Branch and Price Approach

Results

Conclusions

NTNU – Trondheim Norwegian University of Science and Technology

A Branch and Price Approach for Deployment of Cloud Services

Anders N. Gullhav and Bjørn Nygreen

Department of Industrial Economics and Technology Management Norwegian University of Science and Technology, Trondheim, Norway

22-25 May, 2016

1

Introduction 00000000	Branch and Price Approach	Results 00000	Conclusions
Outline			
Introduction	n	``	· · · · · · · · · · · · · · · · · · ·
Branch and	d Price Approach		
Results			` -

Conclusions

Introduction ●0000000	Branch and Price Approach	Results 00000	Conclusions 000
Outline			
Introduction	n		· · · · · · · · · · · · · · · · · · ·
Branch and	Price Approach		
Doculto			<u>`</u>

Branch and Price Approach

Results 00000 Conclusions

Problem Overview

Focus on the service deployment problem of a provider of cloud software services

Branch and Price Approach

Results 00000 Conclusions

Problem Overview

Focus on the service deployment problem of a provider of cloud software services

Goal: obtain a cost-efficient service deployment while ensuring a satisfactory quality of service (QoS).

 provide a tolerable performance under the presence of failures

Branch and Price Approach

Results

Conclusions 000

Static and dynamic problems

Demand patterns:

- · recurring time periods with a stationary demand
- continuously fluctuating

Static problem

• solutions for a stationary demand period

Dynamic problem

· strategies to adapt to a continuously changing demand

Branch and Price Approach

Results

Conclusions

Fault tolerance and replication

Failure-prone infrastructure

- · introduction of replicated software components
- standby redundancy with passive replicas allocated shared backup resources

- Active replicas: balance the load between active replicas of a tier
- Passive replicas: backup replicas (idle in a failure-free situation)

7

Introduction
00000000

Branch and Price Approach

Results

Conclusions

Modeling of the replication

Replication patterns

- · define the numbers of active and passive replicas of each tier
- input to the optimization model (Gullhav et al., 2013)
- · select one for each service

Branch and Price Approach

Results 00000 Conclusions

Private Cloud Placement

- Active replicas are assigned more resources than passives
- Need to ensure that passive replicas can be activated and serve demand

Node pattern: a packing of a node

- set of active replicas
- set of passive replicas
- shared backup resources

Branch and Price Approach

Results

Conclusions

Problem statement

Simultaneously:

- decide the appropriate replication level for all services of the SP, and
- deploy the resulting replicas (VMs);
- · to minimize cost of placement in the public cloud

Introduction	Branch and Price Approach	Results	Conclusions
			0000
Outline			
		1	
		1	
		\	
Introduction			_
Introduction			
Branch and	Price Approach		1
Branon and			1

Results

Conclusions

- B: Set of node patterns (representing packed nodes)
- \mathcal{S} : Set of services
- Q_i : Set of components (tiers) of service $i \in S$
- R_i: Set of replication patterns of service i
- x_{b} = the number of times node pattern $b \in \mathcal{B}$ is selected
- $y_{ir} = 1$, if replication pattern r is selected for service i; = 0, otherwise
- t_{iq} = the number of active replicas of component (*i*, *q*) placed in the public cloud

$$\min z = \sum_{i \in S} \sum_{q \in Q_i} C_{iq} t_{iq}$$

$$\sum_{t \in \mathcal{R}_i} y_{it} = 1, \quad \forall i \in S$$
(2)

$$\sum_{b \in \mathcal{B}} W_{biq} x_b + t_{iq} - \sum_{r \in \mathcal{R}_i} R^A_{iqr} y_{ir} = 0, \quad \forall i \in \mathcal{S}, \forall q \in \mathcal{Q}_i$$

$$\sum_{b \in \mathcal{B}} V_{biq} x_b - \sum_{r \in \mathcal{R}_i} R_{iqr}^P y_{ir} = 0, \quad \forall i \in \mathcal{S}, \forall q \in \mathcal{Q}_i$$
(4)

$$\sum_{b \in B} x_b \le N \tag{5}$$

 $x_b \in \mathbb{Z}_+ \ \forall b \in \mathcal{B}; \ y_{ir} \in \{0, 1\} \ \forall i \in \mathcal{S}, \forall r \in \mathcal{R}_i; \ t_{iq} \in \mathbb{Z}_+ \ \forall i \in \mathcal{S}, \forall q \in \mathcal{Q}_i$ (6)

Shared

backup resources

(3)

Branch and Price Approach

Results 00000 Conclusions

Generation of Node Patterns

(1) Apriori generation (pre-generation) (Gullhav and Nygreen, 2015)

 the number of feasible node patterns is very large, even for small problems

(2) Solve a subproblem by

- a MIP solver
- a label setting algorithm solving a shortest path problem with resource constraints (SPPRC)
 - exact label setting algorithm
 - heuristic label setting algorithm

Introduction 00000000	Branch and Price Approach	Results 00000	Conclusions 000
Restr	icted Master Problem		
	$\min z = \sum_{i \in \mathcal{S}} \sum_{q \in \mathcal{Q}_i} C_{iq} t_{iq}$		(7)
	$\sum_{r \in \mathcal{R}_i} y_{ir} = 1, \forall i \in \mathcal{S}$		(8)
	$\sum_{b \in \mathcal{B}} W_{biq} x_b + t_{iq} - \sum_{r \in \mathcal{R}_i} R^A_{iqr} y_{ir} = 0, \forall i \in \mathcal{S},$	$\forall q \in \mathcal{Q}_i (lpha_{iq})$	(9)
	$\sum_{b \in \mathcal{B}} V_{biq} x_b - \sum_{r \in \mathcal{R}_i} R_{iqr}^{\mathcal{P}} y_{ir} = 0, \forall i \in \mathcal{S}, \forall q \in$	\mathcal{Q}_i (β_{iq})	(10)
	$\sum_{b\in\mathcal{B}}x_b\leq N (\eta)$		(11)
	$x_b \geq 0 \forall b \in \mathcal{B}$		(12)
	$0 \leq y_{ir} \leq 1 \forall i \in S, \forall r \in \mathcal{R}_i$		(13)
	$t_{iq} \geq 0, \hspace{1em} orall i \in \mathcal{S}, orall q \in \mathcal{Q}_i$		(14)

 $(\alpha_{iq}, \beta_{iq} \text{ and } \eta \text{ are dual variables})$

Branch and Price Approach

Results

Subproblem MIP Formulation

Minimize reduced cost:

$$\min z^{\mathcal{S}} = -\eta - \sum_{i \in \mathcal{S}} \sum_{q \in \mathcal{Q}_i} \alpha_{iq} w_{iq} - \sum_{i \in \mathcal{S}} \sum_{q \in \mathcal{Q}_i} \beta_{iq} v_{iq}$$

Subject to:

- Node-disjoint placement of active and passive replicas
- Upper bound on the number of passive replicas on a node
- Upper bound on the number of different services on a node
- Node resource constraint
 - including shared backup resources for passive replicas

$$w_{iq} = \begin{cases} 1 & \text{if an active replica of component } q \text{ of service } i \text{ is included} \\ 0 & \text{otherwise} \end{cases}$$

 $v_{iq} = \begin{cases} 1 & \text{if a passive replica of component } q \text{ of service } i \text{ is included} \\ 0 & \text{otherwise} \end{cases}$

(15)

Branch and Price Approach

Results 00000 Conclusions

Shortest Path Problem Formulation

The subproblem can be formulated as a *shortest path problem with resource constraints* (SPPRC) and solved by a *label setting algorithm*.

oooo	Branch and Price Approach	Results 00000	Conclusions 000
Dominance • label ℓ — co — tot — sh —	e criteria: dominates label k if: $st(\ell) \le cost(k)$ calResources $(\ell) \le totalResource$ aredBackup $(\ell) \ge$ sharedBackup	s(k) (k)	Node with shared backup resources Shared backup resources Passe replice Active replica
	the total resource allocation	ve the	Active

 Issue: the total resource allocation vs. the allocation of shared backup resources

Heuristic dominance and network reduction:

- Search for new node patterns on two reduced networks:
 - 1. a network with only active replicas; and
 - 2. a network where the amount of shared backup resources is fixed to a positive value
- This heuristic label setting algorithm is used together with the (exact) MIP formulation

troduction	Branch and Price Approach	Results	Conclusions
0000000	000000000	00000	000

Branching

- ordinary branching for the replication pattern variables (y_{ir})
- the branching rule for the node pattern variables (*x_b*) is based on ideas used for the cutting stock problem (Vanderbeck and Wolsey, 1996; Vance, 1998)
 - Consider pairs of components: eg. (i, q) and (i', q')
 - Select the pairs such that

$$\sum_{\substack{b \in \mathcal{B}: \\ N_{biq} = 1 \\ f_{bi'q'} = 1}} x_b = F \text{ is fractional}$$

- Branch on

и

$$\sum_{\substack{b \in \mathcal{B}: \\ W_{biq} = 1 \\ W_{bi'q'} = 1}} x_b \leq \lfloor F \rfloor \text{ and } \sum_{\substack{b \in \mathcal{B}: \\ W_{biq} = 1 \\ W_{bi'q'} = 1}} x_b \geq \lceil F \rceil$$

Branch and Price Approach

Results 00000 Conclusions

Implications in the Subproblem

In a given branch and bound node we will have a set of branching constraints in the master problem

- Account for the dual variables
- MIP: introduce one binary variable and one constraint
- SPPRC: the costs are compensated by the potential penalties and bonuses that can be obtained by the label extension
- More branches, more difficult subproblem

Introduction	Branch and Price Approach	Results ●0000	Conclusions 000
Outline			
Introductio	n	<u>```</u>	
Branch and	d Price Approach		
Results			

Conclusions

Branch and Price Approach

Results 00000 Conclusions

Experimental Setup

- Artificial data
- The cases differ from 20 services (80 component types) to 50 services (200 component types)
- we have only considered one node resource type (CPU)
- each node can at most run 4 passive replicas and 3 different services
- integer solutions are found by regularly solving the RMP as an IP

Provider 1		Provider 2		
Cost	Capacity	Cost	Capacity	
10	10%	15	15%	
20	20%	30	30%	
40	40%	60	60%	

Table : Public cloud VM types: cost and capacity

Results (I)

Branch and Price Approach

Results 00€00 Conclusions 000

75 % private cloud coverage

Table : Average relative gap (in %) between best found solution and best bound at different time steps (seconds)

Pre-generation				B&P	
3600	7200	10800	3600	7200	10800
10.89	10.17	9.410	2.007	1.769	1.709
14.34	13.05	12.51	4.126	3.933	3.576
16.74	14.84	14.73	7.208	5.847	5.489
37.53	16.13	15.99	N/A	7.641	6.738
	Pre- 3600 10.89 14.34 16.74 37.53	Pre-general 3600 7200 10.89 10.17 14.34 13.05 16.74 14.84 37.53 16.13	Pre-generation 3600 7200 10800 10.89 10.17 9.410 14.34 13.05 12.51 16.74 14.84 14.73 37.53 16.13 15.99	Pre-generation 3600 7200 10800 3600 10.89 10.17 9.410 2.007 14.34 13.05 12.51 4.126 16.74 14.84 14.73 7.208 37.53 16.13 15.99 N/A	Pre-generation B&P 3600 7200 10800 3600 7200 10.89 10.17 9.410 2.007 1.769 14.34 13.05 12.51 4.126 3.933 16.74 14.84 14.73 7.208 5.847 37.53 16.13 15.99 N/A 7.641

Results (II)

Branch and Price Approach

Results 000●0 Conclusions

90 % private cloud coverage

Table : Average relative gap (in %) between best found solution and best bound at different time steps (seconds)

Pre-generation				B&P		
	3600	7200	10800	3600	7200	10800
H20	28.99	27.20	25.63	8.044	6.775	5.146
H30	41.43	39.13	37.28	17.64	14.85	12.08
H40	107.9	45.14	44.30	23.49	18.39	17.64
H50	62.38	48.44	46.00	25.74	22.39	22.33

Introduction	
00000000	

Branch	and	Price	Approach
0000	000	000	

Results

Results (III)

Full private cloud coverage

- · only private cloud
- minimize the number of node patterns used

Table : Average relative gap (in %) between best found solution and best bound at different time steps/ (seconds)

Pre-generation				B&P		
3600	7200	10800		3600	7200	10800
3.895	3.895	3.592		1.553	0.924	0.620
8.196	5.423	4.663		2.522	1.729	1.343
7.903	6.566	5.552		3.958	3.081	2.938
9.119	9.119	7.224		5.144	4.494	4.137
	Pre- 3600 3.895 8.196 7.903 9.119	Pre-general 3600 7200 3.895 3.895 8.196 5.423 7.903 6.566 9.119 9.119	Pre-jeneration 3600 7200 10800 3.895 3.895 3.592 8.196 5.423 4.663 7.903 6.566 5.552 9.119 9.119 7.224	Pre-generation 3600 7200 10800 3.895 3.895 3.592 8.196 5.423 4.663 7.903 6.566 5.552 9.119 9.119 7.224	Pre-generation 3600 7200 10800 3600 3.895 3.895 3.592 1.553 8.196 5.423 4.663 2.522 7.903 6.566 5.552 3.958 9.119 7.224 5.144	Pre-generation B&P 3600 7200 10800 3600 7200 3.895 3.895 3.592 1.553 0.924 8.196 5.423 4.663 2.522 1.729 7.903 6.566 5.552 3.958 3.081 9.119 9.124 5.144 4.494

Introduction	Branch and Price Approach	Results 00000	Conclusions •OO
Outline			
Introductio	n	· · · · · · · · · · · · · · · · · · ·	
Branch and	d Price Approach		
Results			

Conclusions

Branch and Price Approach

Results

Conclusions

Concluding Remarks

- The branch and price approach gives better solutions, more quickly, than the pre-generation algorithm
- Speed-up by using a heuristic label setting algorithm
- Large private cloud coverage \Rightarrow larger gaps
- Only private cloud \Rightarrow cutting stock-like model and easier to solve

More details are found in Gullhav A.N., Nygreen B., A branch and price approach for deployment of multi-tier software services in clouds, *Computers & Operations Research, http://dx.doi.org/10.1016/j.cor.2016.05.007.*

Branch and Price Approach

Results

Conclusions

NTNU – Trondheim Norwegian University of Science and Technology

A Branch and Price Approach for Deployment of Cloud Services

Anders N. Gullhav and Bjørn Nygreen

Department of Industrial Economics and Technology Management Norwegian University of Science and Technology, Trondheim, Norway

22-25 May, 2016

References I

- A. N. Gullhav and B. Nygreen. Deployment of replicated multi-tier services in cloud data centres. *International Journal of Cloud Computing*, 4(2):130–149, 2015.
- A. N. Gullhav, B. Nygreen, and P. E. Heegaard. Approximating the response time distribution of fault-tolerant multi-tier cloud services. In 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing, pages 287–291, Los Alamitos, CA, USA, 2013. IEEE Computer Society.
- P. H. Vance. Branch-and-price algorithms for the one-dimensional cutting stock problem. *Computational Optimization and Applications*, 9:211–228, 1998.
- F. Vanderbeck and L. A. Wolsey. An exact algorithm for ip column generation. *Operations Research Letters*, 19(4):151 159, 1996.