Branch-Price-and-Cut for the Active-Passive Vehicle-Routing Problem

Column Generation 2016, Búzios, Brazil

Christian Tilk ${ }^{1, c}$, Nicola Bianchessi ${ }^{1,2}$, Michael Drex| ${ }^{1,3}$, Stefan Irnich ${ }^{1}$ and Frank Meisel ${ }^{4}$

1: Chair of Logistics Management, Gutenberg School of Management and Economics
${ }^{2}$: Department of Quantitative Methods, University of Brescia, Italy
3: Fraunhofer Centre for Applied Research on Supply Chain Services SCS, Nuremberg, Germany
${ }^{4}$: Professur für Supply Chain Management, Christian-Albrechts-Universität zu Kiel, Germany
${ }^{c}$: Corresponding Author: tilk@uni-mainz.de
л.hannes GUTENBERG

UNIVERSITÄT MAINZ
May 22-25, 2016

Outline

- Problem Description
- Extended Network Model
- Column Generation Formulation
- Pricing Problem
- Computational Results
- Conclusion \& Outlook

Problem Description 1/4

The APVRP was first described by Meisel and Kopfer (2014)

Given: a set R of pickup-and-delivery requests with 3 tasks per request:
1 Provide an empty passive vehicle at the pickup location
2 Transport the loaded passive vehicle from the pickup to the delivery location

3 Carry away the empty passive vehicle from the delivery location

Problem Description 2/4

Synchronization:

Up to three different active vehicles can be involved in performing a request

Synchronization:

Up to three different active vehicles can be involved in performing a request

- R set of pickup-and-delivery requests
- Time Window in which a request can be fulfilled
- Service times for loading and unloading a request
- A set of classes of active vehicle
- P set of passive vehicles
- (Different) Origin and destination depot for all active/passive vehicles
- Distances and travel times between each pair of locations
- Objective: Minimize a weighted sum of the total distance traveled, the total completion time of the routes, and the number of unfulfilled requests
- Each passive vehicle can load only one request at a time
- Each active vehicle can transport only one passive vehicle at a time
- But an active vehicle can be associated with different passive vehicles during its journey
- A passive vehicles can be associated with different active vehicles during its journey
- Compatibility restriction
- between active and passive vehicle
- between passive vehicles and requests

Example

Three active and two passive vehicles performing two requests

- - : Journey of active vehicle 1
- - : Journey of active vehicle 2
- . . . : Journey of the passive vehicle 1
- - : Journey of active vehicle 3
- - - : Journey of the passive vehicle 2
- Synchronization in time and space is required at the pickup and delivery location of each request
- Routes of active and passive vehicles have to be determined separately

Example

Three active and two passive vehicles performing two requests

- - : Journey of active vehicle 1
- - : Journey of active vehicle 2
- - - : Journey of the passive vehicle 1
- - : Journey of active vehicle 3
- -- - : Journey of the passive vehicle 2
- Synchronization in time and space is required at the pickup and delivery location of each request
- Routes of active and passive vehicles have to be determined separately

Extended Network

Goals:

1 Modeling synchronization in an effective manner
2 The journeys of all passive vehicles should be fully described by the journeys of all active vehicles

Following ideas from Meisel and Kopfer (2014) and Drexl (2007):

- Define a network for each class of active vehicles
- Both pickup and delivery location of request $r \in R$ are each identified by two different nodes:
> v_{r}^{-}: delivery of empty passive at pickup location
> w_{r}^{+}: pickup of loaded passive at pickup location
> w_{r}^{-}: delivery of loaded passive at delivery location
> v_{r}^{+}: pickup of empty passive at delivery location

Extended Network

Goals:

1 Modeling synchronization in an effective manner
2 The journeys of all passive vehicles should be fully described by the journeys of all active vehicles

Following ideas from Meisel and Kopfer (2014) and Drexl (2007):

- Define a network for each class of active vehicles
- Both pickup and delivery location of request $r \in R$ are each identified by two different nodes:
v_{r}^{-}: delivery of empty passive at pickup location
w_{r}^{+}: pickup of loaded passive at pickup location
w_{r}^{-}: delivery of loaded passive at delivery location
v_{r}^{+}: pickup of empty passive at delivery location
- Duplicate all request nodes for each class of passive vehicles $p \in P$
- Time Windows for each node can be derived easily

Extended Network

Goals:

1 Modeling synchronization in an effective manner
2 The journeys of all passive vehicles should be fully described by the journeys of all active vehicles

Following ideas from Meisel and Kopfer (2014) and Drexl (2007):

- Define a network for each class of active vehicles
- Both pickup and delivery location of request $r \in R$ are each identified by two different nodes:
$v_{r p}^{-}$: delivery of empty passive p at pickup location
$w_{r p}^{+}$: pickup of loaded passive p at pickup location
$w_{r p}^{-}$: delivery of loaded passive p at delivery location
$v_{r p}^{+}$: pickup of empty passive p at delivery location
- Duplicate all request nodes for each class of passive vehicles $p \in P$
- Time Windows for each node can be derived easily

Example

Three active and two passive vehicles performing two requests

- Synchronization is still required at the four request nodes, but can now be handled by the unique arrival times at these nodes
- Journey of passive vehicles are fully specified by the routes of all active vehicles

Column Generation Formulation 1/3

Variables:

- $\lambda^{a q}$: q th route (path+schedule) for class $a \in A$ with attributes:
T_{i}^{q} : The point in time when route q visits node i
$X_{i j}^{q}$: The number of times route q uses arc (i, j)
b_{i}^{q} : The number of times route q visits node i
c^{q} : The cost of route q
- u_{r} : Indicating whether or not request r remains unfulfilled
- $x_{i j}^{a}$: Indicating the number of times arc (i, j) is traversed by active a

Column Generation Formulation 2/3

$$
\begin{array}{llr}
\min & \sum_{a \in A} \sum_{q \in \Omega^{a}} c^{q} \lambda^{a q}+\gamma \sum_{r \in R} u_{r} & \\
\text { s.t. } & \sum_{a \in A} \sum_{q \in \Omega^{a}} \sum_{p \in P^{r} \cap P^{a}} b_{v_{r p}^{q}}^{q} \lambda^{a q}+u_{r}=1 & r \in R \\
& \sum_{a \in A^{p}} \sum_{q \in \Omega^{a}}\left(b_{v_{r p}^{-}}^{q}-b_{w_{r p}}^{q}\right) \lambda^{a q}=0 & r \in R, p \in P^{r} \\
& \sum_{a \in A^{p}} \sum_{q \in \Omega^{a}}\left(b_{w_{r p}^{-}}^{q}-b_{v_{r p}}^{q}\right) \lambda^{a q}=0 & r \in R, p \in P^{r} \\
& \sum_{a \in A} \sum_{q \in \Omega^{a}} \sum_{p \in P^{r} \cap P^{a}}\left(T_{w_{r p}}^{q}-T_{v_{r p}}^{q}\right) \lambda^{a q}+s_{r}^{+} u_{r} \geq s_{r}^{+} & r \in R \\
& \sum_{a \in A} \sum_{q \in \Omega^{a}} \sum_{p \in P^{r} \cap P^{a}}\left(T_{v_{r p}}^{q}-T_{w_{r p}^{-}}^{q}\right) \lambda^{a q}+s_{r}^{-} u_{r} \geq s_{r}^{-} & r \in R
\end{array}
$$

- Constraints (2)-(4) imply reduced cost for arcs
- Constraints (5) and (6) imply linear node cost (depending on the time at that the node is visited)

Column Generation Formulation 2/3

$$
\begin{array}{rlr}
\min & \sum_{a \in A} \sum_{q \in \Omega^{a}} c^{q} \lambda^{a q}+\gamma \sum_{r \in R} u_{r} & \\
\text { s.t. } & \sum_{a \in A} \sum_{q \in \Omega^{a}} \sum_{p \in P^{r} \cap P^{a}} b_{v_{r p}^{-}}^{q} \lambda^{a q}+u_{r}=1 & r \in R \\
& \sum_{a \in A^{p}} \sum_{q \in \Omega^{a}}\left(b_{v_{r p}}^{q}-b_{w_{r p}^{q}}^{q}\right) \lambda^{a q}=0 & r \in R, p \in P^{r} \\
& \sum_{a \in A^{p}} \sum_{q \in \Omega^{a}}\left(b_{w_{r p}^{-}}^{q}-b_{v_{r p}^{+}}^{q}\right) \lambda^{a q}=0 & r \in R, p \in P^{r} \\
& \sum_{a \in A} \sum_{q \in \Omega^{a}} \sum_{p \in P^{r} \cap P^{a}}\left(T_{w_{r p}^{+}}^{q}-T_{v_{r p}^{-}}^{q}\right) \lambda^{a q}+s_{r}^{+} u_{r} \geq s_{r}^{+} & r \in R \\
& \sum_{a \in A} \sum_{q \in \Omega^{a}} \sum_{p \in P^{r} \cap P^{a}}\left(T_{v_{r p}}^{q}-T_{w_{r p}^{-}}^{q}\right) \lambda^{a q}+s_{r}^{-} u_{r} \geq s_{r}^{-} & r \in R
\end{array}
$$

- Constraints (2)-(4) imply reduced cost for arcs
- Constraints (5) and (6) imply linear node cost (depending on the time at that the node is visited)

Column Generation Formulation 3/3

Fleet constraints:

$$
\begin{array}{ll}
\sum_{q \in \Omega^{a}} \lambda^{a q} \leq K_{a} & a \in A \\
\sum_{a \in A^{p}} \sum_{q \in \Omega^{a}} b_{o_{p}}^{q} \lambda^{a q}=1 & p \in P
\end{array}
$$

Coupling constraint:
$x_{i j}^{\mathrm{a}}=\sum_{q \in \Omega^{a}} X_{i j}^{q} \lambda^{a q}$
$a \in A,(i, j) \in E^{a}$
Variable domains:
$\lambda^{a q} \geq 0$
$x_{i j}^{a} \in\{0,1\}$
$x_{i j}^{a} \in \mathbb{Z}_{+}^{0}$
$u_{r} \in\{0,1\}$

$$
\begin{align*}
& a \in A, q \in \Omega^{a} \tag{10}\\
& a \in A,(i, j) \in E^{a} \cap E^{R} \tag{11}\\
& a \in A,(i, j) \in E^{a} \backslash E^{R} \tag{12}\\
& r \in R \tag{13}
\end{align*}
$$

- No integer requirement for route variables:

Two or more fractional route variables with the same path and different schedules are combined to one route (Jans (2010), Desaulniers et al. (1998))

- Branching on arcs ensures integrality
- Branching on arc sets strengthen the procedure, i.e. branching on

$$
\sum_{a \in A} \sum_{p \in P} x_{v_{r p}, w_{r p}^{+}}^{a}=1 \text { or } 0
$$

Also possible:

- Branching on number of served requests or on a single request
- Branching on the number of all active vehicle or the number of active vehicle in a class

Subproblem

The subproblem is an (elementary) shortest path problem with time windows and linear node cost (ESPPTW-LNC)

Algorithms to solve the Subproblem:

- Labeling
- Discretization
- Branch-and-Cut (MiP Formulation)
- Branch-and-Price

The subproblem is an (elementary) shortest path problem with time windows and linear node cost (ESPPTW-LNC)

Algorithms to solve the Subproblem:

- Labeling
- Discretization
- Branch-and-Cut (MiP Formulation)
- Branch-and-Price

The subproblem is an (elementary) shortest path problem with time windows and linear node cost (ESPPTW-LNC)

Algorithms to solve the Subproblem:

- Labeling
- Discretization
- Branch-and-Cut (MiP Formulation)
- Branch-and-Price

Example

Example: For simplicity $t_{i j}=\tilde{c}_{i j}$ on all arcs:

$$
\tilde{c}_{2}=-4
$$

Path (1, 2, 4): Schedule $\left(T_{1}=0, T_{2}=5, T_{4}=10\right)$;
Cost $(1+5)+1 \cdot 0+(-4) \cdot 5+2 \cdot 10=6$
Path (1, 3, 4): Schedule $\left(T_{1}=0, T_{2}=7, T_{4}=8\right)$;
Cost $(2+1)+1 \cdot 0+(-1) \cdot 7+2 \cdot 8=12$
Path (1,4): Schedule ($T_{1}=0, T_{4}=8$);
Cost $1+1 \cdot 0+2 \cdot 8=17$

Example

Example: For simplicity $t_{i j}=\tilde{c}_{i j}$ on all arcs:

Path ($1,2,4$): Schedule ($T_{1}=0, T_{2}=5, T_{4}=10$);

Path (1, 3, 4): Schedule $\left(T_{1}=0, T_{2}=7, T_{4}=8\right)$;
Cost $(2+1)+1 \cdot 0+(-1) \cdot 7+2 \cdot 8=12$
Path (1, 4): Schedule ($T_{1}=0, T_{4}=8$);
Cost $1+1 \cdot 0+2 \cdot 8=17$

Example

Example: For simplicity $t_{i j}=\tilde{c}_{i j}$ on all arcs:

$$
\tilde{c}_{2}=-4
$$

Path (1, 2, 4): Schedule ($\left.T_{1}=0, T_{2}=5, T_{4}=10\right)$; Cost $(1+5)+1 \cdot 0+(-4) \cdot 5+2 \cdot 10=6$
Path (1, 3, 4): Schedule ($T_{1}=0, T_{2}=7, T_{4}=8$); Cost $(2+1)+1 \cdot 0+(-1) \cdot 7+2 \cdot 8=12$
Path (1, 4): Schedule ($T_{1}=0, T_{4}=8$);
Cost $1+1 \cdot 0+2 \cdot 8=17$

Example

Example: For simplicity $t_{i j}=\tilde{c}_{i j}$ on all arcs:

$$
\tilde{c}_{2}=-4
$$

Path ($1,2,4$): Schedule ($T_{1}=0, T_{2}=5, T_{4}=10$); Cost $(1+5)+1 \cdot 0+(-4) \cdot 5+2 \cdot 10=6$
Path (1,3,4): Schedule ($T_{1}=0, T_{2}=7, T_{4}=8$);

Example: For simplicity $t_{i j}=\tilde{c}_{i j}$ on all arcs:

Path ($1,2,4$): Schedule ($T_{1}=0, T_{2}=5, T_{4}=10$); Cost $(1+5)+1 \cdot 0+(-4) \cdot 5+2 \cdot 10=6$
Path (1,3,4): Schedule ($T_{1}=0, T_{2}=7, T_{4}=8$); Cost $(2+1)+1 \cdot 0+(-1) \cdot 7+2 \cdot 8=12$
Path (1,4): Schedule ($T_{1}=0, T_{4}=8$); Cost $1+1 \cdot 0+2 \cdot 8=17$

Example: For simplicity $t_{i j}=\tilde{c}_{i j}$ on all arcs:

Path ($1,2,4$): Schedule ($T_{1}=0, T_{2}=5, T_{4}=10$); Cost $(1+5)+1 \cdot 0+(-4) \cdot 5+2 \cdot 10=6$
Path (1,3,4): Schedule ($T_{1}=0, T_{2}=7, T_{4}=8$); Cost $(2+1)+1 \cdot 0+(-1) \cdot 7+2 \cdot 8=12$
Path (1,4): Schedule ($T_{1}=0, T_{4}=8$);

Example: For simplicity $t_{i j}=\tilde{c}_{i j}$ on all arcs:

Path ($1,2,4$): Schedule ($T_{1}=0, T_{2}=5, T_{4}=10$); Cost $(1+5)+1 \cdot 0+(-4) \cdot 5+2 \cdot 10=6$
Path (1,3,4): Schedule ($T_{1}=0, T_{2}=7, T_{4}=8$); Cost $(2+1)+1 \cdot 0+(-1) \cdot 7+2 \cdot 8=12$
Path (1,4): Schedule ($T_{1}=0, T_{4}=8$);
Cost $1+1 \cdot 0+2 \cdot 8=17$

Elementarity

Elementary path

Path is elementary with respect to the visited nodes, but not feasible:
\Rightarrow Flementarity w.r.t. tasks

Elementarity

Elementary path

Path is elementary with respect to the visited nodes, but not feasible:
\Rightarrow Elementarity w.r.t. tasks

Tasks from the view of an active vehicle

- For all requests

1 Carry passive vehicle to pickup-location of the request
2 Transport loaded passive vehicle directly from the pickup- to the delivery-location of the request
3 Carry the empty passive vehicle away from the delivery location of the request

- For all passive vehicles

1 Pickup the passive vehicle at its origin
2 Deliver the passive vehicle at its destination

There are also some precedences between the tasks that help to speed up the labeling algorithm

Chain of precedences for each pair $(p, r) \in P \times R^{p}$

Idea: Using cost functions as labels (loachim et al., 1998)
A partial path is represented by a Label with the following attributes:
i : last visited node
S : the tasks performed on the path
C : the Tradeoff Curve
Properties of the Tradeoff Curve (loachim et al., 1998)

- piecewise linear
- convex
- number of linear pieces is at most the number of nodes in the path
- positive slope pieces can be replaced by a piece with slope zero

Cost $c(t)$

$$
n=3
$$

Attributes:
n number of pieces
$\left(t^{p}, s^{p}\right)_{p=1}^{n}$ the n pieces
c^{1} (reduced) cost at start time of piece 1
t^{n+1} end time of last piece n

Derivable values:
c^{*} the optimal (reduced) cost
t^{*} the earliest time to obtain cost c^{*}
$C(T)$ (reduced) cost at time T

Example

Example

Example

- Update the performed tasks
- Update the tradeoff curve (loachim et al., 1998)

■ Extending some of the existing pieces may be obsolete
■ Maybe a new piece must be created
■ non-obsolete pieces (t, s) can easily be extended

- Pointwise dominance for each point on the tradeoff curve between labels residing at the same node (Liberatore et al., 2011)
- Label L dominates Label L^{\prime} at time T if

$$
S_{L^{\prime}} \subseteq S_{L} \text { and } c_{L^{\prime}}(T) \leq c_{L}(T)
$$

- Dominated parts of the curve are stored
- If the complete tradeoff curve of a label is dominated, the label itself is dominated and can be discarded
- In most cases: several other labels together are needed to $Ł$ make one label obsolete

Example $1 / 3$
$S_{L^{\prime}} \subsetneq S_{L}$

1. L^{\prime} dominates $L I^{1} \curvearrowleft$

Example 2/3

$S_{L^{\prime \prime}}=S_{L}$

1. L^{\prime} dominates $L I^{1} \longmapsto$
2. $L^{\prime \prime}$ dominates L

Example 3/3

1. L^{\prime} dominates $L I^{1} \longmapsto$
2. $L^{\prime \prime}$ dominates L

3. Merge intervals $I^{1} \curvearrowleft \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \cdots \cdots$?
4. Merge intervals $I^{1} \longleftarrow \square \longrightarrow \longrightarrow \longrightarrow \cdots \cdots \cdot$?

- Invert the time windows and linear node cost
- Same rules as in the forward case are applicable

Bidirectional Labeling

- Labels are propagate up to half-way point (Salani, 2005)
- $L_{f w}$ and $L_{b w}$ are mergeable over arc (i, j), if

$$
S_{f w} \cap S_{b w}=\emptyset \text { and } t_{f w}^{1}+t_{i j} \leq t_{b w}^{1} \text { and } t_{f w}^{1} \geq t^{\max } / 2
$$

- Optimal mergepoints $h_{f w}$ and $h_{b w}$ can be determined by distributing $\Delta=\max \left\{0, t_{f w}^{*}+t_{i j}-t_{b w}^{*}\right\}$ such that $\Delta=\Delta_{f w}+\Delta_{b w}, h_{f w}=t_{f w}^{*}-\Delta_{f w}$ and $h_{b w}=t_{b w}^{*}+\Delta_{b w}$
- Optimal distribution can be computed by iteratively choosing the smallest slope

(a)

(b)

Acceleration techniques

- ng-path relaxation (Baldacci et al., 2011)
- Heuristic Pricing
- Limited Discrepancy Search (Feillet et al., 2007)
- Heuristic dominance rule: L_{1} fully dominates L_{2} if $c_{1}^{*} \leq c_{2}^{*}$ and $t_{1}^{1} \leq t_{2}^{1}$
- Subset-row inequalities, defined on tasks

Computational Results

Instances

- 80 Instances with 10 requests, 4 passive and 2 active vehicle and time horizon 1000 (38 tasks)

■ 80 instances with 20 requests, 8 passive and 4 active vehicle and time horizon 1000 (76 tasks)

- There are 4 classes in both sets with different time window widths $(25,50,100,200)$

Configuration

- 2 hour time limit
- Pricing heuristics
- ng-neighborhood of size 15

■ Subset-row inequalities: $C u t_{\max }=5, C u t_{\text {task }}=2$

Computational Results

Results on 38 -task instances without cuts

TW flex.	\# Solved	Time [sec]			Gap at root [\%]			Gap closed [\%]		
		min	avg	max	min	avg	\max	min	avg	\max
25	20/20	36	191	931	0.00	0.43	1.65	100.00	100.00	100.00
50	20/20	43	362	2485	0.00	0.55	2.11	100.00	100.00	100.00
100	19/20	38	1076	7200	0.00	0.99	3.00	64.29	98.21	100.00
200	14/20	109	3466	7200	0.00	2.67	9.89	8.94	79.94	100.00
All	73/80		1274			1.16			94.54	

Results on 76-task instances without cuts

TW flex.	\# Solved	Time [sec]			Gap at root [\%]			Gap closed [\%]		
		min	avg	max	\min	avg	\max	min	avg	\max
25	17/20	131	3594	7200	0.00	0.80	2.39	46.52	90.54	100.00
50	8/20	282	5419	7200	0.28	1.55	4.30	21.26	67.96	100.00
100	2/20	2814	6882	7200	0.47	3.53	6.94	10.70	34.11	100.00
200	0/20	7200	7200	7200	6.10	8.48	13.47	1.79	6.27	15.35
All	27/80		5775			3.59			49.72	

Computational Results

Results on 38 -task instances with subset-row cuts

TW flex.	\# Solved	Time [sec]			Gap closed by cuts [\%]			Gap closed overall [\%]		
		min	avg	max	min	avg	max	min	avg	max
25	20/20	37	264	1696	3.13	67.57	100.00	100.00	100.00	100.00
50	20/20	49	266	1210	0.00	60.97	100.00	100.00	100.00	100.00
100	19/20	26	1398	7200	0.00	31.50	100.00	66.52	98.33	100.00
200	14/20	68	3896	7200	2.81	31.50	100.00	7.22	78.76	100.00
All	73/80		1456			47.88			94.27	

Results on 76-task instances with subset-row cuts

TW flex.	\# Solved	Time [sec]			Gap closed by cuts [\%]			Gap closed overall [\%]		
		min	avg	max	min	avg	max	min	avg	max
25	17/20	101	2550	7200	0.00	35.90	100.00	67.96	92.48	100.00
50	7/20	289	5395	7200	3.23	20.39	58.70	22.06	73.26	100.00
100	2/20	1118	6678	7200	1.03	11.64	77.50	9.58	35.92	100.00
200	0/20	7200	7200	7200	0.66	2.73	6.56	3.29	5.82	10.48
All	26/80		5456			17.66			51.87	

Conclusion and Outlook

Conclusion

- First Branch-Price-and-Cut Algorithm for a vehicle routing problem with synchronization in time and space

■ First algorithm that solves a linear node cost problem with ng-tour relaxation

- Algorithm is able to solve moderate size problem instances

Outlook:

- Alternative solution approaches for ESPPTW-LNC

Conclusion and Outlook

Conclusion

- First Branch-Price-and-Cut Algorithm for a vehicle routing problem with synchronization in time and space
- First algorithm that solves a linear node cost problem with $n g$-tour relaxation
- Algorithm is able to solve moderate size problem instances

Outlook:

- Alternative solution approaches for ESPPTW-LNC

Thank you for coming!

Questions?!

Baldacci, R., Mingozzi, A., and Roberti, R. (2011). New route relaxation and pricing strategies for the vehicle routing problem. Operations Research, 59(5), 1269-1283.
Desaulniers, G., Desrosiers, J., loachim, I., Solomon, M., Soumis, F., and Villeneuve, D. (1998). A unified framework for deterministic time constrained vehicle routing and crew scheduling problems. In T. G. Crainic and G. Laporte, editors, Fleet Management and Logistics, pages 57-93. Kluwer, Boston.
Drexl, M. (2007). On Some Generalized Routing Problems. Ph.D. thesis, Faculty of Business and Economics, RWTH Aachen University.
Feillet, D., Gendreau, M., and Rousseau, L.-M. (2007). New refinements for the solution of vehicle routing problems with branch and price. INFOR, 45(4), 239-256.
loachim, I., Gélinas, S., Soumis, F., and Desrosiers, J. (1998). A dynamic programming algorithm for the shortest path problem with time windows and linear node costs. Networks, 31(3), 193-204.
Jans, R. (2010). Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems. European Journal of Operational Research, 204(2), 251-254.
Liberatore, F., Righini, G., and Salani, M. (2011). A column generation algorithm for the vehicle routing problem with soft time windows. 4OR, 9(1), 49-82.
Meisel, F. and Kopfer, H. (2014). Synchronized routing of active and passive means of transport. OR Spectrum, 36(2), 297-322.
Salani, M. (2005). Branch-and-Price Algorithms for Vehicle Routing Problems. Ph.D. thesis, Faculty of Mathematical, Physical and Natural Sciences, University of Milan.

A feasible solution to the APVRP is a set of scheduled routes (for the active vehicles) in the extended network that fulfills:

- Routes starts at node o and terminates at node d
- All Nodes are visited within their time windows
- The four nodes of a request r are either all visited exactly once or none of them is visited
- If a request is served, all request nodes are visited by the same passive vehicle
- There is a feasible temporal synchronization of tasks within and between vehicles
- All passive vehicles are picked up at their initial location and are placed at their final locations
- Each active vehicle performs at most one feasible route
- Extending some of the existing pieces may be obsolete loachim et al. $(1998) \Rightarrow$: Indices f and g of the first and last new piece to be kept:

$$
\begin{gathered}
f:=\max \left\{0, p \in\{0 \ldots n+1\}: t_{i}^{p}+t_{i j} \leq e_{j}\right\} \\
g:=\min \left\{n, p \in\{0 \ldots n\}: s_{i}^{p}+\tilde{c}_{j} \geq 0 \text { or } t_{i}^{p+1}+t_{i j} \geq l_{j}\right\}
\end{gathered}
$$

■ Maybe a new piece must be created loachim et al. (1998) \Rightarrow : new-piece indicator δ

$$
\delta:= \begin{cases}1 & \text { if }\left(g=n_{i}, t_{i}^{*}=t_{i}^{n+1}, \text { and } t_{i}^{*}+t_{i j}<l_{j}\right) \text { or }(f=n+1) \\ 0 & \text { otherwise }\end{cases}
$$

- Second, non-obsolete pieces (t, s) are extended using the function

$$
f_{i j}(t, s):=\left(\left\{\max \left\{e_{j}, t+t_{i j}\right\}, \min \left\{0, s+\tilde{c}_{j}\right\}\right)\right.
$$

- cost at the start time t_{j}^{1} of the new pieces can be expressed as

$$
c_{j}^{1}=c_{i}\left(\min \left\{t_{i}^{*}, t_{j}^{1}-t_{i j}\right\}\right)+\tilde{c}_{i j}+\tilde{c}_{j} t_{j}^{1}
$$

- the remaining attributes are

$$
S_{j}:=\left(S_{i} \cap \mathcal{N}_{j}\right) \cup \mathcal{T}_{j}^{\text {set }}
$$

