# Pseudo-polynomial formulations for bin packing and cutting stock problems 

Maxence Delorme ${ }^{(1)} \quad$ Manuel Iori ${ }^{(2)}$

(1) DEI, University of Bologna, Italy,
(2) DISMI, University of Modena and Reggio Emilia, Italy

## COLGEN 2016 - Búzios

## Outline

(1) Introduction
(2) Some C\&P pseudo-polynomial formulations
(3) How to improve?
(4) Preliminary results on the Variable-Sized Bin Packing Problem
(5) Conclusions and future research directions

## Bin Packing and Cutting Stock

In this talk we study Cutting \& Packing (C\&P) problems from a computational point of view

We focus on two (related) fundamental one-dimensional C\&P problems:

- Bin Packing Problem (BPP): given $n$ items having width $w_{j}$ for $j=1, \ldots, n$, and bins of capacity $c$, pack the items into the minimum number of bins
- Cutting Stock Problem (CSP): given $m$ item types, each consisting of a demand $d_{j}$ of items of width $w_{j}$, and stocks of length $c$, cut the items from the minimum number of stocks


## Pseudo-polynomial formulations

Pseudo-polynomial formulations (position-indexed formulations, capacity-indexed formulations, time-indexed formulations, ...) model CSP and BPP instances by taking care of the position in which the item is cut from/packed into the bin

- good lower bounds
- number of variables and constraints grows not only with $n$ but also with $c$

Intensively studied for C\&P problems from the 1960s:

- as a basis for branch-and-price algorithms
- as stand-alone models for optimal problem solution


## Pseudo-polynomial formulations

Pseudo-polynomial formulations (position-indexed formulations, capacity-indexed formulations, time-indexed formulations, ...) model CSP and BPP instances by taking care of the position in which the item is cut from/packed into the bin

- good lower bounds
- number of variables and constraints grows not only with $n$ but also with $c$

Intensively studied for C\&P problems from the 1960s:

- as a basis for branch-and-price algorithms
- as stand-alone models for optimal problem solution


## Evolution of software for MILP

Pseudo-polynomial formulations are by far the main mathematical model in multi-dimensional C\&P since Beasley (Operations Research, 1985)

For the 1-dim, case, from Delorme, lori and Martello (EJOR, forthcoming):

- n. of selected CSP instances solved to optimality (average seconds, 2.66 GHz ) using the ARC-FLOW formulation by Valério de Carvalho (Annals of OR, 1999) and different CPLEX versions

| CPLEX |  | $\begin{gathered} 6.0 \\ (1998) \end{gathered}$ | $\begin{gathered} 7.0 \\ (1999) \end{gathered}$ | $\begin{gathered} 8.0 \\ (2002) \end{gathered}$ | $\begin{gathered} 9.0 \\ (2003) \end{gathered}$ | $\begin{gathered} 10.0 \\ (2006) \end{gathered}$ | $\begin{gathered} 11.0 \\ (2007) \end{gathered}$ | $\begin{gathered} 12.1 \\ (2009) \end{gathered}$ | $\begin{gathered} 12.6 \\ (2013) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 600 | 20 | 13 (366) | 10 (420) | 5 (570) | 17 (268) | 19 (162) | 20 (65) | 19 (117) | 20 (114) |
| 3600 | 20 | 16 (897) | 15 (1210) | 15 (2009) | 20 (343) | 20 (186) | 20 (65) | 19 (267) | 20 (114) |

## Dynamic-Programming Flow Formulation (DP-FLOW)

Formally introduced for BPP only by Cambazard and O'Sullivan (LNCS, 2010) Idea dates back to (at least) Wolsey (Annals of Discrete Mathematics, 1977)

- DP table: a BPP item $j$ is an horizontal layer, a weight $d$ is a vertical layer
- $x_{j, d, j+1, e}=$ number of times arc $((j, d),(j+1, e))$ is selected



## Dynamic-Programming Flow Formulation (DP-FLOW)

Formally introduced for BPP only by Cambazard and O'Sullivan (LNCS, 2010) Idea dates back to (at least) Wolsey (Annals of Discrete Mathematics, 1977)

- DP table: a BPP item $j$ is an horizontal layer, a weight $d$ is a vertical layer
- $x_{j, d, j+1, e}=$ number of times arc $((j, d),(j+1, e))$ is selected $\min z$
$\sum_{\left.(j, d),(j+1, e)) \in \delta^{+}(j, d)\right)} x_{j, d, j, e}-\sum_{((j-1, e),(j, d)) \in \delta-((j, d))} x_{j-1, e, j, d}= \begin{cases}z & \text { if }(j, d)=(0,0) \\ -z & \text { if }(j, d)=(n+1, c) \\ 0 & \text { otherwise }\end{cases}$
$\sum_{\left((j-1, d),\left(j, d+w_{j}\right)\right) \in A}$
$x_{j-1, d, j, d+w_{j}}=1$
$j=1, \ldots, n$
$x_{j, d, j+1, e} \geq 0$ and integer
$((j, d),(j+1, e)) \in A$


## Aggregate Flow Formulation (ARC-FLOW)

Formally introduced for CSP by Valério de Carvalho (Annals of OR, 1999) as a basis for a B\&P

- all DP horizontal layers are "aggregated" into a unique layer
- $x_{d e}=\mathrm{n}^{\circ}$ of times arc $(d, e)$ is chosen (item of weight $e-d$ or empty space)



## Aggregate Flow Formulation (ARC-FLOW)

Formally introduced for CSP by Valério de Carvalho (Annals of OR, 1999) as a basis for a B\&P

- all DP horizontal layers are "aggregated" into a unique layer
- $x_{d e}=\mathrm{n}^{\circ}$ of times arc $(d, e)$ is chosen (item of weight $e-d$ or empty space)



## Aggregate Flow Formulation (ARC-FLOW)

Formally introduced for CSP by Valério de Carvalho (Annals of OR, 1999) as a basis for a B\&P

- all DP horizontal layers are "aggregated" into a unique layer
- $x_{d e}=\mathrm{n}^{\circ}$ of times arc $(d, e)$ is chosen (item of weight $e-d$ or empty space)



## Aggregate Flow Formulation (ARC-FLOW)

Formally introduced for CSP by Valério de Carvalho (Annals of OR, 1999) as a basis for a B\&P

- all DP horizontal layers are "aggregated" into a unique layer
- $x_{d e}=\mathrm{n}^{\circ}$ of times arc $(d, e)$ is chosen (item of weight $e-d$ or empty space)

(remove redundant arcs, sort items by non-increasing width)


## Aggregate Flow Formulation (ARC-FLOW)

Formally introduced for CSP by Valério de Carvalho (Annals of OR, 1999) as a basis for a B\&P

- all DP horizontal layers are "aggregated" into a unique layer
- $x_{d e}=\mathrm{n}^{\circ}$ of times arc $(d, e)$ is chosen (item of weight $e-d$ or empty space)

$$
\left.\begin{array}{l}
\min z \\
-\sum_{(d, e) \in \delta^{-}(e)} x_{d e}+\sum_{(e, f) \in \delta^{+}(e)} x_{e f}= \begin{cases}z & \text { if } e=0 \\
-z & \text { if } e=c \\
0 & \text { if } e=1, \ldots, c-1\end{cases} \\
\sum_{\left(d, d+w_{i}\right) \in A} x_{d, d+w_{i}} \geq d_{i} \\
x_{d e} \geq 0 \text { and integer } \quad i=1, \ldots, m
\end{array}\right\}
$$

## ONE-CUT

Proposed by Rao (Journal of the Computer Society of India, 1976) and Dyckhoff (Operations Research, 1981)

- $y_{p q}=$ number of times a piece of width $p$ is cut into a left piece (item) of width $q$ and a right piece (residual) of width $p-q$



## ONE-CUT

Proposed by Rao (Journal of the Computer Society of India, 1976) and Dyckhoff (Operations Research, 1981)

- $y_{p q}=$ number of times a piece of width $p$ is cut into a left piece (item) of width $q$ and a right piece (residual) of width $p-q$



## ONE-CUT

Proposed by Rao (Journal of the Computer Society of India, 1976) and Dyckhoff (Operations Research, 1981)

- $y_{p q}=$ number of times a piece of width $p$ is cut into a left piece (item) of width $q$ and a right piece (residual) of width $p-q$



## ONE-CUT

Proposed by Rao (Journal of the Computer Society of India, 1976) and Dyckhoff (Operations Research, 1981)

- $y_{p q}=$ number of times a piece of width $p$ is cut into a left piece (item) of width $q$ and a right piece (residual) of width $p-q$
$\min z=\sum_{q \in W} y_{c q}$
s.t. $\quad \sum_{p \in A(q)} y_{p q}+\sum_{p \in B(q)} y_{p+q, p} \geq d_{q}+\sum_{r \in C(q)} y_{q r} \quad q \in(W \cup R) \backslash\{c\}$

$$
y_{p q} \geq 0 \text { and integer } \quad p \in R, q \in W, p>q
$$

## Computational results for BPP/CSP

From Delorme, lori and Martello (EJOR, forthcoming):

- n. of instances solved to optimality in one minute (average CPU seconds) for number of items $n$

| $n$ | inst. | Pseudo-polynomial formulations |  |  | Branch(-and-cut)-and-price |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DP-FLOW | ONE-CUT | ARCFLOW | SCIP-BPP | VANCE | BELOV |
| 50 | 165 | 165 (0.5) | 165 (0.1) | 165 (0.1) | 165 (0.9) | 165 (0.1) | 165 (0.1) |
| 100 | 271 | 271 (5.0) | 271 (0.8) | 271 (0.3) | 271 (4.6) | 271 (0.1) | 271 (0.1) |
| 200 | 359 | 292 (21.0) | 358 (2.4) | 359 (0.8) | 293 (22.6) | 358 (1.1) | 359 (0.1) |
| 300 | 393 | 243 (33.9) | 385 (4.5) | 391 (2.0) | 155 (44.1) | 387 (4.3) | 393 (0.1) |
| 400 | 425 | 193 (42.4) | 408 (5.1) | 421 (3.0) | 114 (49.8) | 416 (9.3) | 425 (0.2) |
| 500 | 414 | 169 (44.8) | 394 (6.3) | 402 (4.0) | 69 (55.1) | 394 (19.2) | 414 (0.2) |
| 750 | 433 | 120 (52.6) | 401 (7.8) | 415 (6.0) | 22 (59.5) | 99 (50.4) | 433 (0.4) |
| 1000 | 441 | 67 (56.4) | 407 (8.1) | 416 (6.8) | 0 (60.0) | 62 (52.4) | 441 (0.7) |
| Total | 2901 | 1520 (36.7) | 2789 (5.0) | 2840 (3.3) | 1089 (42.4) | 2152 (20.3) | 2901 (0.2) |

ONE-CUT and ARC-FLOW somehow competitive up to $n=200$

## Computational results for BPP/CSP

From Delorme, lori and Martello (EJOR, forthcoming):

- n. of instances solved to optimality in one minute (average CPU seconds) for bin capacity $c$

| c | inst. | Pseudo-polynomial formulations |  |  | Branch(-and-cut)-and-price |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | DPFLOW | ONECUT | ARCFLOW | SCIP-BPP | VANCE | BELOV |
| 50 | 223 | 205 (13.6) | 223 (0.1) | 223 (0.1) | 86 (43.0) | 162 (20.2) | 223 (0.1) |
| 75 | 240 | 208 (19.5) | 240 (0.1) | 240 (0.1) | 96 (42.0) | 176 (20.2) | 240 (0.1) |
| 100 | 234 | 185 (26.4) | 234 (0.1) | 234 (0.1) | 89 (42.8) | 172 (20.3) | 234 (0.1) |
| 120 | 241 | 168 (29.6) | 241 (0.1) | 241 (0.1) | 91 (42.2) | 181 (19.7) | 241 (0.1) |
| 125 | 251 | 174 (30.9) | 251 (0.1) | 251 (0.1) | 101 (41.0) | 192 (19.2) | 251 (0.1) |
| 150 | 240 | 143 (34.9) | 240 (0.1) | 240 (0.2) | 95 (41.8) | 181 (19.5) | 240 (0.1) |
| 200 | 246 | 127 (39.3) | 246 (0.3) | 246 (0.3) | 99 (40.8) | 184 (20.5) | 246 (0.1) |
| 300 | 237 | 79 (45.6) | 237 (1.5) | 237 (1.3) | 80 (44.4) | 172 (21.9) | 237 (0.1) |
| 400 | 245 | 71 (47.4) | 245 (3.9) | 245 (2.8) | 95 (41.6) | 184 (20.3) | 245 (0.2) |
| 500 | 243 | 56 (49.2) | 241 (8.6) | 242 (5.1) | 77 (44.8) | 179 (20.7) | 243 (0.3) |
| 750 | 249 | 55 (49.9) | 211 (18.6) | 229 (11.2) | 91 (42.4) | 183 (21.0) | 249 (0.8) |
| 1000 | 252 | 49 (51.5) | 180 (25.3) | 212 (17.6) | 89 (42.5) | 186 (20.7) | 252 (1.3) |
| Total | 2901 | 1520 (36.7) | 2789 (5) | 2840 (3.3) | 1089 (42.4) | 2152 (20.3) | 2901 (0.2) |

ONE-CUT and ARC-FLOW somehow competitive up to $c=400$

## Equivalence of the formulations

All proposed formulation shave the same continuous lower bound value as that provided by the Gilmore and Gomory (Operations Research, 1963) model (GG)

Proposition (Valério de Carvalho (Annals of OR, 1999))
ARC-FLOW is equivalent to $G G$

## Proposition <br> DP-FLOW is equivalent to ARC-FLOW

Proof Skipped

## Proposition <br> ONE-CUT is equivalent to ARC-FLOW

Proof based on decomposition of non-negative flows into paths and cycles

## ARC-FLOW is included in ONE-CUT

We use an LP ARC-FLOW solution $\left[\bar{x}_{d e}\right]$ to build an LP ONE-CUT solution $\left[\bar{y}_{p q}\right]$
First step, we transform ARC-FLOW into an equivalent Normal ARC-FLOW by replacing, for any $d$, original loss arcs $(d, d+1)$ with $(d, c)$


## ARC-FLOW is included in ONE-CUT

We use an LP ARC-FLOW solution $\left[\bar{x}_{d e}\right]$ to build an LP ONE-CUT solution $\left[\bar{y}_{p q}\right]$
Second step, we build $\left[\bar{y}_{p q}\right]$ using the normal Arc-Flow solution as:

$$
\bar{y}_{c-d, e-d}=\bar{x}_{d e} \quad \forall(d, e) \in A, e \neq c
$$

ARC-FLOW LP solution ( $z=1.67$ ):


Resulting ONE-CUT LP solution:


## ONE-CUT is included in ARC-FLOW

We use an LP ONE-CUT solution $\left[\bar{y}_{p q}\right]$ to build an LP ARC-FLOW solution $\left[\bar{x}_{d e}\right]$
Set all $\bar{x}_{d, e}=0$;
For all $\bar{y}_{p, q}>0$ do
$\bar{x}_{c-p, c-p+q}+=\bar{y}_{p, q} ;$
$\bar{x}_{c-p+q, c}+=\bar{y}_{p, q} ;$
if $p \neq c$
$\bar{x}_{c-p, c}=\bar{y}_{p, q} ;$
endif
end do;

## ONE-CUT is included in ARC-FLOW

We use an LP ONE-CUT solution $\left[\bar{y}_{p q}\right]$ to build an LP ARC-FLOW solution $\left[\bar{x}_{d e}\right]$
Set all $\bar{x}_{d, e}=0$; For all $\bar{y}_{p, q}>0$ do

LP solution for ONE-CUT ( $z=2.17$ ):


Example ( $c=9$ ):

$\square$

## ONE-CUT is included in ARC-FLOW

We use an LP ONE-CUT solution $\left[\bar{y}_{p q}\right]$ to build an LP ARC-FLOW solution $\left[\bar{x}_{d e}\right]$

Set all $\bar{x}_{d, e}=0$; For all $\bar{y}_{p, q}>0$ do
$\bar{x}_{c-p, c-p+q}+=\bar{y}_{p, q} ;$
LP solution for ONE-CUT ( $z=2.17$ ):
$\bar{x}_{c-p+q, c}+=\bar{y}_{p, q}$;
if $p \neq c$
$\bar{x}_{c-p, c}=\bar{y}_{p, q} ;$
endif
end do;

Example ( $c=9$ ):

$\square$
$\bar{y}_{9,2}=1.00$


Resulting LP solution for ARC-FLOW:


## ONE-CUT is included in ARC-FLOW

We use an LP ONE-CUT solution $\left[\bar{y}_{p q}\right]$ to build an LP ARC-FLOW solution $\left[\bar{x}_{d e}\right]$

Set all $\bar{x}_{d, e}=0$; For all $\bar{y}_{p, q}>0$ do
$\bar{x}_{c-p, c-p+q}+=\bar{y}_{p, q} ;$


Resulting LP solution for ARC-FLOW:


## ONE-CUT is included in ARC-FLOW

We use an LP ONE-CUT solution $\left[\bar{y}_{p q}\right]$ to build an LP ARC-FLOW solution $\left[\bar{x}_{d e}\right]$

Set all $\bar{x}_{d, e}=0$; For all $\bar{y}_{p, q}>0$ do
$\bar{x}_{c-p, c-p+q}+=\bar{y}_{p, q} ;$
LP solution for ONE-CUT ( $z=2.17$ ):
$\bar{x}_{c-p+q, c}+=\bar{y}_{p, q} ;$
if $p \neq c$
$\bar{x}_{c-p, c}=\bar{y}_{p, q} ;$
endif
end do;

Example ( $c=9$ ):

$\square$
$\bar{y}_{9,2}=1.00$


Resulting LP solution for ARC-FLOW:


## ONE-CUT is included in ARC-FLOW

We use an LP ONE-CUT solution $\left[\bar{y}_{p q}\right]$ to build an LP ARC-FLOW solution $\left[\bar{x}_{d e}\right]$ ONE-CUT does not forbid recutting an item


Which would result into a negative flow in ARC-FLOW


We solve this by using an equivalent Normal ONE-CUT formulation where we add

$$
\sum_{p \in B(q)} y_{p+q, p} \geq \sum_{r \in C(q)} y_{q r} \quad q \in W
$$

## Improving ARC-FLOW with a Multi-Graph

Use of a multi-graph to possibly increase arcs length

- Brandão and Pedroso (Computers \& Operations Research, 2016)
- $x_{d e}^{j}=n^{\circ}$ of times item $j$ is packed as an arc ( $\left.d, e\right)$
- enlarge width of each arc $(d, e, j)$ by solving a subset sum problem
- remove arcs $(d, e, j)$ if there is another arc $\left(d^{\prime}, e^{\prime}, j\right)$ s.t. $d^{\prime} \geq d, e^{\prime} \leq e$.


## Improving ARC-FLOW with a Multi-Graph

Use of a multi-graph to possibly increase arcs length

- Brandão and Pedroso (Computers \& Operations Research, 2016)
- $x_{d e}^{j}=n^{\circ}$ of times item $j$ is packed as an arc ( $\left.d, e\right)$
- enlarge width of each arc $(d, e, j)$ by solving a subset sum problem
- remove arcs $(d, e, j)$ if there is another arc $\left(d^{\prime}, e^{\prime}, j\right)$ s.t. $d^{\prime} \geq d, e^{\prime} \leq e$.


Multi-graph


## Improving ARC-FLOW with a Multi-Graph

Use of a multi-graph to possibly increase arcs length

- Brandão and Pedroso (Computers \& Operations Research, 2016)
- $x_{d e}^{j}=n^{\circ}$ of times item $j$ is packed as an arc $(d, e)$
- enlarge width of each arc $(d, e, j)$ by solving a subset sum problem
- remove arcs $(d, e, j)$ if there is another arc $\left(d^{\prime}, e^{\prime}, j\right)$ s.t. $d^{\prime} \geq d, e^{\prime} \leq e$.


Multi-graph


## Improving ARC-FLOW with a Multi-Graph

Use of a multi-graph to possibly increase arcs length

- Brandão and Pedroso (Computers \& Operations Research, 2016)
- $x_{d e}^{j}=n^{\circ}$ of times item $j$ is packed as an arc $(d, e)$
- enlarge width of each arc $(d, e, j)$ by solving a subset sum problem
- remove arcs $(d, e, j)$ if there is another arc $\left(d^{\prime}, e^{\prime}, j\right)$ s.t. $d^{\prime} \geq d, e^{\prime} \leq e$.


Multi-graph


## Improving ARC-FLOW with a Multi-Graph

Use of a multi-graph to possibly increase arcs length

- Brandão and Pedroso (Computers \& Operations Research, 2016)
- $x_{d e}^{j}=n^{\circ}$ of times item $j$ is packed as an arc $(d, e)$
- enlarge width of each arc $(d, e, j)$ by solving a subset sum problem
- remove arcs $(d, e, j)$ if there is another arc $\left(d^{\prime}, e^{\prime}, j\right)$ s.t. $d^{\prime} \geq d, e^{\prime} \leq e$.


Multi-graph


8 arcs (instead of the original 27)

## Improving ARC-FLOW with Meet-in-the-Middle Patterns

Proposed in Côté and lori, The Meet-in-the-Middle Principle for C\&P Problems (2016, submitted) for general C\&P problems

- normal patterns align items to the left to decrease candidate optimal solutions
- proposed by Herz (IBM J. of Res. and Dev., 1972), Christofides and Whitlock (OR, 1977), improved by Boschetti et al. (IMA J. of Man. Math., 2002)
- Meet-in-the-Middle (MIM) patterns align items either to the left or to the right according to a threshold cut value $t$



## Improving ARC-FLOW with Meet-in-the-Middle Patterns

Key note features of the MIM patterns:

- computed by easy DP that also finds the best threshold cut value $t$
- same time complexity than normal patterns
- size is never higher and usually much smaller
- further reduction criteria
- when used in ARC-FLOW for CSP, 50\% average reduction in the number of arcs and $97 \%$ max reduction



## The case of Variable-Sized (and Cost) BPP (VSBPP)

VSBPP is the BPP variant in which each bin $k \in K$ has capacity $c_{k}$ and cost $\gamma_{k}$ ARC-FLOW is easily adapted by including new arcs $\left(0, c_{\max }-c_{k}\right)$ for each $k \in K$ (slight variation of Valério de Carvalho (EJOR, 2002))


## Proposition

ONE-CUT(VSBPP) is equivalent to $A R C-F L O W(V S B P P)$

Improvements based on Multi-graph and MIM can be directly used

## Preliminary computational results

Number of VSBPP/BPP instances solved in 1 hour (3.10GHz, 4 cores, Cplex 12.6)

| Instance | $\mathrm{c}_{\text {max }}$ | \#inst | ARC-FLOW |  |  | Multi-Graph |  |  | MIM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | \#opt | sec | \#var | \#opt | sec | $\Delta \mathrm{var}$ | \#opt | sec | $\Delta \mathrm{var}$ |
| Monaci | 150 | 300 | 300 | 1 | 1 K | 300 | 0 | -49\% | 300 | 1 | -48\% |
| Perboli 2 | 300 | 60 | 60 | 1 | 5 K | 60 | 1 | -5\% | 60 | 1 | -5\% |
| Perboli 3 | 120 | 480 | 480 | 0 | 1 K | 480 | 0 | -20\% | 480 | 0 | -20\% |
| Belov 1 | 10000 | 50 | 50 | 87 | 146 K | 50 | 57 | -25\% | 50 | 58 | -46\% |
| Belov 2 | 10000 | 50 | 50 | 68 | 139 K | 50 | 53 | -29\% | 50 | 37 | -50\% |
| AI 200 | 2500 | 50 | 49 | 233 | 121 K | 50 | 45 | -49\% | 50 | 110 | -30\% |
| AI 400 | 10000 | 50 | 3 | 3480 | 940 K | 10 | 3333 | -45\% | 10 | 3123 | -29\% |
| ANI 200 | 2500 | 50 | 27 | 2064 | 119 K | 50 | 30 | -48\% | 32 | 1510 | -30\% |
| ANI 400 | 10000 | 50 | 0 | 3602 | 935 K | 5 | 3465 | -87\% | 2 | 3536 | -29\% |
| Sum/Avg |  | 1140 | 1019 | 1060 | 267 K | 1055 | 776 | -41\% | 1034 | 931 | -35\% |

## Don't blame capacity

Pseudo-polynomial formulations are interesting both in theory and in practice
Of course, it is inadvisable to use them if capacity is too large

Studying combinations with B\&P is of great interest

## MILP solver matters

Preliminary results on the $\mathrm{P} \| \sum w_{j} C_{j}$, by Arthur Kramer, Dell'Amico, Iori (2016, work in progress)

- Selected instances solved with ARC-FLOW and 300 seconds (at 2.4 GHz )

| LP method | Solver | \#inst | \#opt | \#nodes | seconds |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Dual Simplex | Gurobi 6.5.1 | 260 | 212 | 0.2 | 81.6 |
|  | Cplex 12.6.2 | 260 | 195 | 0.5 | 90.6 |
| Primal Simplex | Gurobi 6.5.1 | 260 | 250 | 5.6 | 38.3 |
|  | Cplex 12.6.2 | 260 | 224 | 8.9 | 58.6 |
| Barrier | Gurobi 6.5.1 | 260 | 258 | 13.2 | 26.9 |
|  | Cplex 12.6.2 | 260 | 225 | 22.0 | 54.5 |

## Rectangle packing

In two-dimensional orthogonal C\&P problems, good computational results have been obtained by using pseudo-polynomial models in primal decomposition methods:

- Côté, Dell'Amico, Iori, Combinatorial Benders' Cuts for the Strip Packing Problem, (Operations Research, 2014)
- Delorme, lori, Martello, Logic Based Benders' Decomposition for Orthogonal Stock Cutting Problems, (2016, submitted)

Use B\&P as one of the engines in this kind of approaches? (Several instances with 20 items are open problems since decades)

## The MIRUP conjecture

MIRUP conjecture holds for both BPP and CSP and states that the difference between $z_{\text {opt }}$ and the optimal rounded-up GG solution value is at most 1

- Caprara, Dell'Amico, Díaz Díaz, Iori, Rizzi, Friendly Bin Packing Instances without Integer Round-up Property, Mathematical Programming (2015)
- Kartak, Ripatti, Scheithauer, Kurz, Minimal proper non-IRUP instances of the one-dimensional cutting stock problem, Discrete Applied Mathematics (2015)

Can pseudo-polynomial formulations help in this context?

## Thank you very much for your attention

