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Outline

• IPMs for Optimization
→ central path, perturbed complementarity

• Column Generation/Cutting Planes with IPM

• Warmstarting IPMs
→ theory and practice

• Applications (numerous examples)
→ summary results

• Conclusions
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What is the best method to solve LPs/QPs:

• the Simplex Method (active-set method) or

• the Interior Point Method ?

Maths question: How to cross a polytope?

... let us ask the expert
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Brazil view of LP/QP:

How to solve LP/QP problems?

If we asked Neymar Jr, the likely answer would be:
“go through the interior of the polytope”.
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Interior Point Methods
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Primal-Dual Pair of Quadratic Programs
Primal Dual

min cTx+ 1
2x

TQx max bTy − 1
2x

TQx

s.t. Ax = b, s.t. ATy+ s = c,
x ≥ 0; s ≥ 0.

Lagrangian
L(x, y) = cTx+

1
2
xTQx− yT (Ax− b)− sTx.

Optimality Conditions

Ax = b,

ATy+ s−Qx = c,

XSe = 0, ( i.e., xj · sj = 0 ∀j),
(x, s) ≥ 0,

X=diag{x1, · · · , xn}, S=diag{s1, · · · , sn}, e=(1, · · · ,1)∈Rn.
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First Order Opt Conditions for QP

Ax = b,

ATy+ s−Qx = c,
XSe = 0,
(x, s) ≥ 0,

First Order Opt Conditions for Barrier QP

Ax = b,

ATy+ s−Qx = c,
XSe = µe,

(x, s) > 0,
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Complementarity in the Interior Point Method

The first order optimality conditions (FOC)

Ax = b,

ATy+ s−Qx = c,

XSe = µe,

x, s ≥ 0,

where X=diag{xj}, S=diag{sj} and e=(1, · · · ,1)∈Rn.

Analytic centre (µ-centre): a (unique) point
(x(µ), y(µ), s(µ)), x(µ) > 0, s(µ) > 0 that satisfies FOC.

The interior point method gradually reduces the comple-
mentarity products

xj · sj ≈ µ → 0 ∀j = 1,2, ..., n.
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Attractive features

IPMs:

• excell on large-scale problems

• can easily control the distance to optimality

• are indifferent to degeneracy

• are able to warm start

JG, Interior Point Methods 25 Years Later,
EJOR, 218 (2012) 587–601.
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Decomposition Approaches

What IPMs can offer?

• Use IPM to solve the Master

• Use IPM to solve the Subproblem
early termination with ε-optimality
→ ε-subgradients (“on-demand accuracy”)

JG and Vial, Warm start and ε-subgradients in cut-
ting plane scheme for block-angular linear programs, Com-
put Optimization and Applications 14(1999) 17-36.
JG and Kouwenberg, High performance computing
for ALM, Operations Research 49 (2001) 879–891.
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The First Order Optimality Conditions

Ax = b,

−Qx+ ATy+ s = c,
XSe = µe,

(x, s) > 0.

Assume primal-dual feasibility:

Ax = b and −Qx+ ATy+ s = c

Parameter µ controls the distance to optimality.

(cTx+
1
2
xTQx)−(bTy−

1
2
xTQx) = xTs = nµ.

On-demand accuracy is readily available.
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Primal-Dual Column Generation Method:

Heading-in problems:
terminate RMP solution early:
→ get stable dual solution ū

Tailing-off problems:
use IPM to solve the RMP:
→ no degeneracy issues

t

t t

mucenter
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Primal-Dual
Column Generation Method
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Column Generation (CG)

Consider an LP, called the master problem (MP):

z⋆ := min
∑

j∈N

cjλj,

s.t.
∑

j∈N

ajλj = b,

λj ≥ 0, ∀j ∈ N.

• N is too big;

• The columns aj are implicit elements of A;

• We know how to generate them!
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CG: Restricted master problem (RMP): N ⊂ N

zRMP := min
∑

j∈N

cjλj,

s.t.
∑

j∈N

ajλj = b,

λj ≥ 0, ∀j ∈ N.

• Optimal λ̄ for the RMP ⇒ feasible λ̂ for the MP;

• λ̂j = λ̄j, ∀j ∈ N , and λ̂j = 0 otherwise;

• Hence, z⋆ ≤ zRMP = UB (Upper Bound).

• How to know it is optimal?

– Call the oracle!
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CG:

• Oracle: check the feasibility of the dual u;

• Reduced costs: sj = cj − uTaj, ∀j ∈ N ;

• But the columns are not explicit and, hence,

zSP := min{cj − uTaj|aj ∈ A}.

• (we reset zSP := 0, if zSP > 0);

• Lower Bound: LB = zRMP + κzSP ≤ z⋆, where

κ ≥
∑

i∈N

λ⋆i ,

• If zSP < 0, then new columns are generated;

• Otherwise, an optimal solution of the MP was found!
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Appealing features

of IPMs:

• Use IPM to solve the RMP:
→ no degeneracy issues

• Terminate RMP solution early:
→ use reliable estimate of duality gap
→ get stable dual solution ū
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PDCGM Algorithm Parameters: εmax, D>1, δ, κ

1. set LB = −∞, UB =∞, gap = ∞, ε = 0.5;

2. while (gap > δ) do

3. find a well-centred ε-opt (λ̃, ũ) of the RMP;

4. UB = min{UB, z̃RMP};

5. call the oracle with the query point ũ;

6. LB = max{LB, κz̃SP + bT ũ};

7. gap = (UB− LB)/(1 + |UB|);

8. ε = min{εmax, gap/D};

9. if (z̃SP < 0) then add new columns to the RMP;

10. end (while)
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Theorem

Let z∗ be the optimal solution of the (MP).
Given δ > 0, the primal-dual column generation method
converges in a finite number of steps to a feasible solution
λ̂ of the MP with objective value ẑ that satisfies

ẑ − z∗ ≤ δ(1 + |z∗|).

JG, González-Brevis and Munari,
New developments in the primal-dual column generation
technique, European J. of Oper Res 224 (2013) 41–51.
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Oscillation in a real instance

Changes of dual variables between iterations j and j+1,
‖uj − uj+1‖2 on VRPTW instance (Solomon C207):
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Warmstarting IPMs
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A need to solve a sequence of similar problems

• column generation

• cutting plane methods

• subproblems in the block-angular LPs
(Dantzig-Wolfe decomp., Benders decomp.)

• B&B, (and B&Cut, B&Cut&Price, etc)

• SQP

• any sequence of similar problems
example: computing efficient frontier in Markowitz
portfolio optimization
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Warm Starts Which method should be used?
• Simplex Method, or
• Interior Point Method.

xjsj = 0, ∀j

When is the Simplex Method better?
→ few indices change optimal partition
B & B, adding one cut in CPM, etc.

When is the Interior Point Method better?
→ many indices change optimal partition
adding many cuts in CPM,
dealing with a general change of problem data, etc

Conjecture:
The more changes in the (large) problem
the more attractive IPM-based warm starts are.
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Difficulty of IPM Warm Starts

Modified Problem

Original Problem 
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Warmstarting Heuristic

Idea: Start close to the (new) central path, not close to
the (old) solution

Modified Problem

Original Problem 

JG, Warm start of the primal-dual method applied in
CPM, Mathematical Programming 83 (1998) 125–143
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Warm Start in PDCGM context: new results

Theorem

Let n and n+k be the dims of RMP and newRMP, resp.
Let a µ0-centre (x0, y0, z0) ∈ NS(γ) of RMP be given.
The warm start solution (xw, x̄w, yw, zw, z̄w) ∈ NS(βγ)
produced by the new warmstarting algorithm satisfies

(xw)Tsw + (x̄w)T s̄w ≤
6
γ

n+ k

n
(x0)Ts0.

JG and González-Brevis,
A new warmstarting strategy for the primal-dual column
generation method, Mathematical Programming A 152
(2015) 113–146
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Applications of PDCGM

• UFLP: Uncapacitated Facility Location Problem

• MKL: Multiple Kernel Learning problem

• TSSP: Two-Stage Stochastic Problem

• MCNF: MultiCommodity (MinCost) Network Flow
problem

• CSP: Cutting Stock Problem

• CLSPST: Capacitated Lot-Sizing Problem with
Setup Times

• VRPTW: Vehicle Routing Pb with Time Windows

PDCGM Software available at:
http://www.maths.ed.ac.uk/~gondzio/software/pdcgm.html
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Number of iterations (relative to PDCGM)

CSP VRPTW CLSPST
SCGM 1.52 1.33 1.60
ACCPM 2.41 4.86 1.26
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CPU time [s] (relative to PDCGM)

CSP VRPTW CLSPST
SCGM 3.50 1.95 1.26
ACCPM 8.97 4.01 1.27
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Conclusions

A completely new perspective is needed to exploit the
insight offered by IPMs in a number of combinatorial
optimization applications:

• column generation

• cutting plane methods

• B & B, (and B & Cut, B & Cut & Price, etc)

Warmstarting works well in the CG/CPM context:

problems are re-optimized in 3-5 IPM iterations
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Vehicle Routing Problem with Time Windows

A company delivers goods to customers i ∈ C.
The company has vehicles k ∈ V and each of them starts
at a depot, travels to several customers and returns to
the depot. The visit of vehicle k to customer i needs to
take place in a specific time window: ai ≤ sik ≤ bi, where
sik is the time when vehicle k reaches customer i.

Objective: Minimize the total cost of delivery.

Define binary variable xijk which takes value 1 if vehicle
k travels from customer i to customer j (k ∈ V, i, j ∈ C)
and takes value zero otherwise.
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Vehicle Routing Problem with Time Windows
Constraints:
Exactly one vehicle leaves customer i:

∑

k∈V

∑

j∈N

xijk = 1, ∀i ∈ C

Vehicle capacity constraint:
∑

i∈C

di
∑

j∈N

xijk ≤ q, ∀k ∈ V

Each vehicle leaves the depot and returns to it:
∑

j∈N

x0jk = 1 and
∑

j∈N

xi(n+1)k = 1, ∀k ∈ V
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VRPTW: Constraints (continued)

Time-window constraint

sik + tij −M(1− xijk) ≤ sjk, ∀i, j ∈ N,∀k ∈ V.

Since xijk is binary the above constraint has the following
meaning: If xijk = 1 (vehicle k travels from customer i

to customer j) then

sik + tij ≤ sjk

that is, the arrival time of vehicle k to customer j is
greater than or equal the sum of time when vehicle k
arrives to customer i and the time tij it takes to travel
from i to j.
Otherwise (if xijk = 0) the presence of “big” M guaran-
tees that the constraint is always inactive.
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VRPTW min
∑

k∈V

∑

i∈N

∑

j∈N

cijxijk

s.t.
∑

k∈V

∑

j∈N

xijk = 1, ∀i ∈ C,

∑

i∈C

di
∑

j∈N

xijk ≤ q, ∀k ∈ V,

∑

j∈N

x0jk = 1,
∑

i∈N

xi(n+1)k = 1, ∀k ∈ V,

∑

i∈N

xihk −
∑

j∈N

xjhk = 0, ∀h ∈ C,∀k ∈ V,

sik + tij −M(1− xijk) ≤ sjk, ∀i, j ∈ N,∀k ∈ V,
ai ≤ sik ≤ bi, ∀i ∈ N,∀k ∈ V,
xijk ∈ {0,1}, ∀i, j ∈ N,∀k ∈ V.
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