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Problem Description 1/4

The APVRP was first described by Meisel and Kopfer (2014)

Given: a set R of pickup-and-delivery requests with 3 tasks per request:

1 Provide an empty passive vehicle at the pickup location

2 Transport the loaded passive vehicle from the pickup to the delivery
location

3 Carry away the empty passive vehicle from the delivery location
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Problem Description 2/4

Synchronization:

Up to three different active vehicles can be involved in performing a request
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Problem Description 3/4

R set of pickup-and-delivery requests

Time Window in which a request can be fulfilled
Service times for loading and unloading a request

A set of classes of active vehicle

P set of passive vehicles

(Different) Origin and destination depot for all active/passive
vehicles

Distances and travel times between each pair of locations

Objective: Minimize a weighted sum of the total distance traveled,
the total completion time of the routes, and the number of
unfulfilled requests
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Problem Description 4/4

Each passive vehicle can load only one request at a time

Each active vehicle can transport only one passive vehicle at a time

But an active vehicle can be associated with different passive
vehicles during its journey

A passive vehicles can be associated with different active vehicles
during its journey

Compatibility restriction

between active and passive vehicle
between passive vehicles and requests
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Example

Three active and two passive vehicles performing two requests

— : Journey of active vehicle 1

— : Journey of active vehicle 2

— : Journey of active vehicle 3

- - - : Journey of the passive vehicle 1

- - - : Journey of the passive vehicle 2

Synchronization in time and space is required at the pickup and
delivery location of each request

Routes of active and passive vehicles have to be determined
separately
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Extended Network

Goals:

1 Modeling synchronization in an effective manner

2 The journeys of all passive vehicles should be fully described by the
journeys of all active vehicles

Following ideas from Meisel and Kopfer (2014) and Drexl (2007):

Define a network for each class of active vehicles

Both pickup and delivery location of request r ∈ R are each
identified by two different nodes:

v−r : delivery of empty passive at pickup location

w+
r : pickup of loaded passive at pickup location

w−r : delivery of loaded passive at delivery location

v+
r : pickup of empty passive at delivery location

Duplicate all request nodes for each class of passive vehicles p ∈ P

Time Windows for each node can be derived easily
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Example

Three active and two passive vehicles performing two requests

— : Journey of active vehicle 1

— : Journey of active vehicle 2

— : Journey of active vehicle 3

Synchronization is still required at the four request nodes, but can
now be handled by the unique arrival times at these nodes

Journey of passive vehicles are fully specified by the routes of all
active vehicles
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Column Generation Formulation 1/3

Variables:

λaq : qth route (path+schedule) for class a ∈ A with attributes:

T q
i : The point in time when route q visits node i

X q
ij : The number of times route q uses arc (i , j)

bq
i : The number of times route q visits node i

cq : The cost of route q

ur : Indicating whether or not request r remains unfulfilled

xa
ij : Indicating the number of times arc (i , j) is traversed by active a
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Column Generation Formulation 2/3

min
∑
a∈A

∑
q∈Ωa

cqλaq + γ
∑
r∈R

ur (1)

s.t.
∑
a∈A

∑
q∈Ωa

∑
p∈Pr∩Pa

bq
v−rp
λaq + ur = 1 r ∈ R (2)

∑
a∈Ap

∑
q∈Ωa

(
bq
v−rp
− bq

w+
rp

)
λaq = 0 r ∈ R, p ∈ Pr (3)

∑
a∈Ap

∑
q∈Ωa

(
bq
w−rp
− bq

v+
rp

)
λaq = 0 r ∈ R, p ∈ Pr (4)

∑
a∈A

∑
q∈Ωa

∑
p∈Pr∩Pa

(
Tq

w+
rp
− Tq

v−rp

)
λaq + s+

r ur ≥ s+
r r ∈ R (5)

∑
a∈A

∑
q∈Ωa

∑
p∈Pr∩Pa

(
Tq

v+
rp
− Tq

w−rp

)
λaq + s−r ur ≥ s−r r ∈ R (6)

Constraints (2)-(4) imply reduced cost for arcs

Constraints (5) and (6) imply linear node cost (depending on the time at that
the node is visited)
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Column Generation Formulation 3/3

Fleet constraints:∑
q∈Ωa

λaq ≤ Ka a ∈ A (7)

∑
a∈Ap

∑
q∈Ωa

bq
opλ

aq = 1 p ∈ P (8)

Coupling constraint:

xa
ij =

∑
q∈Ωa

Xq
ij λ

aq a ∈ A, (i , j) ∈ Ea (9)

Variable domains:

λaq ≥ 0 a ∈ A, q ∈ Ωa (10)

xa
ij ∈ {0, 1} a ∈ A, (i , j) ∈ Ea ∩ ER (11)

xa
ij ∈ Z

0
+ a ∈ A, (i , j) ∈ Ea \ ER (12)

ur ∈ {0, 1} r ∈ R (13)
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Branching

No integer requirement for route variables:
Two or more fractional route variables with the same path and
different schedules are combined to one route
(Jans (2010), Desaulniers et al. (1998))

Branching on arcs ensures integrality

Branching on arc sets strengthen the procedure, i.e. branching on∑
a∈A

∑
p∈P

xa
v−rp ,w+

rp
= 1 or 0

Also possible:

Branching on number of served requests or on a single request

Branching on the number of all active vehicle or the number of
active vehicle in a class
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Subproblem

The subproblem is an (elementary) shortest path problem with time
windows and linear node cost (ESPPTW-LNC)

Algorithms to solve the Subproblem:

Labeling

Discretization

Branch-and-Cut (MiP Formulation)

Branch-and-Price
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Example

Example: For simplicity tij = c̃ij on all arcs:

1 3

2

4

c̃1=+1
[0,3]

c̃2=−4
[3,7]

c̃3=−1
[6,8]

c̃4=+2
[8,10]

1 5

2 1

1

Path (1, 2, 4): Schedule (T1 = 0,T2 = 5,T4 = 10);
Cost (1 + 5) + 1 · 0 + (−4) · 5 + 2 · 10 = 6

Path (1, 3, 4): Schedule (T1 = 0,T2 = 7,T4 = 8);
Cost (2 + 1) + 1 · 0 + (−1) · 7 + 2 · 8 = 12

Path (1, 4): Schedule (T1 = 0,T4 = 8);
Cost 1 + 1 · 0 + 2 · 8 = 17
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Elementarity

Elementary path

Path is elementary with respect to the visited nodes, but not feasible:

⇒ Elementarity w.r.t. tasks
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Elementarity

Tasks from the view of an active vehicle

For all requests

1 Carry passive vehicle to pickup-location of the request
2 Transport loaded passive vehicle directly from the pickup- to

the delivery-location of the request
3 Carry the empty passive vehicle away from the delivery

location of the request

For all passive vehicles

1 Pickup the passive vehicle at its origin
2 Deliver the passive vehicle at its destination
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Precedences

There are also some precedences between the tasks that help to speed up
the labeling algorithm

Chain of precedences for each pair (p, r) ∈ P × Rp

Node i op v−rp w+
rp

Associated task τo
p τ1

r τ2
r

Tasks to test T test
i τo

p , τ
d
p τ1

r , τ
2
r , τ

3
r , τ

d
p τ2

r , τ
3
r , τ

d
p

Tasks to set T set
i τo

p τo
p , τ

1
r τo

p , τ
1
r

Node i w−rp v+
rp dp

Associated task τ2
r τ3

r τd
p

Tasks to test T test
i τ3

r , τ
d
p τ3

r , τ
d
p τd

p
Tasks to test T test

i τo
p , τ

1
r , τ

2
r τo

p , τ
1
r , τ

2
r , τ

3
r τo

p , τ
d
p

19 / 35



Forward Label

Idea: Using cost functions as labels (Ioachim et al., 1998)

A partial path is represented by a Label with the following attributes:

i : last visited node

S : the tasks performed on the path

C : the Tradeoff Curve

Properties of the Tradeoff Curve (Ioachim et al., 1998)

piecewise linear

convex

number of linear pieces is at most the number of nodes in the path

positive slope pieces can be replaced by a piece with slope zero
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Cost Function

Time t

Cost c(t)

c1

c∗

t1 t2 t3 t4 = t∗

s1

s2

s3

n = 3

Attributes:

n number of pieces

(tp , sp)np=1 the n pieces

c1 (reduced) cost at start
time of piece 1

tn+1 end time of last piece n

Derivable values:

c∗ the optimal (reduced)
cost

t∗ the earliest time to
obtain cost c∗

C(T ) (reduced) cost at time T
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Example

1 2 3

c̃1=−2
[0,5]

c̃2=−1
[4,8]

c̃3=+3
[7,10]

1 3

t

c(t)

0 2
t

c(t)

2 4

t

c(t)

4 6
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Forward Label Extension

Update the performed tasks

Update the tradeoff curve (Ioachim et al., 1998)

Extending some of the existing pieces may be obsolete

Maybe a new piece must be created

non-obsolete pieces (t, s) can easily be extended
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Dominance

Pointwise dominance for each point on the tradeoff curve between
labels residing at the same node (Liberatore et al., 2011)

Label L dominates Label L′ at time T if

SL′ ⊆ SL and cL′(T ) ≤ cL(T )

Dominated parts of the curve are stored

If the complete tradeoff curve of a label is dominated, the label
itself is dominated and can be discarded

In most cases: several other labels together are needed to Łmake
one label obsolete
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Example 1/3

SL′ ( SL

Time T

Cost

cL(T )

cL′(T )

2 4 60 1 3 5 7
I 11. L′ dominates L I 2
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Example 2/3

SL′′ = SL

Time T

Cost

cL(T )

cL′(T )

cL′′(T )

2 4 60 1 3 5 7 8
I 11. L′ dominates L I 2

2. L′′ dominates L I 3 ?
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Example 3/3

Time T

Cost

cL(T )

cL′(T )

cL′′(T )

2 4 60 1 3 5 7 8
I 11. L′ dominates L I 2

2. L′′ dominates L I 3 ?

3. Merge intervals I 1 ?
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Backward Labeling

Invert the time windows and linear node cost

Same rules as in the forward case are applicable

Time t

Cost c(t)

c∗

c ′

t1
bwt2

bwt3
bw = t∗bwt4

bw

s1

s2

s3

n = 3
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Bidirectional Labeling

Labels are propagate up to half-way point (Salani, 2005)
Lfw and Lbw are mergeable over arc (i , j), if

Sfw ∩ Sbw = ∅ and t1fw + tij ≤ t1bw and t1fw ≥ tmax/2.

Optimal mergepoints hfw and hbw can be determined by distributing
∆ = max{0, t∗fw + tij − t∗bw} such that ∆ = ∆fw + ∆bw , hfw = t∗fw −∆fw

and hbw = t∗bw + ∆bw

Optimal distribution can be computed by iteratively choosing the smallest
slope

Time t

Cost c(t)

c1

c∗

t1fw t∗fw

∆1

hfw

(a)

Time t

Cost c(t)

c∗

c1

t1bwt∗bw

∆2

hbw
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Acceleration techniques

ng -path relaxation (Baldacci et al., 2011)

Heuristic Pricing

Limited Discrepancy Search (Feillet et al., 2007)
Heuristic dominance rule: L1 fully dominates L2 if c∗1 ≤ c∗2 and
t1
1 ≤ t1

2

Subset-row inequalities, defined on tasks
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Computational Results

Instances

80 Instances with 10 requests, 4 passive and 2 active vehicle and
time horizon 1000 (38 tasks)

80 instances with 20 requests, 8 passive and 4 active vehicle and
time horizon 1000 (76 tasks)

There are 4 classes in both sets with different time window widths
(25, 50, 100, 200)

Configuration

2 hour time limit

Pricing heuristics

ng -neighborhood of size 15

Subset-row inequalities: Cutmax = 5,Cuttask = 2

30 / 35



Computational Results

Results on 38-task instances without cuts

TW flex. # Solved Time [sec] Gap at root [%] Gap closed [%]

min avg max min avg max min avg max

25 20/20 36 191 931 0.00 0.43 1.65 100.00 100.00 100.00
50 20/20 43 362 2485 0.00 0.55 2.11 100.00 100.00 100.00

100 19/20 38 1076 7200 0.00 0.99 3.00 64.29 98.21 100.00
200 14/20 109 3466 7200 0.00 2.67 9.89 8.94 79.94 100.00

All 73/80 1274 1.16 94.54

Results on 76-task instances without cuts

TW flex. # Solved Time [sec] Gap at root [%] Gap closed [%]

min avg max min avg max min avg max

25 17/20 131 3594 7200 0.00 0.80 2.39 46.52 90.54 100.00
50 8/20 282 5419 7200 0.28 1.55 4.30 21.26 67.96 100.00

100 2/20 2814 6882 7200 0.47 3.53 6.94 10.70 34.11 100.00
200 0/20 7200 7200 7200 6.10 8.48 13.47 1.79 6.27 15.35

All 27/80 5775 3.59 49.72
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Computational Results

Results on 38-task instances with subset-row cuts

TW flex. # Solved Time [sec] Gap closed by cuts [%] Gap closed overall [%]

min avg max min avg max min avg max

25 20/20 37 264 1696 3.13 67.57 100.00 100.00 100.00 100.00
50 20/20 49 266 1210 0.00 60.97 100.00 100.00 100.00 100.00

100 19/20 26 1398 7200 0.00 31.50 100.00 66.52 98.33 100.00 1 15.35 36
200 14/20 68 3896 7200 2.81 31.50 100.00 7.22 78.76 100.00

All 73/80 1456 47.88 94.27

Results on 76-task instances with subset-row cuts

TW flex. # Solved Time [sec] Gap closed by cuts [%] Gap closed overall [%]

min avg max min avg max min avg max

25 17/20 101 2550 7200 0.00 35.90 100.00 67.96 92.48 100.00
50 7/20 289 5395 7200 3.23 20.39 58.70 22.06 73.26 100.00

100 2/20 1118 6678 7200 1.03 11.64 77.50 9.58 35.92 100.00
200 0/20 7200 7200 7200 0.66 2.73 6.56 3.29 5.82 10.48

All 26/80 5456 17.66 51.87
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Conclusion and Outlook

Conclusion

First Branch-Price-and-Cut Algorithm for a vehicle routing problem
with synchronization in time and space

First algorithm that solves a linear node cost problem with ng -tour
relaxation

Algorithm is able to solve moderate size problem instances

Outlook:

Alternative solution approaches for ESPPTW-LNC
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Thank you for coming!

Questions?!
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Feasible Solution in the extended network

A feasible solution to the APVRP is a set of scheduled routes (for the
active vehicles) in the extended network that fulfills:

Routes starts at node o and terminates at node d

All Nodes are visited within their time windows

The four nodes of a request r are either all visited exactly once or
none of them is visited

If a request is served, all request nodes are visited by the same
passive vehicle

There is a feasible temporal synchronization of tasks within and
between vehicles

All passive vehicles are picked up at their initial location and are
placed at their final locations

Each active vehicle performs at most one feasible route
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Forward Label Extension

Extending some of the existing pieces may be obsolete Ioachim et al.
(1998) ⇒: Indices f and g of the first and last new piece to be kept:

f := max{0, p ∈ {0 . . . n + 1} : tp
i + tij ≤ ej}

g := min{n, p ∈ {0 . . . n} : sp
i + c̃j ≥ 0 or tp+1

i + tij ≥ lj}

Maybe a new piece must be created Ioachim et al. (1998)
⇒: new-piece indicator δ

δ :=

{
1 if (g = ni , t∗i = tn+1

i , and t∗i + tij < lj ) or (f = n + 1)
0 otherwise ,

Second, non-obsolete pieces (t, s) are extended using the function

fij (t, s) := ({max{ej , t + tij},min{0, s + c̃j})

cost at the start time t1j of the new pieces can be expressed as

c1j = ci (min{t∗i , t1j − tij}) + c̃ij + c̃j t1j .

the remaining attributes are

Sj := (Si ∩Nj ) ∪ T set
j
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