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Motivation

Network Analysis:

Graphs representing real systems are no random graphs
→ community structure or clustering

Important applications in many networked systems from biology,
sociology, computer science, engineering, economics, politics,
linguistics, etc.
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Motivation

Network Analysis:

1 Community Detection (Fortunato, 2010)

Divide the graph into groups
Few edges between groups, relatively many
internal edges
Maximize modularity (Newman and Girvan,
2004)
Groups have no speci�c structure

2 Relaxed Cliques (Pattillo et al., 2013a)

Subgraphs with a speci�c structure
Find maximum cardinality/weight relaxed
clique
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Outline

1 Introduction and problem description

2 Branch-and-Price algorithm

Master program and pricing problem
Branching

3 Computational results

4 Conclusions
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Basic Notation

We assume that a simple graph G = (V ,E ) with �nite node set V and
edge set E is given.

For any subset S ⊆ V , the subgraph G [S ] := (S ,E ∩ (S × S)) is called
the induced subgraph of S .

A set S is a clique if G [S ] is complete.
A set S is an independent (stable) set if G [S ] is edgeless.
A clique/independent set is maximum if there is no clique/independent
set with larger cardinality.

Examples:

6

1

2

34

5

Maximum Clique

6

1

2

34

5

Maximum Independent Set
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Cliques and Clique Relaxations

A clique S forms an extreme subset in the following senses:

Degree Every node i ∈ S has maximum degree (=|S | − 1)

Distance The distance d(i , j) between any two nodes i , j ∈ S is
minimal (=1)

Density G [S ] has maximum density (=1);

Note: density of (V ′,E ′) is |E ′|

(|V
′|
2
)

Connectivity The vertex connectivity κ(G [S ]) is maximum (=|S | − 1)

Network analysis:

Cliques can model cohesive substructures/communities (Luce and
Perry, 1949).

However, requirements of a clique were found too restrictive!
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Cliques and Clique Relaxations

Di�erent clique relaxations have been considered in the literature (see
Pattillo et al., 2013a, for an overview):

Type of Based Hered-
relaxation De�nition on itary Connected

k-core δ(G [S ]) ≥ k Degree no |S | ≤ 2k + 1
s-plex δ(G [S ]) ≥ |S | − s Degree yes |S | ≥ 2s − 1
s-clique dG (i , j) ≤ s ∀ i , j ∈ S Dist. yes s = 1
s-club dG [S](i , j) ≤ s ∀ i , j ∈ S Dist. no always

γ-quasi-clique ρ(G [S ]) ≥ γ Density no
⌈
γ
(|S|
2

)
−
(|S|−1

2

)⌉
≥ 1

s-defective cl. |E(G [S ])| ≥
(|S|
2

)
− s Density yes |S | ≥ s + 2

k-block κ(G [S ]) ≥ k Connect. no always
s-bundle κ(G [S ]) ≥ |S | − s Connect. yes |S | ≥ s + 1

Note: δ(G ) minimum degree, dG (i , j) distance, ρ(G ) edge density, κ(G )
vertex connectivity

Denote by Π the graph property of being a speci�c type of relaxed clique.
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Clique Relaxations: Examples

1-defective clique
`one missing edge allowed

in induced subgraph'

1 2

34

⇒ 2-plex
`one missing edge allowed

at each node'

2-plex

1 2

34

6⇒ 1-defective clique

2-club
`distance between nodes in S at most 2 in

induced subgraph'
1

2

34

5

⇒ 2-clique
`distance between nodes of S at most 2 in

graph'

2-clique
1

2

34

5

6⇒ 2-club
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Clique Relaxations: Properties

Weak-Heredity

S with satis�es Π
⇒ any S ′ ⊂ S satis�es Π.

Weak-Hereditary relaxed cliques:

s-plex, s-clique, s-defective
clique, s-bundle

Non-hereditary relaxed cliques:

k-core, s-club, γ-quasi-clique,
k-block

1

2

34

5

2-club

1

2

34

5

no 2-club

Connectivity

For all i , j ∈ S there exists a path
between i and j in G [S ].

Connected relaxed cliques:

s-club, k-block

Non-connected relaxed cliques:

k-core, s-plex, s-clique, s-bundle,
γ-quasi-clique, s-defective clique

1 2 3

2-defective clique

Note:

Non-connected communities
may not be reasonable
→ Connected relaxed cliques
Connectivity is non-hereditary
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Large Relaxed Cliques

The optimization-related literature related to relaxed cliques is (as far as

we know) exclusively on �nding maximum/inclusion maximal relaxed

cliques.

Type of relaxation Exact Approach and Reference

k-core polynom. solvable, see (Kosub, 2004)
s-plex B&C: (Balasundaram et al., 2011), B&B: (Trukhanov

et al., 2013; Gschwind et al., 2015)
s-clique clique in the sth power graph
s-club B&C: (Almeida and Carvalho, 2012, 2013), B&B:

(Bourjolly et al., 2002; Mahdavi Pajouh and Balasun-
daram, 2012), MIP: (Bourjolly et al., 2000; Veremyev
and Boginski, 2012), SAT: (Wotzlaw, 2014)

γ-quasi-clique MIP: (Pattillo et al., 2013b), B&B: (Pajouh et al., 2014)
s-defective clique B&C: (Sherali and Smith, 2006), B&B: (Trukhanov

et al., 2013; Gschwind et al., 2015)
k-block polynom. solvable, see (Kammer and Täubig, 2005)
s-bundle B&B: (Gschwind et al., 2015)
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Large Relaxed Cliques

The optimization-related literature related to relaxed cliques is (as far as

we know) exclusively on �nding maximum/inclusion maximal relaxed

cliques.

Generic MIP-formulation:

xi ∈ {0, 1} indicates if vertex i ∈ V is in the relaxed clique S

ye ∈ {0, 1} indicates if G [S ] contains edge e ∈ E

max
∑
i∈V

xi (1)

s.t. (x , y) = (xi , yij) ∈ F (G ) (2)

Note: F (G ) is a polytope such that (x , y) ∈ F (G ) if and only if G [S ]
with S = {i ∈ V : x : i = 1} satis�es Π.
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Partitioning and Covering a Graph with Relaxed Cliques

The problems we consider in the following are partitioning and covering a
graph with a minimum number of relaxed cliques:

Example: Partitioning with 3-Clubs

Special case:

1-club = (|S |−1)-core =
1-plex = · · · = clique

Clique Cover

Vertex Coloring on
Complement Graph
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Partitioning and Covering a Graph with Relaxed Cliques

The problems we consider in the following are partitioning and covering a
graph with a minimum number of relaxed cliques:

Partitioning 6= covering for non-hereditary Π

Covering Solution:

Two 2-Clubs

3

2

4

1

5

6 7

9 8

Partitioning Solution:

Three 2-Clubs

3

2

4

1

5

6 7

9 8
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Partitioning and Covering a Graph with Relaxed Cliques

The problems we consider in the following are partitioning and covering a
graph with a minimum number of relaxed cliques:

Generic compact formulation:

Let UBRC be an upper bound for the problem

Index set H = {1, ...,UBRC} to refer to the individual relaxed
cliques in the partitioning/covering

Introduce indicator variables zh∈{0, 1}, h ∈ H

Duplicate xi and ye variables and constraints for each h ∈ H

min
∑
h∈H

zh

s.t.
∑
h∈H

xhi =(≥) 1 i ∈ V

zh ≥ xhi i ∈ V , h ∈ H

(xhi , y
h
ij ) ∈ F (G ) h ∈ H
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Partitioning and Covering a Graph with Relaxed Cliques

Interesting problem variants:

General With connectivity required

Type of relaxation Partitioning Covering Partitioning Covering

k-core 7 7 7 7

s-plex 4 7 4 4

s-clique 7 7 4 4

s-club 4 4 7 7

γ-quasi-clique 4 4 4 4

s-defective clique 4 7 4 4

k-block 7 7 7 7

s-bundle 4 7 4 4

Note:

7 Some vertices may have a degree smaller
than k

7 Determination of k-connected
components (Kammer and Täubig, 2005)

7 Clique cover in sth power graph

7 Partitioning = covering for
hereditary Π

7 s-Club is always connected
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Column Generation

Master problem derived from Dantzig-Wolfe decomposition of the
generic compact formulation and subsequent aggregation:

Ω the set of all S satisfying Π

Indicators aiS for i ∈ V ,S ∈ Ω with aiS = 1 if i ∈ S , and 0 otherwise

min
∑
S∈Ω

1>λS

s.t.
∑
S∈Ω

aiSλS = 1 (or ≥ 1) for all i ∈ V (dual πi )

λ ≥ 0 (∈ R|Ω|)
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Pricing Problem

Reduced Costs (rdc) of a relaxed clique S :

c̃S = 1−
∑
i∈S

πi

Pricing Problem:

1− c̃S = max
∑
i∈V

πixi

s.t. (xi , yij) ∈ F (G )

This is a maximum weight relaxed clique problem (MW-RC)

Generalization of the maximum (cardinality) relaxed clique problem

For most types of relaxed cliques this has not been studied in the
literature so far

MIP-solver (+ cutting plane algorithm) or combinatorial B&B

Weights πi ∈ R can be negative in case of partitioning
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Branching for Relaxed Clique Partitioning

Branching schemes: (Pricing problem preserving)

Generic Branching Rule (GBR)
Branching on infeasible components of the support graph

Pros 1 Applicable to all relaxed cliques
2 Basic idea: easy to understand
3 Simple to implement (remove edges from given

graph)
Cons 1 Complete only for connected weak-hereditary Π

2 Non-binary scheme

Infeasible (s + 1)-path branching
GBR tailored to s-club

Pros 1 Has never failed in our experiments
2 Simple to implement (remove edges from given

graph)
Cons 1 Non-binary scheme

Open: Complete preserving branching scheme for other Π
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Branching for Relaxed Clique Partitioning

Example 1: Partitioning with 2-plex (non-connected):

Instance:

1

2

3

4

5

6

7

LP relaxation:

1

2

3

4

5

6

7

1

1/2 1/2

1/2

Support graph:

1

2

3

4

5

6

7

1

1

1

1

1

1

1/2 1/2

1/2

Non-integer part of the solution is disconnected in the original graph
⇒ All components of the support graph are 2-plex

⇒ GBR fails
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Branching for Relaxed Clique Partitioning

Example 2: Partitioning with 2/3-quasi-clique (non-hereditary)

Instance:

6

1

2
3

4

5

7

8
9

10

11

LP relaxation:

6

1

2
3

4

5

7

8
9

10

11

all 1/3

1

Support graph:

6

1

2
3

4

5

7

8
9

10

11

2/3

2/3 2/3

2/32/3

2/3

all 1/3

1

1 1

1

1

1 1

1

1 1

All connected components not ful�lling Π have a superset that satis�es Π.

⇒ GBR fails
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Branching for Relaxed Clique Partitioning

Branching schemes: (Pricing problem non-preserving)

Ryan and Foster (1981) branching
Branching on whether two nodes i , j ∈ V are in the same (xi = xj)
or di�erent (xi + xj ≤ 1) relaxed cliques

Pros 1 Complete
2 Easy to understand
3 E�ective for set partitioning in general
4 Simple to handle in MIP-based pricing algorithms

Cons 1 Destroys structure of MW-RC pricing problem
2 Substantially complicates combinatorial

B&B-based pricing algorithms
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Branching for Relaxed Clique Covering

Let g(T ) =
∑

S∈Ω |T ∩ S |λS be the number of vertex contacts for subset

T ⊆ V and gλ(T ) the value in the current solution.

Hierarchy of Branching Decisions:

1 Branch on vertex contacts for T ⊆ V with branches
g(T ) ≤

⌊
gλ(T )

⌋
and g(T ) ≥

⌈
gλ(T )

⌉
2 Fix vertex contacts of P ⊆ V to its minimum (g(P) = |P|),

alternative branch g(P) ≥ |P|+ 1

3 Apply branching for partitioning in V=1{i ∈ V : gi is �xed to 1}

4 Vertex duplication for nodes in V>1{i ∈ V : gi is �xed to value > 1}
Replace node i by gλi copies i(1), . . . , igλ

i
of that node

Each of these node must be covered exactly once
No relaxed clique must contain two (or more) of these nodes
Separate constraints xi(s)

+ xi(t)
≤ 1 for all pairs of copies s 6= t
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Computational Results

Zachary's Karate Club (Zachary (1977), also: 10th DIMACS challenge)

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

`Real' solution (Zachary, 1977)

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

3-club partitioning
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Computational Results

College Football (Girvan and Newman (2002), 10th DIMACS challenge)

`Real' solution: 11 Conferences + 8 independent teams
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Computational Results

College Football (Girvan and Newman (2002), 10th DIMACS challenge)

3-plex partitioning in 16 groups
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Computational Results

College Football (no independents teams)

`Real' solution: 11 Conferences
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Computational Results

College Football (no independents teams)

3-plex partitioning in 14 groups
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Computational Results

Branch-and-Price insights:

1 Excellent lower bounds

2 Practical hardness increases with s (decreases with γ) and the
density of the graph and depends on the type of relaxed clique

3 Covering vs. partitioning

Covering slightly easier than partitioning for solving
LP-relaxation of the master program
Covering much harder when it comes to branching

4 Branching

Ryan/Foster branching seems to be much more e�ective
Pricing problems get harder when using Ryan/Foster branching

5 Subproblem solution

Combinatorial B&Bs much faster than MIPs for solving the
pricing problem
Ryan/Foster branching complicates the pricing problems for
the combinatorial B&Bs
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Conclusions and Outlook

Conclusions:

Introduced the relaxed clique covering/partitioning problem

New approach for community detection

Interesting components of branch-and-price

Branching
Solution of maximum weight relaxed clique pricing problem

Outlook:

Finding a complete pricing problem preserving branching
scheme

Heuristics and metaheuristics can accelerate pricing
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Thank you for listening!

Any questions?!
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