 \cap N_2 \cup \{2\} \\ \pi_2 = \{1, 2\}$

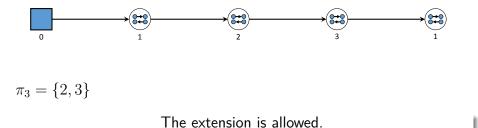
A D N A B N A B N A B N

$$N_1 = \{1, 2\}, N_2 = \{2, 1\}, N_3 = \{3, 2\}$$

 $\pi_2 = \{1, 2\} \\ \pi_3 = \pi_2 \cap N_3 \cup \{3\} \\ \pi_3 = \{2, 3\}$

・ 同下 ・ ヨト ・ ヨト

$$N_1 = \{1, 2\}, N_2 = \{2, 1\}, N_3 = \{3, 2\}$$



A D N A B N A B N A B N

Pricing

- This pricing is solved exactly using a forward dynamic programming algorithm
- The complexity is still pseudo-polynomial when the size of NGs is bounded by a constant factor
- But it still needs some speed up techniques:
 - Simple heuristic to find ng-routes with negative reduced cost
 - Dominance rules (pricing with elementary routes)

4 3 5 4 3 5 5

Heuristic Pricing

- Simple but effective heuristic very similar to the basic dynamic programming algorithm to compute ng-routes.
- During the dynamic programming algorithm, we store just the best possible partial ng-route for each capacity c and end required edge e.
- The resulting complexity of this algorithm is $\mathcal{O}(n^2 Q)$.

Dominance Rule

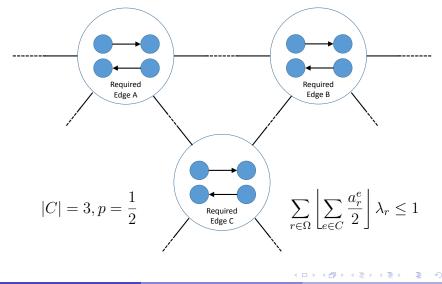
- Given two paths P_1 and P_2 , we say that P_1 dominates P_2 if:
 - $v(P_1) \leq v(P_2)$
 - $d(P_1) \leq d(P_2)$
 - $\bar{c}(P_1) \leq \bar{c}(P_2)$
 - $\Pi(P_1) \subseteq \Pi(P_2)$

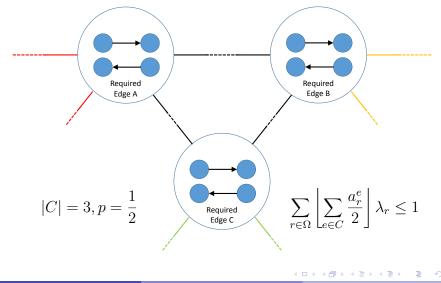
- Introduced in 2008 by Jepsen et al.
- Lead to good improvements on lower bounds
- Their general form are Chvátal-Gomory Rank-1 Cuts

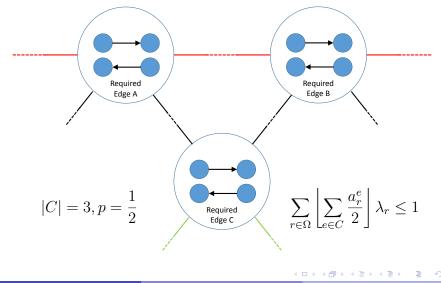
Given a subset of required edges $C \subseteq E_R$ and a multiplier $p \in \mathbb{R}$, 0 :

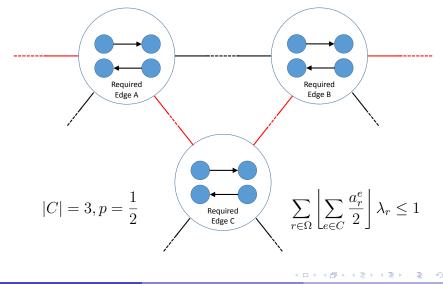
$$\sum_{r \in \Omega} \left[p \sum_{e \in C} a_r^e \right] \lambda_r \le \lfloor p \left| C \right| \rfloor$$

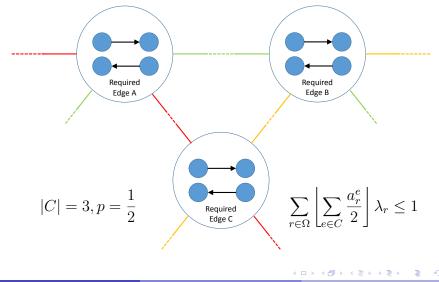
イヨト イヨト イヨト

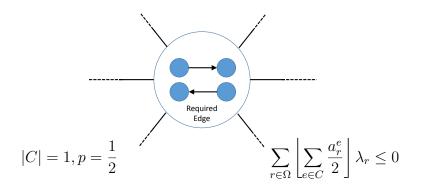




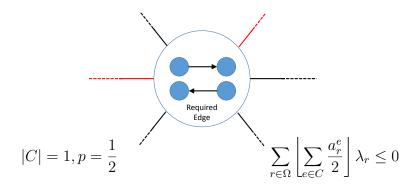




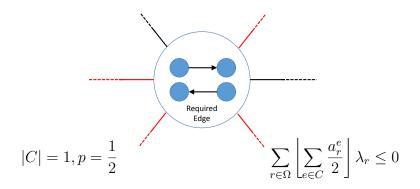




・ 何 ト ・ ヨ ト ・ ヨ ト

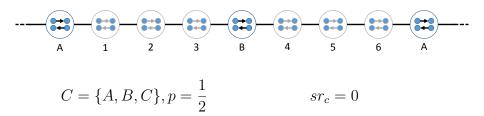


・ 何 ト ・ ヨ ト ・ ヨ ト

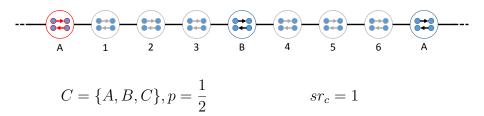


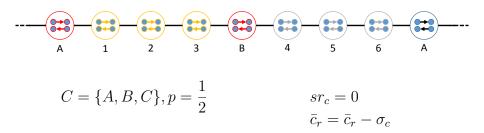
・ 何 ト ・ ヨ ト ・ ヨ ト

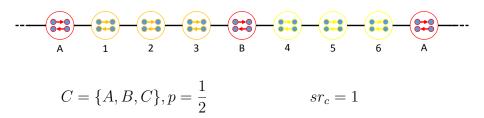
- They are hard to separate (usually based on enumeration)
- They are also hard to be considered in the pricing sub-problems
- Each SRC active in a SP solution introduces a new resource for the pricing sub-problem
- For the two examples, this is done using a counter sr_c on each label incremented every time a path visits a vertex of the cut
- When the counter reaches 2, the dual variable σ_c must be subtracted to the reduced cost and the counter is reset to 0



Subset-Row Cuts







• Changes to the dominance rule:

•
$$v(P_1) \le v(P_2)$$

• $d(P_1) \le d(P_2)$
• $\Pi(P_1) \subseteq \Pi(P_2)$
• $\bar{c}(P_1) \le \bar{c}(P_2) - \sum_{c \in C: sr_c(P_1) > sr_c(P_2)} \sigma_c$

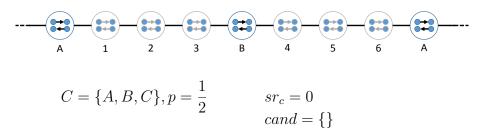
< 1[™] >

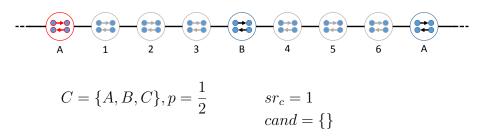
★ ∃ ► < ∃ ►</p>

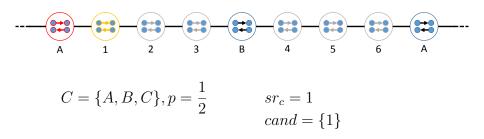
э

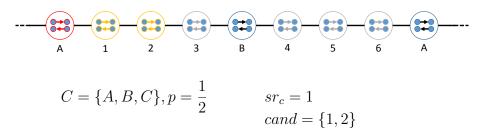
- Introduced in 2014 by Pecin et al.
- The intuition is analogous to the ng-route relaxation
- Each required edge has a memory set M_e containing the SRCs it "remembers"
- Every time a path P with $sr_c(P)>0$ visits a required edge with $c\notin M_e$, the path "forgets" cut c by setting $sr_c=0$
- For the two examples, the required edges which remember a cut are the ones between an odd visit to set C until the following visit, on any route in the current solution

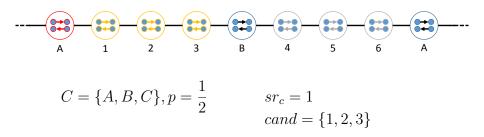
1 E N 1 E N

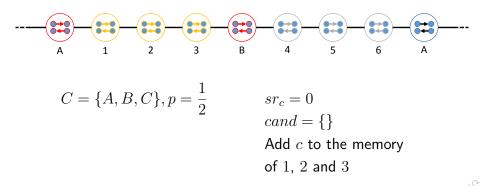


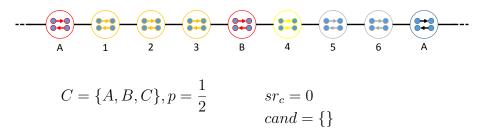


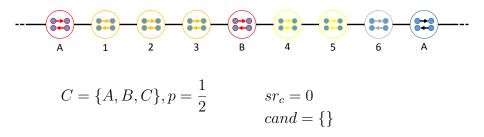


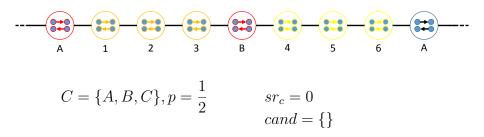


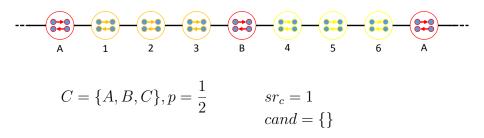












• Another example:

•
$$C = \{1, 2, 3\}$$

•
$$r_1 = (0, 1, 4, 5, 3, 7, 4, 0)$$

•
$$r_2 = (0, 8, 2, 8, 6, 2, 8, 0)$$

3. 3

• Another example:

•
$$C = \{1, 2, 3\}$$

• $r_1 = (0, 1, 4, 5, 3, 7, 4, 0)$
• $r_2 = (0, 8, 2, 8, 6, 2, 8, 0)$

• The cut will the added to the memory set M_e of required edges $e \in \{1,2,3\} \cup \{4,5\} \cup \{8,6\}$

Computational Experiments

- The algorithms were implemented in C++ using Microsoft Visual C++ 2013
- IBM ILOG CPLEX Optimizer 12.6.2 was used for solving the formulations
- The experiments were conducted on an Intel Core i7-3960X
 3.30GHz with 64GB RAM running Ubuntu Linux Server 14.04
- We used the eglese instance set (Li and Eglese, 1992), containing 24 instances having from 51 to 190 required edges
- 12 instances are still open

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

3

Results

			ng=8		elem		1src		3src		1+3src	
Instance	LB	UB	value	time	value	time	value	time	value	time	value	time
egl-e1-A	3548	3548	3548.0	3.9	3548.0	3.8	3548.0	3.7	3548.0	3.8	3548.0	3.5
egl-e1-B	<u>4498</u>	4498	4472.5	1.8	4473.4	2.1	4473.3	3.3	4484.2	17.2	4484.5	16.3
egl-e1-C	5595	5595	5541.8	2.2	5544.8	3.3	5544.8	4.4	5562.0	324.4	5563.8	1547.3
egl-e2-A	5018	5018	5016.6	15.3	5016.9	441.4	5016.9	49.2	5018.0	32.2	5018.0	30.4
egl-e2-B	6317	6317	6291.7	4.9	6299.3	22.1	6299.2	25.9	6302.0	564.5	6302.1	329.5
egl-e2-C	8335	8335	8270.6	3.4	8274.4	5.0	8274.4	5.0	8302.7	842.9	8302.6	398.9
egl-e3-A	5898	5898	5896.1	12.6	5896.1	79.8	5896.1	35.0	5896.4	7200.0	5896.4	7200.0
egl-e3-B	7744	7775	7696.9	10.8	7704.6	21.1	7704.5	59.0	7734.7	7200.0	7735.0	7200.0
egl-e3-C	10244	10292	10180.0	4.6	10184.1	5.7	10183.8	13.2	10231.3	108.0	10232.7	174.3
egl-e4-A	6408	6444	6389.7	38.9	6394.3	546.5	6393.7	182.4	6406.9	7200.0	6406.8	7200.0
egl-e4-B	8935	8961	8884.8	13.0	8890.4	30.6	8890.1	31.8	8925.0	636.9	8926.8	1794.9
egl-e4-C	11512	11529	11465.3	8.0	11467.5	8.5	11467.2	10.3	11493.6	127.6	11493.5	101.3
egl-s1-A	5018	5018	5014.5	13.2	5014.5	84.9	5014.5	31.6	5018.0	36.2	5018.0	32.5
egl-s1-B	6388	6388	6377.4	7.0	6378.0	21.0	6377.6	9.4	6387.0	42.0	6386.8	41.3
egl-s1-C	8518	8518	8484.4	4.1	8487.2	9.3	8487.1	4.7	8504.4	8.9	8504.5	8.7
egl-s2-A	9838	9875	9800.4	96.6	9801.6	306.9	9801.2	190.5	9823.6	7200.0	9823.7	7200.0
egl-s2-B	13017	13057	12965.9	46.4	12978.6	182.6	12978.5	156.8	13009.7	451.6	13008.9	467.8
egl-s2-C	<u>16425</u>	<u>16425</u>	16347.9	18.9	16358.4	34.9	16358.2	28.6	16387.3	99.1	16387.8	83.7
egl-s3-A	10165	10201	10140.8	138.2	10147.9	5158.8	10147.6	753.0	10167.9	7200.0	10168.7	7086.8
egl-s3-B	13648	13682	13618.7	46.3	13623.5	113.5	13623.1	98.1	13643.2	2757.1	13643.2	2191.1
egl-s3-C	17188	17188	17096.8	22.9	17113.7	41.2	17113.2	40.2	17140.9	133.2	17142.7	138.6
egl-s4-A	12159	12216	12127.4	151.4	12137.1	889.7	12136.2	477.3	12158.7	4279.1	12159.4	7200.0
egl-s4-B	16114	16214	16065.5	85.8	16078.6	290.5	16078.2	383.7	16126.8	3545.0	16126.6	2805.2
egl-s4-C	20430	20461	20384.8	43.9	20397.2	77.3	20396.8	66.9	20429.5	284.2	20429.1	228.6

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めの(

Obrigado! Questions?

- ∢ ⊒ →

э