# Branch-and-cut (and-price) for the chance constrained vehicle routing problem

Ricardo Fukasawa

Department of Combinatorics & Optimization University of Waterloo

> May 25th, 2016 ColGen 2016

joint work with Thai Dinh and James Luedtke (University of Wisconsin)



### The deterministic vehicle routing problem



- *G* = (*V*, *E*)
- $V = \{0\} \cup V_+$
- Edge lengths  $\ell_e, e \in E$
- K vehicles, capacity b
- Find a set of *K* routes with minimum total length
- Client demands  $d_i, \forall i \in V_+$

### The deterministic vehicle routing problem



- *G* = (*V*, *E*)
- $V = \{0\} \cup V_+$
- Edge lengths  $\ell_e, e \in E$
- K vehicles, capacity b
- Find a set of *K* routes with minimum total length
- Client demands  $d_i, \forall i \in V_+$

 Let S<sub>j</sub> be the set of clients served by route j. Then d(S<sub>j</sub>) ≤ b

### The stochastic vehicle routing problem



- *G* = (*V*, *E*)
- $V = \{0\} \cup V_+$
- Edge lengths  $\ell_e, e \in E$
- K vehicles, capacity b
- Find a set of *K* routes with minimum total length
- Client demands  $d_i, \forall i \in V_+$
- Demands  $D_i$ ,  $\forall i \in V_+$ : random variables that only get realized after routes have been decided
- Let S<sub>j</sub> be the set of clients served by route j. Then d(S<sub>i</sub>) ≤ b

### The chance-constrained vehicle routing problem



- G = (V, E)
- $V = \{0\} \cup V_+$
- Edge lengths  $\ell_e, e \in E$
- K vehicles, capacity b
- Find a set of K routes with minimum total length
- Client demands  $d_i, \forall i \in V_+$
- Demands D<sub>i</sub>, ∀i ∈ V<sub>+</sub>: random variables that only get realized after routes have been decided
- Let  $S_j$  be the set of clients served by route j. Then  $d(S_j) \leq b$ Then  $\mathbb{P} \{ D(S_j) \leq b \} \geq 1 - \epsilon$

### Literature review

Deterministic VRP

- State-of-the-art methods use branch-and-cut-and-price
- Oitation:

### Literature review

Deterministic VRP

- State-of-the-art methods use branch-and-cut-and-price
- Citation: Do I need any?

#### Literature review

Deterministic VRP

- State-of-the-art methods use branch-and-cut-and-price
- Citation: Do I need any?

Stochastic VRP (2-stage)

- Heuristics: Stewart & Golden (1983), Dror & Trudeau (1986), Savelsbergh & Goetschalckx (1995), Novoa et al. (2006), Secomandi and Margot (2009), . . .
- Integer L-Shaped: Gendreau et al. (1994), Laporte et al. (2002), ...
- Branch-and-cut: Laporte et al. (1989), ...
- Branch-and-price: Christiansen et al. (2007)
- Branch-and-cut-and-price: Gauvin et al. (2014)

Stochastic VRP (chance-constrained)

- Reduction to deterministic case: Stewart & Golden (1983)
- Branch-and-cut: Laporte et al. (1989)
- Branch-and-cut: Beraldi et al. (2015)
- Branch-and-cut for Robust VRP: Gounaris, Wiesemann, Floudas (2013)

| Distribution  |        | BC           | BP           | BCP          |
|---------------|--------|--------------|--------------|--------------|
| Deterministic |        | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Independent   | *      | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|               | Normal | $\checkmark$ |              |              |
| Correlated    | Normal | $\checkmark$ |              |              |

• \* - Stewart and Golden (83): Reduction to deterministic, only applies to some distributions e.g. Poisson, Binomial.

| Distribution  |        | BC           | BP           | BCP          |
|---------------|--------|--------------|--------------|--------------|
| Deterministic |        | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Independent   | *      | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|               | Normal | $\checkmark$ |              |              |
| Correlated    | Normal | $\checkmark$ |              |              |

• \* - Stewart and Golden (83): Reduction to deterministic, only applies to some distributions e.g. Poisson, Binomial.

#### Goal

Develop exact methods for chance-constrained SVRP with very few assumptions on the demand uncertainty.

| Distribution  |        | BC           | BP           | BCP          |
|---------------|--------|--------------|--------------|--------------|
| Deterministic |        | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Independent   | *      | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|               | Normal | $\checkmark$ |              |              |
| Correlated    | Normal | $\checkmark$ |              |              |

• \* - Stewart and Golden (83): Reduction to deterministic, only applies to some distributions e.g. Poisson, Binomial.

#### Goal

Develop exact methods for chance-constrained SVRP with very few assumptions on the demand uncertainty.

Assumption: Quantile

$$Q_p(S) := \inf \left\{ b' : \mathbb{P} \{ \sum_{i \in S} D_i \leq b' \} \geq p 
ight\}$$

can be computed for any  $\mathcal{S}\subseteq \mathcal{V}_+$  and any  $\mathcal{p}\in [0,1].$ 

| Distribution  |                     | BC           | BP           | BCP          |
|---------------|---------------------|--------------|--------------|--------------|
| Deterministic |                     | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Indonondont   | *                   | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| independent   | Normal              | $\checkmark$ |              |              |
| Correlated    | Normal              | $\checkmark$ |              |              |
|               | Computable $Q_p(S)$ |              |              |              |

| Distribution  |                     | BC           | BP           | BCP          |
|---------------|---------------------|--------------|--------------|--------------|
| Deterministic |                     | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Independent   | *                   | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| independent   | Normal              | $\checkmark$ |              |              |
| Correlated    | Normal              | $\checkmark$ |              |              |
|               | Computable $Q_p(S)$ |              |              |              |

### Edge formulation for deterministic VRP

m

s.

- $d_i$ : deterministic demand at customer  $i \in V_+$
- r(S): number of trucks required to serve  $S \subseteq V_+$
- $x_e$ : number of times a vehicle traverses edge  $e \in E$

$$\begin{split} & \lim_{\mathbf{x}} \quad \sum_{e \in E} \ell_e x_e \\ & \text{t.} \quad \sum_{e \in \delta(\{i\})} x_e = 2, \quad \forall i \in V_+ \\ & \sum_{e \in \delta(\{0\})} x_e = 2K \\ & \sum_{e \in \delta(S)} x_e \geq 2r(S), \quad \forall S \subseteq V_+ \\ & x_e \leq 1, \quad \forall e \in E \setminus \delta(\{0\}) \\ & x_e \in \mathbb{Z}_+, \quad \forall e \in E. \end{split}$$

### Edge formulation for chance-constrained VRP

Modified capacity inequalities

$$\sum_{e \in \delta(S)} x_e \geq 2r_{\epsilon}(S), \quad \forall S \subseteq V_+$$

- $r_{\epsilon}(S)$ : Minimum number of trucks required to serve customer set S, where probability of capacity violation is at most  $\epsilon$  for each truck
- Requires solving stochastic bin-packing

### Edge formulation for chance-constrained VRP

Modified capacity inequalities

$$\sum_{e\in\delta(S)}x_e\geq 2r_\epsilon(S),\quad \forall S\subseteq V_+$$

- *r*<sub>ε</sub>(S): Minimum number of trucks required to serve customer set S, where probability of capacity violation is at most ε for each truck
- Requires solving stochastic bin-packing

#### Challenge

How to obtain valid lower bounds on  $r_{\epsilon}(S)$ ?

• Laporte et al. (1989): If demands are independent normal, can use

$$\left\lceil \frac{Q_{1-\epsilon}(S)}{b} \right\rceil$$

where  $Q_p(S)$  be *p*th quantile of the random variable  $\sum_{i \in S} D_i$ , i.e.  $Q_p(S) := \inf \{ b' : \mathbb{P} \{ \sum_{i \in S} D_i \leq b' \} \ge p \}.$ 

### Edge formulation for chance-constrained VRP

Modified capacity inequalities

$$\sum_{e \in \delta(S)} x_e \geq 2r_{\epsilon}(S), \quad \forall S \subseteq V_+$$

- *r*<sub>ε</sub>(S): Minimum number of trucks required to serve customer set S, where probability of capacity violation is at most ε for each truck
- Requires solving stochastic bin-packing

#### Challenge

How to obtain valid lower bounds on  $r_{\epsilon}(S)$ ?

• Laporte et al. (1989): If demands are independent normal, can use

$$\left\lceil \frac{Q_{1-\epsilon}(S)}{b} \right\rceil$$

where  $Q_p(S)$  be *p*th quantile of the random variable  $\sum_{i \in S} D_i$ , i.e.  $Q_p(S) := \inf \{ b' : \mathbb{P} \{ \sum_{i \in S} D_i \leq b' \} \geq p \}.$ 

• Not valid in general.



|         |             | Scenarios |     |     |
|---------|-------------|-----------|-----|-----|
|         |             | 1         | 2   | 3   |
|         | 1           | 1         | 2   | 1   |
|         | 2           | 1         | 1   | 1   |
| Clients | 3           | 1         | 1   | 2   |
|         | 4           | 1         | 1   | 1   |
| Probabi | Probability |           | 0.1 | 0.1 |

Table: Demands in each scenario

*b* = 2 *ε* = 0.1



|         |      | Scenarios |     |     |
|---------|------|-----------|-----|-----|
|         |      | 1 2 3     |     |     |
|         | 1    | 1         | 2   | 1   |
| Cliente | 2    | 1         | 1   | 1   |
| Clients | 3    | 1         | 1   | 2   |
|         | 4    | 1         | 1   | 1   |
| Probabi | lity | 0.8       | 0.1 | 0.1 |

Table: Demands in each scenario

3





Table: Demands in each scenario

*b* = 2 *ε* = 0.1



|         |      | Scenarios |     |     |
|---------|------|-----------|-----|-----|
|         |      | 1         | 2   | 3   |
|         | 1    | 1         | 2   | 1   |
|         | 2    | 1         | 1   | 1   |
| Clients | 3    | 1         | 1   | 2   |
|         | 4    | 1         | 1   | 1   |
| Probabi | lity | 0.8       | 0.1 | 0.1 |

Table: Demands in each scenario

- *b* = 2
- $\epsilon = 0.1$
- Solution depicted is feasible



|         |      | Scenarios |     |     |  |
|---------|------|-----------|-----|-----|--|
|         |      | 1         | 2   | 3   |  |
|         | 1    | 1         | 2   | 1   |  |
|         | 2    | 1         | 1   | 1   |  |
| Clients | 3    | 1         | 1   | 2   |  |
|         | 4    | 1         | 1   | 1   |  |
| Probabi | lity | 0.8       | 0.1 | 0.1 |  |

Table: Demands in each scenario

- *b* = 2
- $\epsilon = 0.1$
- Solution depicted is feasible
- However, for  $S = \{1, 2, 3, 4\}$ ,  $Q_{0.9}(S) = 5$



|         |      | Scenarios |     |     |
|---------|------|-----------|-----|-----|
|         |      | 1         | 2   | 3   |
|         | 1    | 1         | 2   | 1   |
| Clianta | 2    | 1         | 1   | 1   |
| Clients | 3    | 1         | 1   | 2   |
|         | 4    | 1         | 1   | 1   |
| Probabi | lity | 0.8       | 0.1 | 0.1 |

Table: Demands in each scenario

- *b* = 2
- *ϵ* = 0.1
- Solution depicted is feasible
- However, for  $S = \{1, 2, 3, 4\}$ ,  $Q_{0.9}(S) = 5$
- Thus using  $\left[\frac{Q_{1-\epsilon}(S)}{b}\right]$  requires 3 vehicles to enter  $S = \{1, 2, 3, 4\}$

### Bounds on required trucks more generally

### Simple general bound

$$k_{\epsilon}(S) = egin{cases} 1 & \mathbb{P}igg\{\sum_{i\in S} D_i \leq bigg\} \geq 1-\epsilon \ 2 & otherwise \end{cases}$$

$$\sum_{e\in\delta(S)}x_e\geq 2k_\epsilon(S),\quad \forall S\subseteq V_+$$

- $k_{\epsilon}(S) \leq r_{\epsilon}(S)$  but sufficient to define a valid formulation
- Cheap to compute for a given set *S* (thus easy for  $x \in \mathbb{Z}_+^E$ )
- Cuts may be weak

### Improved general bound

#### Lemma

$$r_{\epsilon}(S) \geq \left\lceil rac{Q_{1-\epsilon r_{\epsilon}(S)}(S)}{b} 
ight
ceil$$

### Improved general bound





• But we don't know  $r_{\epsilon}(S)!$ 

### Improved general bound



$$r_{\epsilon}(S) \geq \min\left\{k, \left\lceil rac{Q_{1-\epsilon(k-1)}(S)}{b} 
ight
ceil
ight\}$$

Proof: Either  $r_{\epsilon}(S) \geq k$  or  $r_{\epsilon}(S) \leq k - 1$ .

### Improved general bound (2)

Use best k:

$$k_{\epsilon}^{*}(S) = \max\left\{\min\left\{k, \left\lceil \frac{Q_{1-\epsilon(k-1)}(S)}{b} \right\rceil\right\} : k = 2, \dots, K\right\}.$$

• Always at least as good as first simple bound

### Improved general bound (2)

Use best k:

$$k_{\epsilon}^{*}(S) = \max\left\{\min\left\{k, \left\lceil \frac{Q_{1-\epsilon(k-1)}(S)}{b} \right\rceil\right\} : k = 2, \dots, K\right\}.$$

• Always at least as good as first simple bound

Improvements are possible for special cases:

• Independent and Correlated normal: Can use a stronger closed form formula (derived from robust CVRP).

| Distribution  |                     | BC           | BP           | BCP          |
|---------------|---------------------|--------------|--------------|--------------|
| Deterministic |                     | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Indonondont   | *                   | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| independent   | Normal              | $\checkmark$ |              |              |
| Correlated    | Normal              | $\checkmark$ |              |              |
|               | Computable $Q_p(S)$ | $\checkmark$ |              |              |

| Distribution  |                     | BC           | BP           | BCP          |
|---------------|---------------------|--------------|--------------|--------------|
| Deterministic |                     | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Independent   | *                   | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| maepenaent    | Normal              | $\checkmark$ |              |              |
| Correlated    | Normal              | $\checkmark$ |              |              |
| Correlated    | Computable $Q_p(S)$ | $\checkmark$ |              |              |

### Set partitioning formulation for DETERMINISTIC

<u>Parameters</u>:  $a_{ir}$ : number of times vertex *i* appears in route *r* 

 $\frac{Variables :}{\lambda_r: \text{ (binary) whether to choose route } r}$ 

$$\begin{array}{ll} \min_{\lambda} & \sum_{r \in \Omega} c_r \lambda_r \\ \text{s.t.} & \sum_{r \in \Omega} a_{ir} \lambda_r = 1, \; \forall i \in V_+ \\ & \sum_{r \in \Omega} \lambda_r = K \\ & \lambda_r \in \{0,1\}, \; \forall r \in \Omega \end{array}$$

### Set partitioning formulation for DETERMINISTIC

<u>Sets</u>:  $\Omega$ : set of elementary routes satisfying capacity  $\Omega'$ : set of non-elementary routes satisfying capacity.

<u>Parameters</u>:  $a_{ir}$ : number of times vertex *i* appears in route *r* 

<u>Variables</u>:  $\lambda_r$ : (binary) whether to choose route r 
$$\begin{split} \min_{\lambda} & \sum_{r \in \Omega'} c_r \lambda_r \\ \text{s.t.} & \sum_{r \in \Omega'} a_{ir} \lambda_r = 1, \ \forall i \in V_+ \\ & \sum_{r \in \Omega'} \lambda_r = K \\ & \lambda_r \in \{0,1\}, \ \forall r \in \Omega \end{split}$$

Pseudo-polynomial pricing.

### Set partitioning formulation for STOCHASTIC

 $\frac{Sets:}{\Omega_s:}$  set of elementary routes satisfying chance-constraint

<u>Parameters</u>:  $a_{ir}$ : number of times vertex *i* appears in route *r* 

 $\frac{Variables :}{\lambda_r: \text{ (binary) whether to choose route } r}$ 

$$\begin{split} \min_{\lambda} & \sum_{r \in \Omega_{s}} c_{r} \lambda_{r} \\ \text{s.t.} & \sum_{r \in \Omega_{s}} a_{ir} \lambda_{r} = 1, \ \forall i \in V_{+} \\ & \sum_{r \in \Omega_{s}} \lambda_{r} = K \\ & \lambda_{r} \in \{0,1\}, \ \forall r \in \Omega \end{split}$$

### Set partitioning formulation for STOCHASTIC

<u>Sets</u>:  $\Omega_s$ : set of elementary routes satisfying chance-constraint  $\Omega'_s$ : set of non-elementary routes satisfying chance-constraint.

<u>Parameters</u>: a<sub>ir</sub>: number of times vertex i appears in route r

<u>Variables</u>:  $\lambda_r$ : (binary) whether to choose route r

$$\begin{split} \min_{\lambda} & \sum_{r \in \Omega'_{\mathsf{s}}} c_r \lambda_r \\ \text{s.t.} & \sum_{r \in \Omega'_{\mathsf{s}}} a_{ir} \lambda_r = 1, \; \forall i \in V_+ \\ & \sum_{r \in \Omega'_{\mathsf{s}}} \lambda_r = K \\ & \lambda_r \in \{0,1\}, \; \forall r \in \Omega \end{split}$$



#### Theorem

Finding the least cost non-elementary route in a graph that respects the capacity chance constraint under the finite distribution model is strongly NP-hard.

#### Theorem

Finding the least cost non-elementary route in a graph that respects the capacity chance constraint under the independent normal distribution model is strongly NP-hard.



#### Theorem

Finding the least cost non-elementary route in a graph that respects the capacity chance constraint under the finite distribution model is **strongly** NP-hard.

#### Theorem

Finding the least cost non-elementary route in a graph that respects the capacity chance constraint under the independent normal distribution model is strongly NP-hard.

#### Proof Idea:

Use chance-constraint to enforce elementarity.

### State of $\ensuremath{\mathsf{CCVRP}}$

| Distribution  |                     | BC           | BP           | BCP          |
|---------------|---------------------|--------------|--------------|--------------|
| Deterministic |                     | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Independent   | *                   | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|               | Normal              | $\checkmark$ | Hard         |              |
| Correlated    | Normal              | $\checkmark$ | Hard         |              |
| Correlated    | Computable $Q_p(S)$ | $\checkmark$ | Hard         |              |

### State of $\ensuremath{\mathsf{CCVRP}}$

| Distribution  |                     | BC           | BP           | BCP          |
|---------------|---------------------|--------------|--------------|--------------|
| Deterministic |                     | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Independent   | *                   | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|               | Normal              | $\checkmark$ | Hard         |              |
| Correlated    | Normal              | $\checkmark$ | Hard         |              |
| Correlated    | Computable $Q_p(S)$ | $\checkmark$ | Hard         |              |

| Distribution  |                     | BC           | BP           | BCP          |
|---------------|---------------------|--------------|--------------|--------------|
| Deterministic |                     | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Independent   | *                   | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|               | Normal              | $\checkmark$ | Hard         |              |
| Correlated    | Normal              | $\checkmark$ | Hard         |              |
| Correlated    | Computable $Q_p(S)$ | $\checkmark$ | Hard         |              |







Deterministic:

• Elementary (strongly NP-hard)  $\rightarrow$  Non-elementary (pseudo-polynomial)



Deterministic:

• Elementary (strongly NP-hard)  $\rightarrow$  Non-elementary (pseudo-polynomial)

Chance-constrained

• Elementary (strongly NP-hard)  $\rightarrow$  Non-elementary (strongly NP-hard)



Deterministic:

- Elementary (strongly NP-hard) → Non-elementary (pseudo-polynomial)
- Chance-constrained
  - Elementary (strongly NP-hard)  $\rightarrow$  Non-elementary (strongly NP-hard)
    - $\rightarrow$  Relax chance-constraint

### Relaxed pricing scheme

#### Exact capacity chance constraint

• y<sub>i</sub>: binary indicator of whether or not node i is visited

$$egin{aligned} \mathcal{F}^{\epsilon} = \left\{ y \in \left\{0,1
ight\}^{V_+} : \mathbb{P}ig\{ D^{ extsf{T}} y \leq big\} \geq 1-\epsilon ig\} \end{aligned}$$

#### Idea

Find  $w \in \mathbb{Z}_+^{V_+}$  and  $\tau \in \mathbb{Z}_+$  such that:

$$m{\mathcal{F}}^\epsilon \subseteq m{R}(w, au) := \left\{ y \in \mathbb{Z}^{V_+} : w^{ au} y \leq au 
ight\}$$

Use  $R(w, \tau)$  instead of  $F^{\epsilon}$ :

### Relaxed pricing scheme

#### Exact capacity chance constraint

• y<sub>i</sub>: binary indicator of whether or not node i is visited

$$egin{aligned} \mathcal{F}^{\epsilon} = \left\{ y \in \left\{0,1
ight\}^{V_+} : \mathbb{P}ig\{ D^{ extsf{T}} y \leq big\} \geq 1-\epsilon ig\} \end{aligned}$$

#### Idea

Find  $w \in \mathbb{Z}_+^{V_+}$  and  $\tau \in \mathbb{Z}_+$  such that:

$$m{\mathcal{F}}^\epsilon \subseteq m{R}(w, au) := \left\{ y \in \mathbb{Z}^{V_+} : w^{ au} y \leq au 
ight\}$$

Use  $R(w, \tau)$  instead of  $F^{\epsilon}$ :

• Capacity cuts ensure only solutions to  $F^{\epsilon}$  will be picked

### Generic relaxed pricing scheme (cont'd)

How to choose coefficients?

• Natural choice:  $w_i = \mathbb{E}[D_i]$ 

Given w, optimize  $\tau$  in preprocessing phase:

$$au = \max\left\{ w^{\mathsf{T}}y \; : \; \mathbb{P}ig\{ D^{\mathsf{T}}y \leq big\} \geq 1-\epsilon, y \in \{0,1\}^{V_+} 
ight\}$$

- Stochastic binary knapsack problem
- Joint normal random demands  $\Rightarrow$  Binary second-order cone program
- Scenario model of random demands  $\Rightarrow$  Structured binary integer program (Song et al., 2014)
- Any easily computable upper bound on the above maximum can be used.

- With joint normal random demands, binary second-order cone program can be replaced with a semidefinite program
- With mean vector  $\mu$  and covariance matrix  $\Sigma$ :

$$P\left\{D^{\mathsf{T}} y \leq b\right\} \geq 1 - \epsilon \iff \mu^{\mathsf{T}} y + \Phi^{-1}(1 - \epsilon)\sqrt{y^{\mathsf{T}} \Sigma y} \leq b$$

#### Idea

• Get a lower bound on  $y^T \Sigma y$  in terms of  $\mu^T y$ 

- With joint normal random demands, binary second-order cone program can be replaced with a semidefinite program
- With mean vector  $\mu$  and covariance matrix  $\Sigma$ :

$$P\left\{D^{\mathsf{T}} y \leq b\right\} \geq 1 - \epsilon \iff \mu^{\mathsf{T}} y + \Phi^{-1}(1 - \epsilon)\sqrt{y^{\mathsf{T}} \Sigma y} \leq b$$

#### Idea

- Get a lower bound on  $y^T \Sigma y$  in terms of  $\mu^T y$
- Find  $\eta^*$  such that  $\eta^* \mu^T y \leq y^T \Sigma y$  for all  $y \in \{0,1\}^{V_+}$

$$\mu^{\mathsf{T}} \mathbf{y} + \Phi^{-1} (1-\epsilon) \sqrt{\eta^* \mu^{\mathsf{T}} \mathbf{y}} \leq b$$

(2)

- With joint normal random demands, binary second-order cone program can be replaced with a semidefinite program
- With mean vector  $\mu$  and covariance matrix  $\Sigma$ :

$$P\left\{D^{\mathsf{T}} y \leq b\right\} \geq 1 - \epsilon \iff \mu^{\mathsf{T}} y + \Phi^{-1}(1 - \epsilon)\sqrt{y^{\mathsf{T}} \Sigma y} \leq b$$

#### Idea

- Get a lower bound on  $y^T \Sigma y$  in terms of  $\mu^T y$
- Find  $\eta^*$  such that  $\eta^* \mu^T y \leq y^T \Sigma y$  for all  $y \in \{0,1\}^{V_+}$

$$\boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{y} + \boldsymbol{\Phi}^{-1} (1 - \epsilon) \sqrt{\eta^* \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{y}} \le b$$
(2)

•  $\eta$  found by solving an SDP

$$\eta^* = \max_{\eta, \varrho, Q} \eta \tag{3a}$$

s.t. 
$$\mu_i \eta \leq p_i$$
  $i \in V_+$  (3b)  
 $\Sigma = \operatorname{diag}(p_1, ..., p_n) + Q$  (3c)

$$Q \succeq 0,$$
 (3d)

- With joint normal random demands, binary second-order cone program can be replaced with a semidefinite program
- With mean vector  $\mu$  and covariance matrix  $\Sigma$ :

$$P\left\{D^{\mathsf{T}} y \leq b\right\} \geq 1 - \epsilon \iff \mu^{\mathsf{T}} y + \Phi^{-1}(1 - \epsilon)\sqrt{y^{\mathsf{T}} \Sigma y} \leq b$$

#### Idea

- Get a lower bound on  $y^T \Sigma y$  in terms of  $\mu^T y$
- Find  $\eta^*$  such that  $\eta^* \mu^T y \leq y^T \Sigma y$  for all  $y \in \{0,1\}^{V_+}$

$$\mu^{\mathsf{T}} \mathbf{y} + \Phi^{-1} (1 - \epsilon) \sqrt{\eta^* \mu^{\mathsf{T}} \mathbf{y}} \le b$$
(2)

•  $\eta$  found by solving an SDP

$$\eta^* = \max_{\eta, p, Q} \eta \tag{3a}$$

s.t. 
$$\mu_i \eta \leq p_i$$
  $i \in V_+$  (3b)

$$\Sigma = \operatorname{diag}(p_1, ..., p_n) + Q \tag{3c}$$

$$Q \succeq 0,$$
 (3d)

• Solve RCSP using constraint (2) on resource  $\mu^T y$ .

### Pricing with independent normal demands

Pricing for independent normal with mean vector  $\mu$  and variance vector  $\sigma^2$ 

$$\mathbb{P}\Big\{D^{\mathsf{T}} y \leq b\Big\} \geq 1 - \epsilon \iff \mu^{\mathsf{T}} y + \Phi^{-1}(1 - \epsilon) \sqrt{\sum_{i \in V_+} y_i^2 \sigma_i^2} \leq b$$

Relax to:

$$\mu^{\mathsf{T}} \mathbf{y} + \Phi^{-1} (1 - \epsilon) \sqrt{\mathbf{y}^{\mathsf{T}} \sigma^2} \leq b$$

• Resources:  $\mu^T y$  and  $y^T \sigma^2$ 

#### Computational tests overview

Test instances

- Based on deterministic VRP instances
- 32 to 55 customers
- Two variance settings: "low" (pprox 10% of mean) and "high" (pprox 20% of mean)

• Three distribution assumptions: independent normal, joint normal, scenario Implementation details

- Cplex 12.4.0
- Implemented in BCP code based from F. et al. (2006)
- 7200 second time limit



Figure: Summary of results for instances with independent normal distribution.



Figure: Summary of results for instances with joint normal distribution.



Figure: Summary of results for instances with scenario distribution.

### Concluding remarks

#### Summary

- Chance-constrained formulation avoids difficulties in modeling recourse actions
- Proposed method can solve chance-constrained VRP with correlations
- Builds on successful approaches for solving deterministic VRP
- Can be extended to other variants

### Concluding remarks

#### Summary

- Chance-constrained formulation avoids difficulties in modeling recourse actions
- Proposed method can solve chance-constrained VRP with correlations
- Builds on successful approaches for solving deterministic VRP
- Can be extended to other variants

| Distribution  |                     | BC           | BP           | BCP          |
|---------------|---------------------|--------------|--------------|--------------|
| Deterministic |                     | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Independent   | *                   | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|               | Normal              | $\checkmark$ | Hard         | $\checkmark$ |
| Correlated    | Normal              | $\checkmark$ | Hard         | $\checkmark$ |
| Correlateu    | Computable $Q_p(S)$ | $\checkmark$ | Hard         | $\checkmark$ |

### Future work

#### Future work

- Incorporate more "advanced features" of deterministic VRP into solution approach
- Seek improved "pricing friendly" relaxation of chance-constrained capacity constraint
- Other models of handling uncertainty
- How "well" can deterministic constraints "approximate" chance-constraints?

## THANK YOU!

### Comparing solutions

Experiment:

- For an instance, obtain chance-constrained and recourse model solutions
- Evaluate each solution in both model metrics

Four instances, size up to 22 nodes, all independent normal

|      | Max Violat | ion Prob. % | % Increase    |
|------|------------|-------------|---------------|
| Var  | CC Sol     | Rec Sol     | Expected Cost |
| Low  | 1.7        | 50.0        | 2.3%          |
|      | 5.0        | 7.8         | 0.9%          |
|      | 2.4        | 2.4         | 0             |
|      | 3.1        | 6.4         | 0.6%          |
| High | 4.0        | 8.3         | 3.4%          |
|      | 3.6        | 23.7        | 2.9%          |
|      | 1.0        | 1.0         | 0             |
|      | 0.7        | 16.9        | 0.3%          |

### Comparing solutions: Correlated demands

- Recourse solution: Ignore correlation
- Evaluate each solution in both model metrics using true distribution

|      | Max Viola | ation Prob. | % Increase in |
|------|-----------|-------------|---------------|
| Var  | CC Sol    | Rec Sol     | Expected Cost |
| Low  | 4.0       | 50.7        | 1.1%          |
|      | 2.4       | 13.3        | 2.2%          |
|      | 0.2       | 6.3         | 0.2%          |
|      | 0.6       | 16.5        | 0.1%          |
| High | 4.6       | 12.1        | 3.6%          |
|      | 5.0       | 28.9        | 3.1%          |
|      | 1.2       | 8.6         | -0.3%         |
|      | 2.5       | 21.5        | -0.1%         |