Branch-Price-and-Cut for the Active-Passive Vehicle-Routing Problem Column Generation 2016, Búzios, Brazil

Christian Tilk^{1,c}, Nicola Bianchessi^{1,2}, Michael Drexl^{1,3}, <u>Stefan Irnich¹</u> and Frank Meisel⁴

¹: Chair of Logistics Management, Gutenberg School of Management and Economics
 ²: Department of Quantitative Methods, University of Brescia, Italy
 ³: Fraunhofer Centre for Applied Research on Supply Chain Services SCS, Nuremberg, Germany
 ⁴: Professur für Supply Chain Management, Christian-Albrechts-Universität zu Kiel, Germany
 ^c: Corresponding Author: tilk@uni-mainz.de

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

May 22-25, 2016

- Problem Description
- Extended Network Model
- Column Generation Formulation
- Pricing Problem
- Computational Results
- Conclusion & Outlook

Problem Description 1/4

The APVRP was first described by Meisel and Kopfer (2014)

Given: a set *R* of pickup-and-delivery requests with 3 tasks per request:

- 1 Provide an empty passive vehicle at the pickup location
- **2** Transport the loaded passive vehicle from the pickup to the delivery location
- 3 Carry away the empty passive vehicle from the delivery location

Problem Description 2/4

Synchronization:

Up to three different active vehicles can be involved in performing a request

Problem Description 2/4

Synchronization:

Up to three different active vehicles can be involved in performing a request

Problem Description 3/4

- R set of pickup-and-delivery requests
 - Time Window in which a request can be fulfilled
 - Service times for loading and unloading a request
- A set of classes of active vehicle
- P set of passive vehicles
 - (Different) Origin and destination depot for all active/passive vehicles
- Distances and travel times between each pair of locations
- Objective: Minimize a weighted sum of the total distance traveled, the total completion time of the routes, and the number of unfulfilled requests

- Each passive vehicle can load only one request at a time
- Each active vehicle can transport only one passive vehicle at a time
- But an active vehicle can be associated with different passive vehicles during its journey
- A passive vehicles can be associated with different active vehicles during its journey
- Compatibility restriction
 - between active and passive vehicle
 - between passive vehicles and requests

Three active and two passive vehicles performing two requests

- Synchronization in time and space is required at the pickup and delivery location of each request
- Routes of active and passive vehicles have to be determined separately

Three active and two passive vehicles performing two requests

- Synchronization in time and space is required at the pickup and delivery location of each request
- Routes of active and passive vehicles have to be determined separately

Extended Network

Goals:

- **1** Modeling synchronization in an effective manner
- 2 The journeys of all passive vehicles should be fully described by the journeys of all active vehicles

Following ideas from Meisel and Kopfer (2014) and Drexl (2007):

- Define a network for each class of active vehicles
- Both pickup and delivery location of request $r \in R$ are each identified by two different nodes:
 - v_r^- : delivery of empty passive at pickup location
 - w_r^+ : pickup of loaded passive at pickup location
 - w_r^- : delivery of loaded passive at delivery location
 - v_r^+ : pickup of empty passive at delivery location
- Duplicate all request nodes for each class of passive vehicles $p \in P$
- Time Windows for each node can be derived easily

Extended Network

Goals:

- **1** Modeling synchronization in an effective manner
- 2 The journeys of all passive vehicles should be fully described by the journeys of all active vehicles

Following ideas from Meisel and Kopfer (2014) and Drexl (2007):

- Define a network for each class of active vehicles
- Both pickup and delivery location of request $r \in R$ are each identified by two different nodes:
 - v_r^- : delivery of empty passive at pickup location
 - w_r^+ : pickup of loaded passive at pickup location
 - w_r^- : delivery of loaded passive at delivery location
 - v_r^+ : pickup of empty passive at delivery location
- Duplicate all request nodes for each class of passive vehicles $p \in P$
- Time Windows for each node can be derived easily

Extended Network

Goals:

- 1 Modeling synchronization in an effective manner
- 2 The journeys of all passive vehicles should be fully described by the journeys of all active vehicles

Following ideas from Meisel and Kopfer (2014) and Drexl (2007):

- Define a network for each class of active vehicles
- Both pickup and delivery location of request *r* ∈ *R* are each identified by two different nodes:
 - v_{rp}^{-} : delivery of empty passive p at pickup location
 - w_{rp}^+ : pickup of loaded passive p at pickup location
 - w_{rp}^{-} : delivery of loaded passive p at delivery location
 - v_{rp}^+ : pickup of empty passive p at delivery location
- Duplicate all request nodes for each class of passive vehicles $p \in P$
- Time Windows for each node can be derived easily

Three active and two passive vehicles performing two requests

- Synchronization is still required at the four request nodes, but can now be handled by the unique arrival times at these nodes
- Journey of passive vehicles are fully specified by the routes of all active vehicles

Variables:

• λ^{aq} : *q*th route (path+schedule) for class $a \in A$ with attributes:

- T_i^q : The point in time when route q visits node i
- X_{ij}^{q} : The number of times route q uses arc (i,j)
- b_i^q : The number of times route q visits node i
- c^q : The cost of route q
- u_r : Indicating whether or not request r remains unfulfilled
- x_{ii}^a : Indicating the number of times arc (i, j) is traversed by active a

Column Generation Formulation 2/3

min
$$\sum_{a \in A} \sum_{q \in \Omega^{a}} c^{q} \lambda^{aq} + \gamma \sum_{r \in R} u_{r}$$
(1)

s.t.
$$\sum_{a \in A} \sum_{q \in \Omega^{a}} \sum_{p \in P^{r} \cap P^{a}} b^{q}_{v_{rp}} \lambda^{aq} + u_{r} = 1 \qquad r \in R$$
(2)

$$\sum_{\boldsymbol{a}\in A^{\boldsymbol{p}}}\sum_{\boldsymbol{q}\in\Omega^{\boldsymbol{a}}} \left(b^{\boldsymbol{q}}_{\boldsymbol{v}_{\boldsymbol{rp}}^{-}} - b^{\boldsymbol{q}}_{\boldsymbol{w}_{\boldsymbol{rp}}^{+}} \right) \lambda^{\boldsymbol{a}\boldsymbol{q}} = 0 \qquad \qquad r \in R, \ \boldsymbol{p} \in P^{\boldsymbol{r}} \quad (3)$$

$$\sum_{\boldsymbol{a}\in A^{\boldsymbol{p}}}\sum_{\boldsymbol{q}\in\Omega^{\boldsymbol{a}}} \left(b^{\boldsymbol{q}}_{\boldsymbol{w}_{\boldsymbol{rp}}} - b^{\boldsymbol{q}}_{\boldsymbol{v}_{\boldsymbol{rp}}^{+}} \right) \lambda^{\boldsymbol{a}\boldsymbol{q}} = 0 \qquad \qquad \boldsymbol{r}\in R, \ \boldsymbol{p}\in P^{\boldsymbol{r}} \quad (4)$$

$$\sum_{a \in A} \sum_{q \in \Omega^{a}} \sum_{p \in P^{r} \cap P^{a}} \left(T^{q}_{w^{+}_{p}} - T^{q}_{v^{-}_{p}} \right) \lambda^{aq} + s^{+}_{r} u_{r} \ge s^{+}_{r} \qquad r \in R$$

$$(5)$$

$$\sum_{\boldsymbol{a}\in\mathcal{A}}\sum_{\boldsymbol{q}\in\Omega^{\boldsymbol{a}}}\sum_{\boldsymbol{p}\in\mathcal{P}^{\boldsymbol{r}}\cap\mathcal{P}^{\boldsymbol{a}}}\left(T^{\boldsymbol{q}}_{\boldsymbol{v}^{+}_{\boldsymbol{r}\boldsymbol{p}}}-T^{\boldsymbol{q}}_{\boldsymbol{w}^{-}_{\boldsymbol{r}\boldsymbol{p}}}\right)\lambda^{\boldsymbol{a}\boldsymbol{q}}+s^{-}_{\boldsymbol{r}}\boldsymbol{u}_{\boldsymbol{r}}\geq s^{-}_{\boldsymbol{r}}\quad\boldsymbol{r}\in\boldsymbol{R}$$
(6)

- Constraints (2)-(4) imply reduced cost for arcs
- Constraints (5) and (6) imply linear node cost (depending on the time at that the node is visited)

Column Generation Formulation 2/3

$$\min \quad \sum_{\boldsymbol{a} \in \boldsymbol{A}} \sum_{\boldsymbol{q} \in \Omega^{\boldsymbol{a}}} c^{\boldsymbol{q}} \lambda^{\boldsymbol{a}\boldsymbol{q}} + \gamma \sum_{\boldsymbol{r} \in \boldsymbol{R}} u_{\boldsymbol{r}} \tag{1}$$

s.t.
$$\sum_{a \in A} \sum_{q \in \Omega^{a}} \sum_{p \in P^{r} \cap P^{a}} b^{q}_{v_{p}} \lambda^{aq} + u_{r} = 1 \qquad r \in R$$
(2)

$$\sum_{\boldsymbol{a}\in A^{\boldsymbol{p}}}\sum_{\boldsymbol{q}\in\Omega^{\boldsymbol{a}}} \left(b^{\boldsymbol{q}}_{\boldsymbol{v}_{\boldsymbol{rp}}^{-}} - b^{\boldsymbol{q}}_{\boldsymbol{w}_{\boldsymbol{rp}}^{+}} \right) \lambda^{\boldsymbol{a}\boldsymbol{q}} = 0 \qquad \qquad \boldsymbol{r}\in R, \ \boldsymbol{p}\in P^{\boldsymbol{r}} \quad (3)$$

$$\sum_{\boldsymbol{a}\in\mathcal{A}^{\boldsymbol{p}}}\sum_{\boldsymbol{q}\in\Omega^{\boldsymbol{a}}} \left(b^{\boldsymbol{q}}_{\boldsymbol{w}_{\boldsymbol{rp}}} - b^{\boldsymbol{q}}_{\boldsymbol{v}_{\boldsymbol{rp}}} \right) \lambda^{\boldsymbol{a}\boldsymbol{q}} = 0 \qquad \qquad r \in R, \ \boldsymbol{p} \in P^{\boldsymbol{r}} \quad (4)$$

$$\sum_{\boldsymbol{a}\in\mathcal{A}}\sum_{\boldsymbol{q}\in\Omega^{\boldsymbol{a}}}\sum_{\boldsymbol{p}\in\mathcal{P}^{\boldsymbol{r}}\cap\mathcal{P}^{\boldsymbol{a}}}\left(T^{\boldsymbol{q}}_{\boldsymbol{w}^{+}_{\boldsymbol{p}}}-T^{\boldsymbol{q}}_{\boldsymbol{v}^{-}_{\boldsymbol{p}}}\right)\lambda^{\boldsymbol{a}\boldsymbol{q}}+s^{+}_{\boldsymbol{r}}u_{\boldsymbol{r}}\geq s^{+}_{\boldsymbol{r}}\quad\boldsymbol{r}\in\boldsymbol{R}$$
(5)

$$\sum_{\boldsymbol{a}\in\mathcal{A}}\sum_{\boldsymbol{q}\in\Omega^{\boldsymbol{a}}}\sum_{\boldsymbol{p}\in\mathcal{P}^{\boldsymbol{r}}\cap\mathcal{P}^{\boldsymbol{a}}}\left(T^{\boldsymbol{q}}_{\boldsymbol{v}_{\boldsymbol{rp}}^{+}}-T^{\boldsymbol{q}}_{\boldsymbol{w}_{\boldsymbol{rp}}^{-}}\right)\lambda^{\boldsymbol{a}\boldsymbol{q}}+\boldsymbol{s}_{\boldsymbol{r}}^{-}\boldsymbol{u}_{\boldsymbol{r}}\geq\boldsymbol{s}_{\boldsymbol{r}}^{-}\quad\boldsymbol{r}\in\boldsymbol{R}$$
(6)

- Constraints (2)-(4) imply reduced cost for arcs
- Constraints (5) and (6) imply linear node cost (depending on the time at that the node is visited)

Column Generation Formulation 3/3

Fleet constraints:

- $\sum_{q\in\Omega^a}\lambda^{aq}\leq K_a \qquad \qquad a\in A \tag{7}$
- $\sum_{\mathbf{a}\in A^{\mathbf{p}}}\sum_{q\in\Omega^{\mathbf{a}}}b_{o_{\mathbf{p}}}^{q}\lambda^{\mathbf{a}q}=1 \qquad \qquad \mathbf{p}\in P$ (8)

Coupling constraint:

$$x_{ij}^{a} = \sum_{q \in \Omega^{a}} X_{ij}^{q} \lambda^{aq} \qquad a \in A, (i,j) \in E^{a}$$
(9)

Variable domains:

$$\lambda^{aq} \ge 0 \qquad a \in A, q \in \Omega^{a} \qquad (10)$$

$$\times^{a}_{ij} \in \{0,1\} \qquad a \in A, (i,j) \in E^{a} \cap E^{R} \qquad (11)$$

$$\times^{a}_{ij} \in \mathbb{Z}^{0}_{+} \qquad a \in A, (i,j) \in E^{a} \setminus E^{R} \qquad (12)$$

$$u_{r} \in \{0,1\} \qquad r \in R \qquad (13)$$

Branching

- No integer requirement for route variables: Two or more fractional route variables with the same path and different schedules are combined to one route (Jans (2010), Desaulniers *et al.* (1998))
- Branching on arcs ensures integrality
- Branching on arc sets strengthen the procedure, i.e. branching on $\sum_{a \in A} \sum_{p \in P} x^{a}_{v_{rp}^{-}, w^{+}_{rp}} = 1 \text{ or } 0$

Also possible:

- Branching on number of served requests or on a single request
- Branching on the number of all active vehicle or the number of active vehicle in a class

The subproblem is an (elementary) shortest path problem with time windows and linear node cost (ESPPTW-LNC)

Algorithms to solve the Subproblem:

- Labeling
- Discretization
- Branch-and-Cut (MiP Formulation)
- Branch-and-Price

The subproblem is an (elementary) shortest path problem with time windows and linear node cost (ESPPTW-LNC)

Algorithms to solve the Subproblem:

- Labeling
- Discretization
- Branch-and-Cut (MiP Formulation)
- Branch-and-Price

The subproblem is an (elementary) shortest path problem with time windows and linear node cost (ESPPTW-LNC)

Algorithms to solve the Subproblem:

- Labeling
- Discretization
- Branch-and-Cut (MiP Formulation)
- Branch-and-Price

Example: For simplicity $t_{ij} = \tilde{c}_{ij}$ on all arcs:

Path (1,2,4): Schedule ($T_1 = 0, T_2 = 5, T_4 = 10$); Cost $(1+5) + 1 \cdot 0 + (-4) \cdot 5 + 2 \cdot 10 = 6$

Path (1,3,4): Schedule
$$(T_1 = 0, T_2 = 7, T_4 = 8);$$

Cost $(2+1) + 1 \cdot 0 + (-1) \cdot 7 + 2 \cdot 8 = 12$

Path (1,4): Schedule
$$(T_1 = 0, T_4 = 8)$$
;
Cost $1 + 1 \cdot 0 + 2 \cdot 8 = 17$

Example: For simplicity $t_{ij} = \tilde{c}_{ij}$ on all arcs:

Path (1,2,4): Schedule ($T_1 = 0, T_2 = 5, T_4 = 10$); Cost (1+5) + 1 · 0 + (-4) · 5 + 2 · 10 = 6 Path (1,3,4): Schedule ($T_1 = 0, T_2 = 7, T_4 = 8$); Cost (2+1) + 1 · 0 + (-1) · 7 + 2 · 8 = 12 Path (1,4): Schedule ($T_1 = 0, T_4 = 8$);

lost
$$1 + 1 \cdot 0 + 2 \cdot 8 = 17$$

Example: For simplicity $t_{ij} = \tilde{c}_{ij}$ on all arcs:

Path (1,2,4): Schedule ($T_1 = 0, T_2 = 5, T_4 = 10$); Cost (1+5) + 1 \cdot 0 + (-4) \cdot 5 + 2 \cdot 10 = 6

Path (1,3,4): Schedule ($T_1 = 0, T_2 = 7, T_4 = 8$); Cost (2 + 1) + 1 \cdot 0 + (-1) \cdot 7 + 2 \cdot 8 = 12

Path (1,4): Schedule ($T_1 = 0, T_4 = 8$); Cost $1 + 1 \cdot 0 + 2 \cdot 8 = 17$

Example: For simplicity $t_{ij} = \tilde{c}_{ij}$ on all arcs:

- Path (1,2,4): Schedule ($T_1 = 0, T_2 = 5, T_4 = 10$); Cost (1+5) + 1 \cdot 0 + (-4) \cdot 5 + 2 \cdot 10 = 6
- Path (1,3,4): Schedule ($T_1 = 0, T_2 = 7, T_4 = 8$); Cost $(2+1) + 1 \cdot 0 + (-1) \cdot 7 + 2 \cdot 8 = 12$

Path (1,4): Schedule $(T_1 = 0, T_4 = 8)$; Cost $1 + 1 \cdot 0 + 2 \cdot 8 = 17$

Example: For simplicity $t_{ij} = \tilde{c}_{ij}$ on all arcs:

- Path (1,2,4): Schedule ($T_1 = 0, T_2 = 5, T_4 = 10$); Cost (1+5) + 1 \cdot 0 + (-4) \cdot 5 + 2 \cdot 10 = 6
- Path (1,3,4): Schedule ($T_1 = 0, T_2 = 7, T_4 = 8$); Cost (2+1) + 1 \cdot 0 + (-1) \cdot 7 + 2 \cdot 8 = 12

Path (1,4): Schedule $(T_1 = 0, T_4 = 8)$; Cost $1 + 1 \cdot 0 + 2 \cdot 8 = 17$

Example: For simplicity $t_{ij} = \tilde{c}_{ij}$ on all arcs:

- Path (1,2,4): Schedule ($T_1 = 0, T_2 = 5, T_4 = 10$); Cost (1+5) + 1 \cdot 0 + (-4) \cdot 5 + 2 \cdot 10 = 6
- Path (1, 3, 4): Schedule ($T_1 = 0, T_2 = 7, T_4 = 8$); Cost (2 + 1) + 1 \cdot 0 + (-1) \cdot 7 + 2 \cdot 8 = 12

Path (1,4): Schedule
$$(T_1 = 0, T_4 = 8)$$
;
Cost $1 + 1 \cdot 0 + 2 \cdot 8 = 17$

Example: For simplicity $t_{ij} = \tilde{c}_{ij}$ on all arcs:

- Path (1,2,4): Schedule ($T_1 = 0, T_2 = 5, T_4 = 10$); Cost (1+5) + 1 \cdot 0 + (-4) \cdot 5 + 2 \cdot 10 = 6
- Path (1, 3, 4): Schedule ($T_1 = 0, T_2 = 7, T_4 = 8$); Cost (2 + 1) + 1 \cdot 0 + (-1) \cdot 7 + 2 \cdot 8 = 12

Path (1,4): Schedule
$$(T_1 = 0, T_4 = 8);$$

Cost $1 + 1 \cdot 0 + 2 \cdot 8 = 17$

Path is elementary with respect to the visited nodes, but not feasible: \Rightarrow Elementarity w.r.t. tasks

Path is elementary with respect to the visited nodes, but not feasible:

 \Rightarrow Elementarity w.r.t. tasks

Tasks from the view of an active vehicle

- For all requests
 - 1 Carry passive vehicle to pickup-location of the request
 - 2 Transport loaded passive vehicle directly from the pickup- to the delivery-location of the request
 - **3** Carry the empty passive vehicle away from the delivery location of the request
- For all passive vehicles
 - **1** Pickup the passive vehicle at its origin
 - 2 Deliver the passive vehicle at its destination

There are also some precedences between the tasks that help to speed up the labeling algorithm

Chain of precedences for each pair $(p, r) \in P \times R^p$

Idea: Using cost functions as labels (loachim *et al.*, 1998) A partial path is represented by a Label with the following attributes:

- i : last visited node
- ${\it S}\,$: the tasks performed on the path
- C : the Tradeoff Curve

Properties of the Tradeoff Curve (loachim et al., 1998)

- piecewise linear
- convex
- number of linear pieces is at most the number of nodes in the path
- positive slope pieces can be replaced by a piece with slope zero

Cost Function

Attributes:

n number of pieces

 $(t^p, s^p)_{p=1}^n$ the *n* pieces

c¹ (reduced) cost at start time of piece 1

 t^{n+1} end time of last piece n

Derivable values:

- c* the optimal (reduced)
 cost
- t^* the earliest time to obtain cost c^*
- C(T) (reduced) cost at time T

- Update the performed tasks
- Update the tradeoff curve (loachim *et al.*, 1998)
 - Extending some of the existing pieces may be obsolete
 - Maybe a new piece must be created
 - **non-obsolete** pieces (t, s) can easily be extended

- Pointwise dominance for each point on the tradeoff curve between labels residing at the same node (Liberatore *et al.*, 2011)
- Label L dominates Label L' at time T if

 $S_{L'} \subseteq S_L$ and $c_{L'}(T) \leq c_L(T)$

- Dominated parts of the curve are stored
- If the complete tradeoff curve of a label is dominated, the label itself is dominated and can be discarded
- In most cases: several other labels together are needed to Łmake one label obsolete

Example 1/3

 $\textbf{S}_{\textbf{L}'} \subsetneq \textbf{S}_{\textbf{L}}$

Example 2/3

Backward Labeling

- Invert the time windows and linear node cost
- Same rules as in the forward case are applicable

Bidirectional Labeling

- Labels are propagate up to half-way point (Salani, 2005)
- L_{fw} and L_{bw} are mergeable over arc (i, j), if

$$S_{\mathit{fw}} \cap S_{\mathit{bw}} = \emptyset$$
 and $t^1_{\mathit{fw}} + t_{\mathit{ij}} \leq t^1_{\mathit{bw}}$ and $t^1_{\mathit{fw}} \geq t^{\mathit{max}}/2.$

- Optimal mergepoints h_{fw} and h_{bw} can be determined by distributing $\Delta = \max\{0, t_{fw}^* + t_{ij} t_{bw}^*\}$ such that $\Delta = \Delta_{fw} + \Delta_{bw}$, $h_{fw} = t_{fw}^* \Delta_{fw}$ and $h_{bw} = t_{bw}^* + \Delta_{bw}$
- Optimal distribution can be computed by iteratively choosing the smallest slope

- ng-path relaxation (Baldacci et al., 2011)
- Heuristic Pricing
 - Limited Discrepancy Search (Feillet et al., 2007)
 - Heuristic dominance rule: L_1 fully dominates L_2 if $c_1^* \le c_2^*$ and $t_1^1 \le t_2^1$
- Subset-row inequalities, defined on tasks

Computational Results

Instances

- 80 Instances with 10 requests, 4 passive and 2 active vehicle and time horizon 1000 (38 tasks)
- 80 instances with 20 requests, 8 passive and 4 active vehicle and time horizon 1000 (76 tasks)
- There are 4 classes in both sets with different time window widths (25, 50, 100, 200)

Configuration

- 2 hour time limit
- Pricing heuristics
- ng-neighborhood of size 15

■ Subset-row inequalities: $Cut_{max} = 5, Cut_{task} = 2$

Computational Results

Results on 38-task instances without cuts

TW flex.	# Solved	Time [sec]			Gap	at root	[%]	Gap closed [%]		
		min	avg	max	min	avg	max	min	avg	max
25	20/20	36	191	931	0.00	0.43	1.65	100.00	100.00	100.00
50	20/20	43	362	2485	0.00	0.55	2.11	100.00	100.00	100.00
100	19/20	38	1076	7200	0.00	0.99	3.00	64.29	98.21	100.00
200	14/20	109	3466	7200	0.00	2.67	9.89	8.94	79.94	100.00
All	73/80		1274			1.16			94.54	

Results on 76-task instances without cuts

TW flex.	# Solved	-	Time [sec]			p at root	: [%]	Gap closed [%]		
		min	avg	max	min	avg	max	min	avg	max
25	17/20	131	3594	7200	0.00	0.80	2.39	46.52	90.54	100.00
50	8/20	282	5419	7200	0.28	1.55	4.30	21.26	67.96	100.00
100	2/20	2814	6882	7200	0.47	3.53	6.94	10.70	34.11	100.00
200	0/20	7200	7200	7200	6.10	8.48	13.47	1.79	6.27	15.35
All	27/80		5775			3.59			49.72	

Computational Results

Results on 38-task instances with subset-row cuts

TW flex.	# Solved	Time [sec]			Gap o	closed by	cuts [%]	Gap closed overall [%]		
		min	avg	max	min	avg	max	min	avg	max
25	20/20	37	264	1696	3.13	67.57	100.00	100.00	100.00	100.00
50	20/20	49	266	1210	0.00	60.97	100.00	100.00	100.00	100.00
100	19/20	26	1398	7200	0.00	31.50	100.00	66.52	98.33	100.00
200	14/20	68	3896	7200	2.81	31.50	100.00	7.22	78.76	100.00
All	73/80		1456			47.88			94.27	

Results on 76-task instances with subset-row cuts

TW flex.	# Solved	-	Time [sec]			losed by	cuts [%]	Gap closed overall [%]		
		min	avg	max	min	avg	max	min	avg	max
25	17/20	101	2550	7200	0.00	35.90	100.00	67.96	92.48	100.00
50	7/20	289	5395	7200	3.23	20.39	58.70	22.06	73.26	100.00
100	2/20	1118	6678	7200	1.03	11.64	77.50	9.58	35.92	100.00
200	0/20	7200	7200	7200	0.66	2.73	6.56	3.29	5.82	10.48
All	26/80		5456			17.66			51.87	

Conclusion

- First Branch-Price-and-Cut Algorithm for a vehicle routing problem with synchronization in time and space
- First algorithm that solves a linear node cost problem with *ng*-tour relaxation
- Algorithm is able to solve moderate size problem instances

Outlook:

Alternative solution approaches for ESPPTW-LNC

Conclusion

- First Branch-Price-and-Cut Algorithm for a vehicle routing problem with synchronization in time and space
- First algorithm that solves a linear node cost problem with *ng*-tour relaxation
- Algorithm is able to solve moderate size problem instances

Outlook:

Alternative solution approaches for ESPPTW-LNC

Thank you for coming!

Questions?!

- Baldacci, R., Mingozzi, A., and Roberti, R. (2011). New route relaxation and pricing strategies for the vehicle routing problem. Operations Research, 59(5), 1269–1283.
- Desaulniers, G., Desrosiers, J., Ioachim, I., Solomon, M., Soumis, F., and Villeneuve, D. (1998). A unified framework for deterministic time constrained vehicle routing and crew scheduling problems. In T. G. Crainic and G. Laporte, editors, *Fleet Management and Logistics*, pages 57–93. Kluwer, Boston.
- Drexl, M. (2007). On Some Generalized Routing Problems. Ph.D. thesis, Faculty of Business and Economics, RWTH Aachen University.
- Feillet, D., Gendreau, M., and Rousseau, L.-M. (2007). New refinements for the solution of vehicle routing problems with branch and price. *INFOR*, 45(4), 239–256.
- Ioachim, I., Gélinas, S., Soumis, F., and Desrosiers, J. (1998). A dynamic programming algorithm for the shortest path problem with time windows and linear node costs. *Networks*, 31(3), 193–204.
- Jans, R. (2010). Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems. European Journal of Operational Research, 204(2), 251–254.
- Liberatore, F., Righini, G., and Salani, M. (2011). A column generation algorithm for the vehicle routing problem with soft time windows. 40R, 9(1), 49–82.
- Meisel, F. and Kopfer, H. (2014). Synchronized routing of active and passive means of transport. OR Spectrum, 36(2), 297–322.
- Salani, M. (2005). Branch-and-Price Algorithms for Vehicle Routing Problems. Ph.D. thesis, Faculty of Mathematical, Physical and Natural Sciences, University of Milan.

Feasible Solution in the extended network

A feasible solution to the APVRP is a set of scheduled routes (for the active vehicles) in the extended network that fulfills:

- Routes starts at node *o* and terminates at node *d*
- All Nodes are visited within their time windows
- The four nodes of a request r are either all visited exactly once or none of them is visited
- If a request is served, all request nodes are visited by the same passive vehicle
- There is a feasible temporal synchronization of tasks within and between vehicles
- All passive vehicles are picked up at their initial location and are placed at their final locations
- Each active vehicle performs at most one feasible route

Forward Label Extension

■ Extending some of the existing pieces may be obsolete loachim *et al.* (1998) ⇒: Indices *f* and *g* of the first and last new piece to be kept:

$$f := \max\{0, p \in \{0 \dots n+1\} : t_i^p + t_{ij} \le e_j\}$$

 $g := \min\{n, p \in \{0 \dots n\} : s_i^p + \tilde{c}_j \ge 0 \text{ or } t_i^{p+1} + t_{ij} \ge l_j\}$

• Maybe a new piece must be created loachim *et al.* (1998) \Rightarrow : new-piece indicator δ

$$\delta := \left\{ \begin{array}{ll} 1 & \text{if } (g = n_i, t_i^* = t_i^{n+1}, \text{ and } t_i^* + t_{ij} < l_j) \text{ or } (f = n+1) \\ 0 & \text{otherwise} \end{array} \right.,$$

■ Second, non-obsolete pieces (t, s) are extended using the function $f_{ii}(t,s) := (\{\max\{e_i, t + t_{ii}\}, \min\{0, s + \tilde{c}_i\})\}$

cost at the start time t¹_j of the new pieces can be expressed as

$$c_j^1 = c_i(\min\{t_i^*, t_j^1 - t_{ij}\}) + \tilde{c}_{ij} + \tilde{c}_j t_j^1.$$

the remaining attributes are

$$S_j := (S_i \cap \mathcal{N}_j) \cup \mathcal{T}_j^{\mathsf{set}}$$