Social Network Analysis and Community Detection by Decomposing a Graph into Relaxed Cliques

Column Generation 2016, Búzios, Brazil

Timo Gschwind, Stefan Irnich, Fabio Furini¹, Roberto Wolfler Calvo²

{gschwind,irnich}@uni-mainz.de Chair for Logistics Management Gutenberg School of Management and Economics

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

May 22 - 25, 2015

¹fabio.furini@dauphine.fr, LAMSADE, Université Paris Dauphine ²roberto.wolfler@lipn.univ-paris13.fr, LIPN, Université Paris 13

Network Analysis:

Graphs representing real systems are no random graphs \rightarrow community structure or clustering

Important applications in many networked systems from biology, sociology, computer science, engineering, economics, politics, linguistics, etc.

Network Analysis:

- 1 Community Detection (Fortunato, 2010)
 - Divide the graph into groups
 - Few edges between groups, relatively many internal edges
 - Maximize modularity (Newman and Girvan, 2004)
 - Groups have no specific structure

- Subgraphs with a specific structure
- Find maximum cardinality/weight relaxed clique

Network Analysis:

- 1 Community Detection (Fortunato, 2010)
 - Divide the graph into groups
 - Few edges between groups, relatively many internal edges
 - Maximize modularity (Newman and Girvan, 2004)
 - Groups have no specific structure
- 2 Relaxed Cliques (Pattillo et al., 2013a)
 - Subgraphs with a specific structure
 - Find maximum cardinality/weight relaxed clique

1 Introduction and problem description

- 2 Branch-and-Price algorithm
 - Master program and pricing problem
 - Branching
- 3 Computational results
- 4 Conclusions

Basic Notation

We assume that a simple graph G = (V, E) with finite node set V and edge set E is given.

For any subset $S \subseteq V$, the subgraph $G[S] := (S, E \cap (S \times S))$ is called the induced subgraph of S.

A set S is a clique if G[S] is complete. A set S is an independent (stable) set if G[S] is edgeless. A clique/independent set is maximum if there is no clique/independent set with larger cardinality.

Examples:

Maximum Clique

Maximum Independent Set

Basic Notation

We assume that a simple graph G = (V, E) with finite node set V and edge set E is given.

For any subset $S \subseteq V$, the subgraph $G[S] := (S, E \cap (S \times S))$ is called the induced subgraph of S.

A set S is a clique if G[S] is complete. A set S is an independent (stable) set if G[S] is edgeless. A clique/independent set is maximum if there is no clique/independent set with larger cardinality.

Examples:

Maximum Clique

Maximum Independent Set

Cliques and Clique Relaxations

A clique S forms an extreme subset in the following senses:

Degree Every node $i \in S$ has maximum degree (=|S|-1)

- Distance The distance d(i, j) between any two nodes $i, j \in S$ is minimal (=1)
 - Density G[S] has maximum density (=1); Note: density of (V', E') is $\frac{|E'|}{\binom{|E'|}{2}}$

Connectivity The vertex connectivity $\kappa(G[S])$ is maximum (=|S|-1)

Network analysis:

- Cliques can model cohesive substructures/communities (Luce and Perry, 1949).
- However, requirements of a clique were found too restrictive!

Cliques and Clique Relaxations

Different clique relaxations have been considered in the literature (see Pattillo *et al.*, 2013a, for an overview):

Type of relaxation	Definition	Based on	Hered- itary	Connected
<i>k</i> -core	$\delta(G[S]) \ge k$	Degree	no	$ S \le 2k + 1$
<i>s</i> -plex	$o(G[S]) \ge S - s$	Degree	yes	$ S \ge 2s - 1$
<i>s</i> -clique	$d_G(i,j) \leq s \forall i,j \in S$	Dist.	yes	s = 1
<i>s</i> -club	$d_{G[S]}(i,j) \leq s \ \forall \ i,j \in S$	Dist.	no	always
γ -quasi-clique	$ ho(G[S]) \geq \gamma$	Density	no	$\left\lceil \gamma \binom{ S }{2} - \binom{ S -1}{2} \right\rceil \ge 1$
<i>s</i> -defective cl	$ E(G[S]) \ge { S \choose 2} - s$	Density	yes	$ S \ge s+2$
<i>k</i> -block	$\kappa(G[S]) \ge k$	Connect.	no	always
<i>s</i> -bundle	$\kappa(G[S]) \geq S - s$	Connect.	yes	$ S \ge s+1$

Note: $\delta(G)$ minimum degree, $d_G(i, j)$ distance, $\rho(G)$ edge density, $\kappa(G)$ vertex connectivity

Denote by Π the graph property of being a specific type of relaxed clique.

Clique Relaxations: Examples

i 1-defective clique

Clique Relaxations: Examples

i 1-defective clique

Clique Relaxations: Properties

Weak-Heredity

S with satisfies Π \Rightarrow any $S' \subset S$ satisfies Π .

Weak-Hereditary relaxed cliques: *s*-plex, *s*-clique, *s*-defective clique, *s*-bundle

Non-hereditary relaxed cliques: k-core, s-club, γ -quasi-clique, k-block

Connectivity

For all $i, j \in S$ there exists a path between i and j in G[S].

Connected relaxed cliques: *s*-club, *k*-block

Non-connected relaxed cliques: k-core, s-plex, s-clique, s-bundle, γ -quasi-clique, s-defective clique

2-defective clique

Note:

- Non-connected communities may not be reasonable
 - ightarrow Connected relaxed cliques
- Connectivity is non-hereditary

Clique Relaxations: Properties

Weak-Heredity

S with satisfies Π \Rightarrow any $S' \subset S$ satisfies Π .

Weak-Hereditary relaxed cliques: *s*-plex, *s*-clique, *s*-defective clique, *s*-bundle

Non-hereditary relaxed cliques: k-core, s-club, γ -quasi-clique, k-block

Connectivity

For all $i, j \in S$ there exists a path between i and j in G[S].

Connected relaxed cliques: *s*-club, *k*-block

Non-connected relaxed cliques: k-core, s-plex, s-clique, s-bundle, γ -quasi-clique, s-defective clique

2-defective clique

Note:

- Non-connected communities may not be reasonable
 - ightarrow Connected relaxed cliques
- Connectivity is non-hereditary

The optimization-related literature related to relaxed cliques is (as far as we know) exclusively on finding maximum/inclusion maximal relaxed cliques.

Type of relaxation	Exact Approach and Reference
<i>k</i> -core	polynom. solvable, see (Kosub, 2004)
<i>s</i> -plex	B&C: (Balasundaram <i>et al</i> ., 2011), B&B: (Trukhanov
	<i>et al.</i> , 2013; Gschwind <i>et al</i> ., 2015)
<i>s</i> -clique	clique in the <i>s</i> th power graph
<i>s</i> -club	B&C: (Almeida and Carvalho, 2012, 2013), B&B:
	(Bourjolly et al., 2002; Mahdavi Pajouh and Balasun-
	daram, 2012), MIP: (Bourjolly <i>et al.</i> , 2000; Veremyev
	and Boginski, 2012), SAT: (Wotzlaw, 2014)
γ -quasi-clique	MIP: (Pattillo <i>et al.</i> , 2013b), B&B: (Pajouh <i>et al.</i> , 2014)
<i>s</i> -defective clique	B&C: (Sherali and Smith, 2006), B&B: (Trukhanov
	<i>et al.</i> , 2013; Gschwind <i>et al.</i> , 2015)
<i>k</i> -block	polynom. solvable, see (Kammer and Täubig, 2005)
<i>s</i> -bundle	B&B: (Gschwind <i>et al.</i> , 2015)

The optimization-related literature related to relaxed cliques is (as far as we know) exclusively on finding maximum/inclusion maximal relaxed cliques.

Generic MIP-formulation:

- $x_i \in \{0,1\}$ indicates if vertex $i \in V$ is in the relaxed clique S
- $y_e \in \{0,1\}$ indicates if G[S] contains edge $e \in E$

$$\max \sum_{i \in V} x_i$$
(1)
s.t. $(x, y) = (x_i, y_{ij}) \in \mathscr{F}(G)$ (2)

Note: $\mathscr{F}(G)$ is a polytope such that $(x, y) \in \mathscr{F}(G)$ if and only if G[S] with $S = \{i \in V : x : i = 1\}$ satisfies Π .

The problems we consider in the following are partitioning and covering a graph with a minimum number of relaxed cliques:

Example: Partitioning with 3-Clubs

Special case:

- 1-c|ub = (|S|-1)-core = $1-p|ex = \cdots = c|ique$
 - Clique Cover
 - Vertex Coloring on Complement Graph

The problems we consider in the following are partitioning and covering a graph with a minimum number of relaxed cliques:

Partitioning \neq **covering** for non-hereditary Π

Covering Solution: Two 2-Clubs

Partitioning Solution: Three 2-Clubs

The problems we consider in the following are partitioning and covering a graph with a minimum number of relaxed cliques:

Generic compact formulation:

- Let *UB_{RC}* be an upper bound for the problem
- Index set $H = \{1, ..., UB_{RC}\}$ to refer to the individual relaxed cliques in the partitioning/covering
- Introduce indicator variables $z^h \in \{0, 1\}$, $h \in H$
- Duplicate x_i and y_e variables and constraints for each $h \in H$

min
$$\sum_{h \in H} z^{h}$$

s.t.
$$\sum_{h \in H} x_{i}^{h} = (\geq) 1 \qquad i \in V$$
$$z^{h} \geq x_{i}^{h} \qquad i \in V, h \in H$$
$$(x_{i}^{h}, y_{ij}^{h}) \in \mathscr{F}(G) \quad h \in H$$

Interesting problem variants:

	General		With connectivity required	
Type of relaxation	Partitioning	Covering	Partitioning	Covering
<i>k</i> -core	×	×	×	×
<i>s</i> -plex	~	×	~	~
<i>s</i> -clique	×	×	~	~
<i>s</i> -club	~	~	×	×
γ -quasi-clique	~	~	~	~
<i>s</i> -defective clique	~	×	~	~
<i>k</i> -block	×	×	×	×
<i>s</i> -bundle	~	×	~	~

Note:

- Some vertices may have a degree smaller than k
- Determination of k-connected components (Kammer and Täubig, 2005)
- X Clique cover in sth power graph
- X Partitioning = covering for hereditary Π
- × s-Club is always connected

Master problem derived from Dantzig-Wolfe decomposition of the generic compact formulation and subsequent aggregation:

- Ω the set of all *S* satisfying Π
- Indicators a_{iS} for $i \in V, S \in \Omega$ with $a_{iS} = 1$ if $i \in S$, and 0 otherwise

$$\begin{array}{ll} \min & \sum_{S \in \Omega} \mathbbm{1}^\top \lambda_S \\ \text{s.t.} & \sum_{S \in \Omega} a_{iS} \lambda_S = 1 \quad (\text{or} \ge 1) \quad \text{for all } i \in V \qquad (\text{dual } \pi_i) \\ & \lambda \ge \mathbf{0} \quad (\in \mathbb{R}^{|\Omega|}) \end{array}$$

Pricing Problem

Reduced Costs (rdc) of a relaxed clique S:

1

$$\tilde{c}_S = 1 - \sum_{i \in S} \pi_i$$

Pricing Problem:

$$-\tilde{c}_{S} = \max \sum_{i \in V} \pi_{i} x_{i}$$

s.t. $(x_{i}, y_{ij}) \in \mathscr{F}(G)$

This is a maximum weight relaxed clique problem (MW-RC)

- Generalization of the maximum (cardinality) relaxed clique problem
- For most types of relaxed cliques this has not been studied in the literature so far
- MIP-solver (+ cutting plane algorithm) or combinatorial B&B
- Weights $\pi_i \in \mathbb{R}$ can be negative in case of partitioning

Pricing Problem

Reduced Costs (rdc) of a relaxed clique S:

1

$$\tilde{c}_{S} = 1 - \sum_{i \in S} \pi_{i}$$

Pricing Problem:

$$-\tilde{c}_{S} = \max \qquad \sum_{i \in V} \pi_{i} x_{i}$$

s.t. $(x_{i}, y_{ij}) \in \mathscr{F}(G)$

This is a maximum weight relaxed clique problem (MW-RC)

- Generalization of the maximum (cardinality) relaxed clique problem
- For most types of relaxed cliques this has not been studied in the literature so far
- MIP-solver (+ cutting plane algorithm) or combinatorial B&B
- Weights $\pi_i \in \mathbb{R}$ can be negative in case of partitioning

Branching schemes: (Pricing problem preserving)

• Generic Branching Rule (GBR)

Branching on infeasible components of the support graph

- Pros **1** Applicable to all relaxed cliques
 - **2** Basic idea: easy to understand
 - **3** Simple to implement (remove edges from given graph)
- Cons 1 Complete only for connected weak-hereditary Π
 2 Non-binary scheme
- Infeasible (s + 1)-path branching GBR tailored to s-club

Pros **1** Has never failed in our experiments

- 2 Simple to implement (remove edges from given graph)
- Cons 1 Non-binary scheme

Open: Complete preserving branching scheme for other Π

Branching schemes: (Pricing problem preserving)

• Generic Branching Rule (GBR)

Branching on infeasible components of the support graph

- Pros **1** Applicable to all relaxed cliques
 - 2 Basic idea: easy to understand
 - **3** Simple to implement (remove edges from given graph)
- Cons 1 Complete only for connected weak-hereditary Π
 2 Non-binary scheme
- Infeasible (*s* + 1)-path branching GBR tailored to *s*-club
 - Pros **1** Has never failed in our experiments
 - 2 Simple to implement (remove edges from given graph)
 - Cons 1 Non-binary scheme

Open: Complete preserving branching scheme for other Π

Branching schemes: (Pricing problem preserving)

• Generic Branching Rule (GBR)

Branching on infeasible components of the support graph

- Pros **1** Applicable to all relaxed cliques
 - 2 Basic idea: easy to understand
 - **3** Simple to implement (remove edges from given graph)
- Cons 1 Complete only for connected weak-hereditary Π 2 Non-binary scheme
- Infeasible (*s* + 1)-path branching GBR tailored to *s*-club
 - Pros **1** Has never failed in our experiments
 - 2 Simple to implement (remove edges from given graph)
 - Cons 1 Non-binary scheme

Open: Complete preserving branching scheme for other Π

Example 1: Partitioning with 2-plex (non-connected):

Non-integer part of the solution is disconnected in the original graph ⇒ All components of the support graph are 2-plex ⇒ GBR fails

Example 1: Partitioning with 2-plex (non-connected):

Non-integer part of the solution is disconnected in the original graph ⇒ All components of the support graph are 2-plex ⇒ GBR fails

Example 1: Partitioning with 2-plex (non-connected):

Non-integer part of the solution is disconnected in the original graph \Rightarrow All components of the support graph are 2-plex \Rightarrow GBR fails

Example 2: Partitioning with 2/3-quasi-clique (non-hereditary)

All connected components not fulfilling Π have a superset that satisfies Π . \Rightarrow GBR fails

Example 2: Partitioning with 2/3-quasi-clique (non-hereditary)

Instance:

 \Rightarrow GBR fails

Example 2: Partitioning with 2/3-quasi-clique (non-hereditary)

All connected components not fulfilling Π have a superset that satisfies $\Pi.$ \Rightarrow GBR fails

Branching schemes: (Pricing problem non-preserving)

Ryan and Foster (1981) branching

Branching on whether two nodes $i, j \in V$ are in the same $(x_i = x_j)$ or different $(x_i + x_j \leq 1)$ relaxed cliques

- Pros **1** Complete
 - 2 Easy to understand
 - **3** Effective for set partitioning in general
 - 4 Simple to handle in MIP-based pricing algorithms
- Cons 1 Destroys structure of MW-RC pricing problem
 - Substantially complicates combinatorial B&B-based pricing algorithms

Branching schemes: (Pricing problem non-preserving)

Ryan and Foster (1981) branching

Branching on whether two nodes $i, j \in V$ are in the same $(x_i = x_j)$ or different $(x_i + x_j \leq 1)$ relaxed cliques

- Pros 1 Complete
 - 2 Easy to understand
 - **3** Effective for set partitioning in general
 - 4 Simple to handle in MIP-based pricing algorithms
- Cons 1 Destroys structure of MW-RC pricing problem
 - Substantially complicates combinatorial B&B-based pricing algorithms

Branching for Relaxed Clique Covering

Let $g(T) = \sum_{S \in \Omega} |T \cap S| \lambda_S$ be the number of vertex contacts for subset $T \subseteq V$ and $g^{\lambda}(T)$ the value in the current solution.

Hierarchy of Branching Decisions:

- **1** Branch on vertex contacts for $T \subseteq V$ with branches $g(T) \leq \lfloor g^{\lambda}(T) \rfloor$ and $g(T) \geq \lceil g^{\lambda}(T) \rceil$
- 2 Fix vertex contacts of $P \subseteq V$ to its minimum (g(P) = |P|), alternative branch $g(P) \ge |P| + 1$
- **3** Apply branching for partitioning in $V_{=1}$ { $i \in V : g_i$ is fixed to 1}
- 4 Vertex duplication for nodes in $V_{>1}$ { $i \in V : g_i$ is fixed to value > 1}
 - Replace node *i* by g_i^{λ} copies $i_{(1)}, \ldots, i_{g^{\lambda}}$ of that node
 - Each of these node must be covered exactly once
 - No relaxed clique must contain two (or more) of these nodes
 - Separate constraints $x_{i_{(s)}} + x_{i_{(t)}} \le 1$ for all pairs of copies $s \ne t$

Branching for Relaxed Clique Covering

Let $g(T) = \sum_{S \in \Omega} |T \cap S| \lambda_S$ be the number of vertex contacts for subset $T \subseteq V$ and $g^{\lambda}(T)$ the value in the current solution.

Hierarchy of Branching Decisions:

- **1** Branch on vertex contacts for $T \subseteq V$ with branches $g(T) \leq \lfloor g^{\lambda}(T) \rfloor$ and $g(T) \geq \lceil g^{\lambda}(T) \rceil$
- 2 Fix vertex contacts of $P \subseteq V$ to its minimum (g(P) = |P|), alternative branch $g(P) \ge |P| + 1$
- **3** Apply branching for partitioning in $V_{=1}$ { $i \in V : g_i$ is fixed to 1}
- 4 Vertex duplication for nodes in $V_{>1}$ { $i \in V : g_i$ is fixed to value > 1}
 - Replace node *i* by g_i^{λ} copies $i_{(1)}, \ldots, i_{g_i^{\lambda}}$ of that node
 - Each of these node must be covered exactly once
 - No relaxed clique must contain two (or more) of these nodes
 - Separate constraints $x_{i_{(s)}} + x_{i_{(t)}} \le 1$ for all pairs of copies $s \ne t$

Let $g(T) = \sum_{S \in \Omega} |T \cap S| \lambda_S$ be the number of vertex contacts for subset $T \subseteq V$ and $g^{\lambda}(T)$ the value in the current solution.

Hierarchy of Branching Decisions:

- **1** Branch on vertex contacts for $T \subseteq V$ with branches $g(T) \leq \lfloor g^{\lambda}(T) \rfloor$ and $g(T) \geq \lceil g^{\lambda}(T) \rceil$
- 2 Fix vertex contacts of $P \subseteq V$ to its minimum (g(P) = |P|), alternative branch $g(P) \ge |P| + 1$
- **3** Apply branching for partitioning in $V_{=1}$ { $i \in V : g_i$ is fixed to 1}
- 4 Vertex duplication for nodes in $V_{>1}$ { $i \in V : g_i$ is fixed to value > 1 }
 - Replace node *i* by g_i^{λ} copies $i_{(1)}, \ldots, i_{g_i^{\lambda}}$ of that node
 - Each of these node must be covered exactly once
 - No relaxed clique must contain two (or more) of these nodes
 - Separate constraints $x_{i_{(s)}} + x_{i_{(t)}} \leq 1$ for all pairs of copies $s \neq t$

Zachary's Karate Club (Zachary (1977), also: 10th DIMACS challenge)

'Real' solution (Zachary, 1977)

3-club partitioning

Zachary's Karate Club (Zachary (1977), also: 10th DIMACS challenge)

'Real' solution (Zachary, 1977)

3-club partitioning

College Football (Girvan and Newman (2002), 10th DIMACS challenge)

'Real' solution: 11 Conferences + 8 independent teams

College Football (Girvan and Newman (2002), 10th DIMACS challenge)

3-plex partitioning in 16 groups

College Football (no independents teams)

'Real' solution: 11 Conferences

College Football (no independents teams)

3-plex partitioning in 14 groups

Branch-and-Price insights:

- 1 Excellent lower bounds
- 2 Practical hardness increases with s (decreases with γ) and the density of the graph and depends on the type of relaxed clique
- 3 Covering vs. partitioning
 - Covering slightly easier than partitioning for solving LP-relaxation of the master program
 - Covering much harder when it comes to branching
- 4 Branching
 - Ryan/Foster branching seems to be much more effective
 - Pricing problems get harder when using Ryan/Foster branching
- 5 Subproblem solution
 - Combinatorial B&Bs much faster than MIPs for solving the pricing problem
 - Ryan/Foster branching complicates the pricing problems for the combinatorial B&Bs

Conclusions and Outlook

Conclusions:

- Introduced the relaxed clique covering/partitioning problem
- New approach for community detection
- Interesting components of branch-and-price
 - Branching
 - Solution of maximum weight relaxed clique pricing problem

Outlook:

- Finding a complete pricing problem preserving branching scheme
- Heuristics and metaheuristics can accelerate pricing

Conclusions and Outlook

Conclusions:

- Introduced the relaxed clique covering/partitioning problem
- New approach for community detection
- Interesting components of branch-and-price
 - Branching
 - Solution of maximum weight relaxed clique pricing problem

Outlook:

- Finding a complete pricing problem preserving branching scheme
- Heuristics and metaheuristics can accelerate pricing

Thank you for listening!

Any questions?!

- Almeida, M. T. and Carvalho, F. D. (2012). Integer models and upper bounds for the 3-club problem. *Networks*, **60**(3), 155–166.
- Almeida, M. T. and Carvalho, F. D. (2013). An analytical comparison of the LP relaxations of integer models for the k-club problem. *European Journal of Operational Research*, (0).
- Balasundaram, B., Butenko, S., and Hicks, I. V. (2011). Clique relaxations in social network analysis: The maximum k-plex problem. Operations Research, 59(1), 133-142.
- Bourjolly, J.-M., Laporte, G., and Pesant, G. (2000). Heuristics for finding k-clubs in an undirected graph. *Computers & Operations Research*, **27**(6), 559–569.
- Bourjolly, J.-M., Laporte, G., and Pesant, G. (2002). An exact algorithm for the maximum k-club problem in an undirected graph. *European Journal of Operational Research*, **138**(1), 21–28.
- Brandes, U. and Erlebach, T., editors (2005). Network Analysis: Methodological Foundations [outcome of a Dagstuhl seminar, 13-16 April 2004], volume 3418 of Lecture Notes in Computer Science. Springer.
- Fortunato, S. (2010). Community detection in graphs. *Physics Reports*, **486**(3–5), 75–174.
- Girvan, M. and Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821-7826.

- Gschwind, T., Irnich, S., and Podlinski, I. (2015). Maximum weight relaxed cliques and russian doll search revisited. Technical Report LM-2015-02, Chair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz, Mainz, Germany.
- Kammer, F. and Täubig, H. (2005). Connectivity. In Brandes and Erlebach (2005), pages 143–177.
- Kosub, S. (2004). Local density. In Brandes and Erlebach (2005), pages 112-142.
- Luce, R. D. and Perry, A. D. (1949). A method of matrix analysis of group structure. *Psychometrika*, **14**(2), 95–116.
- Mahdavi Pajouh, F. and Balasundaram, B. (2012). On inclusionwise maximal and maximum cardinality -clubs in graphs. *Discrete Optimization*, **9**(2), 84–97.
- Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community structure in networks. *Physical Review E*, 69, 026113.
- Pajouh, F. M., Miao, Z., and Balasundaram, B. (2014). A branch-and-bound approach for maximum quasi-cliques. **216**(1), 145–161.
- Pattillo, J., Youssef, N., and Butenko, S. (2013a). On clique relaxation models in network analysis. *European Journal of Operational Research*, 226(1), 9–18.
- Pattillo, J., Veremyev, A., Butenko, S., and Boginski, V. (2013b). On the maximum quasi-clique problem. *Discrete Applied Mathematics*, **161**(1–2), 244–257.
- Ryan, D. and Foster, B. (1981). An integer programming approach to scheduling. In A. Wren, editor, Computer Scheduling of Public Transport: Urban Passenger Vehicle and Crew Scheduling, chapter 17, pages 269–280. Elsevier, North-Holland.

- Sherali, H. D. and Smith, J. C. (2006). A polyhedral study of the generalized vertex packing problem. *Mathematical Programming*, **107**(3), 367–390.
- Trukhanov, S., Balasubramaniam, C., Balasundaram, B., and Butenko, S. (2013). Algorithms for detecting optimal hereditary structures in graphs, with application to clique relaxations. *Computational Optimization and Applications*, **56**(1), 113–130.
- Veremyev, A. and Boginski, V. (2012). Identifying large robust network clusters via new compact formulations of maximum k-club problems. *European Journal of Operational Research*, 218(2), 316–326.
- Wotzlaw, A. (2014). On solving the maximum k-club problem. Technical Report arXiv:1403.5111v2, Institut für Informatik, Universität zu Köln, Köln, Germany.
- Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. *Journal of Anthropological Research*, **33**(4), 452–473.