Column Generation with the Primal-Dual Interior Point Method

Jacek Gondzio

joint work with

Pablo González-Brevis and Pedro Munari

Buzios, 23 May 2016
Outline

• IPMs for Optimization
 → central path, perturbed complementarity
• Column Generation/Cutting Planes with IPM
• Warmstarting IPMs
 → theory and practice
• Applications (numerous examples)
 → summary results
• Conclusions
What is the best method to solve LPs/QPs:

- the Simplex Method (active-set method) or
- the Interior Point Method?

Maths question: How to cross a polytope?

... let us ask the expert
Brazil view of LP/QP:

How to solve LP/QP problems?

If we asked Neymar Jr, the likely answer would be: “go through the interior of the polytope”.
Interior Point Methods
Primal-Dual Pair of Quadratic Programs

Primal

\[
\begin{align*}
\text{min} & \quad c^T x + \frac{1}{2} x^T Q x \\
\text{s.t.} & \quad Ax = b, \\
& \quad x \geq 0;
\end{align*}
\]

Dual

\[
\begin{align*}
\text{max} & \quad b^T y - \frac{1}{2} x^T Q x \\
\text{s.t.} & \quad A^T y + s = c, \\
& \quad s \geq 0.
\end{align*}
\]

Lagrangian

\[L(x, y) = c^T x + \frac{1}{2} x^T Q x - y^T (Ax - b) - s^T x.\]

Optimality Conditions

\[
\begin{align*}
Ax &= b, \\
A^T y + s - Q x &= c, \\
X S e &= 0, \quad \text{(i.e., } x_j \cdot s_j = 0 \quad \forall j), \\
(x, s) &\geq 0,
\end{align*}
\]

\[X = \text{diag}\{x_1, \cdots, x_n\}, \quad S = \text{diag}\{s_1, \cdots, s_n\}, \quad e = (1, \cdots, 1) \in \mathbb{R}^n.\]
First Order Opt Conditions for QP

\[Ax = b, \]
\[A^Ty + s - Qx = c, \]
\[XSe = 0, \]
\[(x, s) \geq 0, \]

First Order Opt Conditions for Barrier QP

\[Ax = b, \]
\[A^Ty + s - Qx = c, \]
\[XSe = \mu e, \]
\[(x, s) > 0, \]
Complementarity in the Interior Point Method

The first order optimality conditions (FOC)

\[\begin{align*}
Ax & = b, \\
A^T y + s - Qx & = c, \\
XSe & = \mu e, \\
x, s & \geq 0,
\end{align*} \]

where \(X = \text{diag}\{x_j\} \), \(S = \text{diag}\{s_j\} \) and \(e = (1, \ldots, 1) \in \mathbb{R}^n \).

Analytic centre (\(\mu \)-centre): a (unique) point \((x(\mu), y(\mu), s(\mu))\), \(x(\mu) > 0 \), \(s(\mu) > 0\) that satisfies FOC.

The interior point method gradually reduces the complementarity products

\[x_j \cdot s_j \approx \mu \rightarrow 0 \quad \forall j = 1, 2, \ldots, n. \]
Attractive features

IPMs:

• excell on large-scale problems
• can easily control the distance to optimality
• are indifferent to degeneracy
• are able to warm start

Decomposition Approaches

What IPMs can offer?

- Use IPM to solve the Master
- Use IPM to solve the Subproblem early termination with ε-optimality
 $\rightarrow \varepsilon$-subgradients (“on-demand accuracy”)

The First Order Optimality Conditions

\[Ax = b, \]
\[-Qx + A^T y + s = c, \]
\[XSe = \mu e, \]
\[(x, s) > 0. \]

Assume primal-dual feasibility:

\[Ax = b \quad \text{and} \quad -Qx + A^T y + s = c \]

Parameter \(\mu \) controls the distance to optimality.

\[
(c^T x + \frac{1}{2} x^T Q x) - (b^T y - \frac{1}{2} x^T Q x) = x^T s = n \mu.
\]

On-demand accuracy is readily available.

Buzios, 23 May 2016
Primal-Dual Column Generation Method:

Heading-in problems:
terminate RMP solution early:
→ get stable dual solution \bar{u}

Tailing-off problems:
use IPM to solve the RMP:
→ no degeneracy issues
Primal-Dual
Column Generation Method
Column Generation (CG)

Consider an LP, called the master problem (MP):

\[z^* := \min \sum_{j \in N} c_j \lambda_j, \]

\[\text{s.t. } \sum_{j \in N} a_j \lambda_j = b, \]

\[\lambda_j \geq 0, \quad \forall j \in N. \]

- \(N \) is too big;
- The columns \(a_j \) are implicit elements of \(\mathcal{A} \);
- We know how to generate them!
CG: Restricted master problem (RMP): $\overline{N} \subset N$

$$z_{RMP} := \min \sum_{j \in \overline{N}} c_j \lambda_j,$$

s.t. $\sum_{j \in \overline{N}} a_j \lambda_j = b,$

$$\lambda_j \geq 0, \quad \forall j \in \overline{N}.$$

- Optimal $\bar{\lambda}$ for the RMP \Rightarrow feasible $\hat{\lambda}$ for the MP;
- $\hat{\lambda}_j = \bar{\lambda}_j, \forall j \in \overline{N}$, and $\hat{\lambda}_j = 0$ otherwise;
- Hence, $z^* \leq z_{RMP} = UB$ (Upper Bound).
- How to know it is optimal?
 - Call the oracle!
CG:

- Oracle: check the feasibility of the dual \(\overline{u} \);
- Reduced costs: \(s_j = c_j - \overline{u}^T a_j, \forall j \in N \);
- But the columns are not explicit and, hence,
 \[z_{SP} := \min \{ c_j - \overline{u}^T a_j | a_j \in A \} \]
- (we reset \(z_{SP} := 0 \), if \(z_{SP} > 0 \));
- Lower Bound: \(LB = z_{RMP} + \kappa z_{SP} \leq z^* \), where
 \[\kappa \geq \sum_{i \in N} \lambda_i^* \]
- If \(z_{SP} < 0 \), then new columns are generated;
- Otherwise, an optimal solution of the MP was found!
Appealing features of IPMs:

- Use IPM to solve the RMP:
 → no degeneracy issues

- Terminate RMP solution early:
 → use reliable estimate of duality gap
 → get stable dual solution \bar{u}
PDCGM Algorithm Parameters: $\varepsilon_{\text{max}}, D > 1, \delta, \kappa$

1. set $\text{LB} = -\infty$, $\text{UB} = \infty$, gap = ∞, $\varepsilon = 0.5$;
2. while (gap $> \delta$) do
3. find a well-centred ε-opt $(\tilde{\lambda}, \tilde{u})$ of the RMP;
4. $\text{UB} = \min\{\text{UB}, \tilde{z}_{RMP}\}$;
5. call the oracle with the query point \tilde{u};
6. $\text{LB} = \max\{\text{LB}, \kappa\tilde{z}_{SP} + b^T\tilde{u}\}$;
7. gap = $(\text{UB} - \text{LB})/(1 + |\text{UB}|)$;
8. $\varepsilon = \min\{\varepsilon_{\text{max}}, \text{gap}/D\}$;
9. if $(\tilde{z}_{SP} < 0)$ then add new columns to the RMP;
10. end (while)
Theorem

Let z^* be the optimal solution of the (MP). Given $\delta > 0$, the primal-dual column generation method converges in a finite number of steps to a feasible solution $\hat{\lambda}$ of the MP with objective value \hat{z} that satisfies

$$\hat{z} - z^* \leq \delta(1 + |z^*|).$$

Oscillation in a real instance

Changes of dual variables between iterations j and $j+1$, $||u^j - u^{j+1}||_2$ on VRPTW instance (Solomon C207):
Warmstarting IPMs
A need to solve a sequence of similar problems

- column generation
- cutting plane methods
- subproblems in the block-angular LPs (Dantzig-Wolfe decomp., Benders decomp.)
- B&B, (and B&Cut, B&Cut&Price, etc)
- SQP
- any sequence of similar problems
 example: computing efficient frontier in Markowitz portfolio optimization
Warm Starts Which method should be used?

- Simplex Method, or
- Interior Point Method.

\[x_j s_j = 0, \forall j \]

When is the Simplex Method better?
→ few indices change optimal partition
B & B, adding one cut in CPM, etc.

When is the Interior Point Method better?
→ many indices change optimal partition
adding many cuts in CPM,
dealing with a general change of problem data, etc.

Conjecture:
The more changes in the (large) problem
the more attractive IPM-based warm starts are.
Difficulty of IPM Warm Starts

Original Problem

Modified Problem
Warmstarting Heuristic

Idea: Start close to the (new) central path, not close to the (old) solution

\textbf{JG}, Warm start of the primal-dual method applied in CPM, \textit{Mathematical Programming} 83 (1998) 125–143
Warm Start in PDCGM context: new results

Theorem

Let n and $n+k$ be the dims of RMP and newRMP, resp. Let a μ^0-centre $(x^0, y^0, z^0) \in N_S(\gamma)$ of RMP be given. The warm start solution $(x^w, \bar{x}^w, y^w, z^w, \bar{z}^w) \in N_S(\beta\gamma)$ produced by the new warmstarting algorithm satisfies

$$(x^w)^T s^w + (\bar{x}^w)^T \bar{s}^w \leq \frac{6}{\gamma} \frac{n+k}{n} (x^0)^T s^0.$$

JG and González-Brevis,
Applications of PDCGM

- UFLP: Uncapacitated Facility Location Problem
- MKL: Multiple Kernel Learning problem
- TSSP: Two-Stage Stochastic Problem
- MCNF: MultiCommodity (MinCost) Network Flow problem
- CSP: Cutting Stock Problem
- CLSPST: Capacitated Lot-Sizing Problem with Setup Times
- VRPTW: Vehicle Routing Pb with Time Windows

PDCGM Software available at:
http://www.maths.ed.ac.uk/~gondzio/software/pdcgm.html
Number of iterations (relative to PDCGM)

<table>
<thead>
<tr>
<th></th>
<th>CSP</th>
<th>VRPTW</th>
<th>CLSPST</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCGM</td>
<td>1.52</td>
<td>1.33</td>
<td>1.60</td>
</tr>
<tr>
<td>ACCPM</td>
<td>2.41</td>
<td>4.86</td>
<td>1.26</td>
</tr>
</tbody>
</table>
CPU time [s] (relative to PDCGM)

<table>
<thead>
<tr>
<th></th>
<th>CSP</th>
<th>VRPTW</th>
<th>CLSPST</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCGM</td>
<td>3.50</td>
<td>1.95</td>
<td>1.26</td>
</tr>
<tr>
<td>ACCPM</td>
<td>8.97</td>
<td>4.01</td>
<td>1.27</td>
</tr>
</tbody>
</table>
Conclusions

A completely new perspective is needed to exploit the insight offered by IPMs in a number of **combinatorial optimization** applications:

- column generation
- cutting plane methods
- B & B, (and B & Cut, B & Cut & Price, etc)

Warmstarting works well in the CG/CPM context: problems are re-optimized in **3-5** IPM iterations
References

http://www.maths.ed.ac.uk/~gondzio/software/pdcm.html

Buzios, 23 May 2016
Vehicle Routing Problem with Time Windows

A company delivers goods to customers $i \in C$. The company has vehicles $k \in V$ and each of them starts at a depot, travels to several customers and returns to the depot. The visit of vehicle k to customer i needs to take place in a specific time window: $a_i \leq s_{ik} \leq b_i$, where s_{ik} is the time when vehicle k reaches customer i.

Objective: Minimize the total cost of delivery.

Define binary variable x_{ijk} which takes value 1 if vehicle k travels from customer i to customer j ($k \in V, i, j \in C$) and takes value zero otherwise.
Vehicle Routing Problem with Time Windows

Constraints:

Exactly one vehicle leaves customer i:

$$\sum_{k \in V} \sum_{j \in N} x_{ijk} = 1, \quad \forall i \in C$$

Vehicle capacity constraint:

$$\sum_{i \in C} d_i \sum_{j \in N} x_{ijk} \leq q, \quad \forall k \in V$$

Each vehicle leaves the depot and returns to it:

$$\sum_{j \in N} x_{0jk} = 1 \quad \text{and} \quad \sum_{j \in N} x_{i(n+1)k} = 1, \quad \forall k \in V$$
VRPTW: Constraints (continued)

Time-window constraint

\[s_{ik} + t_{ij} - M(1 - x_{ijk}) \leq s_{jk}, \quad \forall i, j \in N, \forall k \in V. \]

Since \(x_{ijk} \) is binary the above constraint has the following meaning: If \(x_{ijk} = 1 \) (vehicle \(k \) travels from customer \(i \) to customer \(j \)) then

\[s_{ik} + t_{ij} \leq s_{jk} \]

that is, the arrival time of vehicle \(k \) to customer \(j \) is greater than or equal the sum of time when vehicle \(k \) arrives to customer \(i \) and the time \(t_{ij} \) it takes to travel from \(i \) to \(j \).

Otherwise (if \(x_{ijk} = 0 \)) the presence of “big” \(M \) guarantees that the constraint is always inactive.
\textbf{VRPTW} \quad \text{min}\quad \sum_{k \in V} \sum_{i \in N} \sum_{j \in N} c_{ij} x_{ijk}

\text{s.t.}\quad \sum_{k \in V} \sum_{j \in N} x_{ijk} = 1, \quad \forall i \in C,

\sum_{i \in C} \sum_{j \in N} d_i x_{ijk} \leq q, \quad \forall k \in V,

\sum_{j \in N} x_{0jk} = 1, \quad \sum_{i \in N} x_{i(n+1)k} = 1, \quad \forall k \in V,

\sum_{i \in N} x_{ihk} - \sum_{j \in N} x_{jhk} = 0, \quad \forall h \in C, \forall k \in V,

s_{ik} + t_{ij} - M(1 - x_{ijk}) \leq s_{jk}, \quad \forall i, j \in N, \forall k \in V,

a_i \leq s_{ik} \leq b_i, \quad \forall i \in N, \forall k \in V,

x_{ijk} \in \{0, 1\}, \quad \forall i, j \in N, \forall k \in V.