Branch-and-cut (and-price) for the chance constrained vehicle routing problem

Ricardo Fukasawa
Department of Combinatorics \& Optimization
University of Waterloo

May 25th, 2016
ColGen 2016
joint work with Thai Dinh and James Luedtke (University of Wisconsin)

The deterministic vehicle routing problem

- $G=(V, E)$
- $V=\{0\} \cup V_{+}$
- Edge lengths $\ell_{e}, \quad e \in E$
- K vehicles, capacity b
- Find a set of K routes with minimum total length
- Client demands $d_{i}, \forall i \in V_{+}$

The deterministic vehicle routing problem

- $G=(V, E)$
- $V=\{0\} \cup V_{+}$
- Edge lengths $\ell_{e}, e \in E$
- K vehicles, capacity b
- Find a set of K routes with minimum total length
- Client demands $d_{i}, \forall i \in V_{+}$
- Let S_{j} be the set of clients served by route j. Then $d\left(S_{j}\right) \leq b$

The stochastic vehicle routing problem

- $G=(V, E)$
- $V=\{0\} \cup V_{+}$
- Edge lengths $\ell_{e}, e \in E$
- K vehicles, capacity b
- Find a set of K routes with minimum total length
- Elient demands $d_{1}, \forall i \subset V_{+}$
- Demands $D_{i}, \forall i \in V_{+}$: random variables that only get realized after routes have been decided
- Let S_{j} be the set of clients served by route j. Then $d(S) \leq b$

The chance-constrained vehicle routing problem

- $G=(V, E)$
- $V=\{0\} \cup V_{+}$
- Edge lengths $\ell_{e}, e \in E$
- K vehicles, capacity b
- Find a set of K routes with minimum total length
- Elient demands $d_{i}, \forall i \subset V_{+}$
- Demands $D_{i}, \forall i \in V_{+}$: random variables that only get realized after routes have been decided
- Let S_{j} be the set of clients served by route j.
Then $d\left(S_{j}\right) \leq b$
Then $\mathbb{P}\left\{D\left(S_{j}\right) \leq b\right\} \geq 1-\epsilon$

Literature review

Deterministic VRP

- State-of-the-art methods use branch-and-cut-and-price
- Citation:

Literature review

Deterministic VRP

- State-of-the-art methods use branch-and-cut-and-price
- Citation: Do I need any?

Literature review

Deterministic VRP

- State-of-the-art methods use branch-and-cut-and-price
- Citation: Do I need any?

Stochastic VRP (2-stage)

- Heuristics: Stewart \& Golden (1983), Dror \& Trudeau (1986), Savelsbergh \& Goetschalckx (1995), Novoa et al. (2006), Secomandi and Margot (2009), . . .
- Integer L-Shaped: Gendreau et al. (1994), Laporte et al. (2002), ...
- Branch-and-cut: Laporte et al. (1989), ...
- Branch-and-price: Christiansen et al. (2007)
- Branch-and-cut-and-price: Gauvin et al. (2014)

Stochastic VRP (chance-constrained)

- Reduction to deterministic case: Stewart \& Golden (1983)
- Branch-and-cut: Laporte et al. (1989)
- Branch-and-cut: Beraldi et al. (2015)
- Branch-and-cut for Robust VRP: Gounaris, Wiesemann, Floudas (2013)

State of CCVRP

Distribution		BC	BP	BCP
Deterministic		\checkmark	\checkmark	\checkmark
Independent	$*$	\checkmark	\checkmark	\checkmark
	Normal	\checkmark		
Correlated	Normal	\checkmark		

- * - Stewart and Golden (83): Reduction to deterministic, only applies to some distributions e.g. Poisson, Binomial.

State of CCVRP

Distribution		BC	BP	BCP
Deterministic		\checkmark	\checkmark	\checkmark
Independent	$*$	\checkmark	\checkmark	\checkmark
	Normal	\checkmark		
Correlated	Normal	\checkmark		

- * - Stewart and Golden (83): Reduction to deterministic, only applies to some distributions e.g. Poisson, Binomial.

Goal

Develop exact methods for chance-constrained SVRP with very few assumptions on the demand uncertainty.

State of CCVRP

Distribution		BC	BP	BCP
Deterministic		\checkmark	\checkmark	\checkmark
Independent	$*$	\checkmark	\checkmark	\checkmark
	Normal	\checkmark		
Correlated	Normal	\checkmark		

- * - Stewart and Golden (83): Reduction to deterministic, only applies to some distributions e.g. Poisson, Binomial.

Goal

Develop exact methods for chance-constrained SVRP with very few assumptions on the demand uncertainty.

Assumption: Quantile

$$
Q_{p}(S):=\inf \left\{b^{\prime}: \mathbb{P}\left\{\sum_{i \in S} D_{i} \leq b^{\prime}\right\} \geq p\right\}
$$

can be computed for any $S \subseteq V_{+}$and any $p \in[0,1]$.

State of CCVRP

Distribution		BC	BP	BCP
Deterministic		\checkmark	\checkmark	\checkmark
Independent	$*$	\checkmark	\checkmark	\checkmark
	Normal	\checkmark		
Correlated	Normal	\checkmark		
	Computable $Q_{p}(S)$			

State of CCVRP

Distribution		BC	BP	BCP
Deterministic		\checkmark	\checkmark	\checkmark
Independent	$*$	\checkmark	\checkmark	\checkmark
	Normal	\checkmark		
Correlated	Normal	\checkmark		
	Computable $Q_{p}(S)$	\checkmark		

Edge formulation for deterministic VRP

$d_{i}: \quad$ deterministic demand at customer $i \in V_{+}$
$r(S)$: number of trucks required to serve $S \subseteq V_{+}$
x_{e} : number of times a vehicle traverses edge $e \in E$

$$
\begin{array}{lll}
\min _{x} & \sum_{e \in E} \ell_{e} x_{e} \\
\text { s.t. } & \sum_{e \in \delta(\{i\})} x_{e}=2, & \forall i \in V_{+} \\
& \sum_{e \in \delta(\{0\})} x_{e}=2 K & \\
& \sum_{e \in \delta(S)} x_{e} \geq 2 r(S), & \forall S \subseteq V_{+} \\
& x_{e} \leq 1, & \forall e \in E \backslash \delta(\{0\}) \\
& x_{e} \in \mathbb{Z}_{+}, & \forall e \in E .
\end{array}
$$

Edge formulation for chance-constrained VRP

Modified capacity inequalities

$$
\sum_{e \in \delta(S)} x_{e} \geq 2 r_{\epsilon}(S), \quad \forall S \subseteq V_{+}
$$

- $r_{\epsilon}(S)$: Minimum number of trucks required to serve customer set S, where probability of capacity violation is at most ϵ for each truck
- Requires solving stochastic bin-packing

Edge formulation for chance-constrained VRP

Modified capacity inequalities

$$
\sum_{e \in \delta(S)} x_{e} \geq 2 r_{\epsilon}(S), \quad \forall S \subseteq V_{+}
$$

- $r_{\epsilon}(S)$: Minimum number of trucks required to serve customer set S, where probability of capacity violation is at most ϵ for each truck
- Requires solving stochastic bin-packing

Challenge

How to obtain valid lower bounds on $r_{\epsilon}(S)$?

- Laporte et al. (1989): If demands are independent normal, can use

$$
\left\lceil\frac{Q_{1-\epsilon}(S)}{b}\right\rceil
$$

where $Q_{p}(S)$ be p th quantile of the random variable $\sum_{i \in S} D_{i}$, i.e. $Q_{p}(S):=\inf \left\{b^{\prime}: \mathbb{P}\left\{\sum_{i \in S} D_{i} \leq b^{\prime}\right\} \geq p\right\}$.

Edge formulation for chance-constrained VRP

Modified capacity inequalities

$$
\sum_{e \in \delta(S)} x_{e} \geq 2 r_{\epsilon}(S), \quad \forall S \subseteq V_{+}
$$

- $r_{\epsilon}(S)$: Minimum number of trucks required to serve customer set S, where probability of capacity violation is at most ϵ for each truck
- Requires solving stochastic bin-packing

Challenge

How to obtain valid lower bounds on $r_{\epsilon}(S)$?

- Laporte et al. (1989): If demands are independent normal, can use

$$
\left\lceil\frac{Q_{1-\epsilon}(S)}{b}\right\rceil
$$

where $Q_{p}(S)$ be p th quantile of the random variable $\sum_{i \in S} D_{i}$, i.e.
$Q_{p}(S):=\inf \left\{b^{\prime}: \mathbb{P}\left\{\sum_{i \in S} D_{i} \leq b^{\prime}\right\} \geq p\right\}$.

- Not valid in general.

Bad example for Laporte et al. bound

		Scenarios		
		1	2	3
Clients	1	1	2	1
	2	1	1	1
	3	1	1	2
	4	1	1	1
Probability			0.8	0.1

Table: Demands in each scenario

- $b=2$
- $\epsilon=0.1$

Bad example for Laporte et al. bound

Bad example for Laporte et al. bound

		Scenarios			
		1	2	3	
Clients	1	1	2	1	
	2	1	1	1	
	3	1	1	2	
	4	1	1	1	
Probability			0.8	0.1	
	0.1				

Table: Demands in each scenario

- $b=2$
- $\epsilon=0.1$

Bad example for Laporte et al. bound

		Scenarios		
		1	2	3
Clients	1	1	2	1
	2	1	1	1
	3	1	1	2
	4	1	1	1
Probability			0.8	0.1

Table: Demands in each scenario

- $b=2$
- $\epsilon=0.1$
- Solution depicted is feasible

Bad example for Laporte et al. bound

		Scenarios		
		1	2	3
Clients	1	1	2	1
	2	1	1	1
	3	1	1	2
	4	1	1	1
Probability		0.8	0.1	0.1

Table: Demands in each scenario

- $b=2$
- $\epsilon=0.1$
- Solution depicted is feasible
- However, for $S=\{1,2,3,4\}$, $Q_{0.9}(S)=5$

Bad example for Laporte et al. bound

		Scenarios		
		1	2	3
Clients	1	1	2	1
	2	1	1	1
	3	1	1	2
	4	1	1	1
Probability			0.8	0.1

Table: Demands in each scenario

- $b=2$
- $\epsilon=0.1$
- Solution depicted is feasible
- However, for $S=\{1,2,3,4\}$, $Q_{0.9}(S)=5$
- Thus using $\left\lceil\frac{Q_{1-\epsilon}(S)}{b}\right\rceil$ requires 3 vehicles to enter $S=\{1,2,3,4\}$

Bounds on required trucks more generally

Simple general bound

$$
k_{\epsilon}(S)= \begin{cases}1 & \mathbb{P}\left\{\sum_{i \in S} D_{i} \leq b\right\} \geq 1-\epsilon \\ 2 & \text { otherwise }\end{cases}
$$

$$
\sum_{e \in \delta(S)} x_{e} \geq 2 k_{\epsilon}(S), \quad \forall S \subseteq V_{+}
$$

- $k_{\epsilon}(S) \leq r_{\epsilon}(S)$ but sufficient to define a valid formulation
- Cheap to compute for a given set S (thus easy for $x \in \mathbb{Z}_{+}^{E}$)
- Cuts may be weak

Improved general bound

Lemma

$$
r_{\epsilon}(S) \geq\left\lceil\frac{Q_{1-\epsilon r_{\epsilon}(S)}(S)}{b}\right\rceil
$$

Improved general bound

Lemma

$$
r_{\epsilon}(S) \geq\left\lceil\frac{Q_{1-\epsilon r_{\epsilon}(S)}(S)}{b}\right\rceil
$$

- But we don't know $r_{\epsilon}(S)$!

Improved general bound

Lemma

$$
r_{\epsilon}(S) \geq\left\lceil\frac{Q_{1-\epsilon r_{\epsilon}(S)}(S)}{b}\right\rceil
$$

- But we don't know $r_{\epsilon}(S)$!

Lemma

For any $k \geq 2$,

$$
r_{\epsilon}(S) \geq \min \left\{k,\left\lceil\frac{Q_{1-\epsilon(k-1)}(S)}{b}\right\rceil\right\}
$$

Proof: Either $r_{\epsilon}(S) \geq k$ or $r_{\epsilon}(S) \leq k-1$.

Improved general bound (2)

Use best k :

$$
k_{\epsilon}^{*}(S)=\max \left\{\min \left\{k,\left\lceil\frac{Q_{1-\epsilon(k-1)}(S)}{b}\right\rceil\right\}: k=2, \ldots, K\right\} .
$$

- Always at least as good as first simple bound

Improved general bound (2)

Use best k :

$$
k_{\epsilon}^{*}(S)=\max \left\{\min \left\{k,\left\lceil\frac{Q_{1-\epsilon(k-1)}(S)}{b}\right\rceil\right\}: k=2, \ldots, K\right\} .
$$

- Always at least as good as first simple bound

Improvements are possible for special cases:

- Independent and Correlated normal: Can use a stronger closed form formula (derived from robust CVRP).

State of CCVRP

Distribution		BC	BP	BCP
Deterministic		\checkmark	\checkmark	\checkmark
Independent	$*$	\checkmark	\checkmark	\checkmark
	Normal	\checkmark		
	Normal	\checkmark		
	Computable $Q_{p}(S)$	\checkmark		

State of CCVRP

Distribution		BC	BP	BCP
Deterministic		\checkmark	\checkmark	\checkmark
Independent	$*$	\checkmark	\checkmark	\checkmark
	Normal	\checkmark		
Correlated	Normal	\checkmark		
	Computable $Q_{p}(S)$	\checkmark	\checkmark	

Set partitioning formulation for DETERMINISTIC

```
Sets:
\Omega}\mathrm{ : set of elementary routes
satisfying capacity
Parameters:
air: number of times vertex }
appears in route r
Variables:
\lambdar: (binary) whether to choose
route r
\[
\begin{array}{ll}
\min _{\lambda} & \sum_{r \in \Omega} c_{r} \lambda_{r} \\
\text { s.t. } & \sum_{r \in \Omega} a_{i r} \lambda_{r}=1, \forall i \in V_{+} \\
& \sum_{r \in \Omega} \lambda_{r}=K \\
& \lambda_{r} \in\{0,1\}, \forall r \in \Omega
\end{array}
\]
```


Set partitioning formulation for DETERMINISTIC

```
Sets:
\Omega}\mathrm{ : set of elementary routes
satisfying capacity
\Omega': set of non-elementary routes
satisfying capacity.
Parameters:
air: number of times vertex }
appears in router
Variables:
\lambdar: (binary) whether to choose
route r
\[
\begin{array}{ll}
\min _{\lambda} & \sum_{r \in \Omega^{\prime}} c_{r} \lambda_{r} \\
\text { s.t. } & \sum_{r \in \Omega^{\prime}} a_{i r} \lambda_{r}=1, \forall i \in V_{+} \\
& \sum_{r \in \Omega^{\prime}} \lambda_{r}=K \\
& \lambda_{r} \in\{0,1\}, \forall r \in \Omega
\end{array}
\]
```

- Pseudo-polynomial pricing.

Set partitioning formulation for STOCHASTIC

```
Sets:
\Omegas: set of elementary routes
satisfying chance-constraint
Parameters:
air: number of times vertex i
appears in route r
Variables:
\mp@subsup{\lambda}{r}{}:(binary) whether to choose
route r
\[
\begin{array}{ll}
\min _{\lambda} & \sum_{r \in \Omega_{s}} c_{r} \lambda_{r} \\
\text { s.t. } & \sum_{r \in \Omega_{s}} a_{i r} \lambda_{r}=1, \forall i \in V_{+} \\
& \sum_{r \in \Omega_{s}} \lambda_{r}=K \\
& \lambda_{r} \in\{0,1\}, \forall r \in \Omega
\end{array}
\]
```


Set partitioning formulation for STOCHASTIC

```
Sets:
\Omegas: set of elementary routes
satisfying chance-constraint
\Omega
satisfying chance-constraint.
Parameters:
air: number of times vertex }
appears in router
Variables:
\lambdar:(binary) whether to choose
route r
```

```
\(\min _{\lambda} \sum_{r \in \Omega_{s}^{\prime}} c_{r} \lambda_{r}\)
```

$\min _{\lambda} \sum_{r \in \Omega_{s}^{\prime}} c_{r} \lambda_{r}$
s.t. $\quad \sum_{r \in \Omega_{s}^{\prime}} a_{i r} \lambda_{r}=1, \forall i \in V_{+}$
s.t. $\quad \sum_{r \in \Omega_{s}^{\prime}} a_{i r} \lambda_{r}=1, \forall i \in V_{+}$
$\sum_{r \in \Omega_{s}^{\prime}} \lambda_{r}=K$
$\sum_{r \in \Omega_{s}^{\prime}} \lambda_{r}=K$
$\lambda_{r} \in\{0,1\}, \forall r \in \Omega$

```
\(\lambda_{r} \in\{0,1\}, \forall r \in \Omega\)
```


Theorem

Finding the least cost non-elementary route in a graph that respects the capacity chance constraint under the finite distribution model is strongly NP-hard.

Theorem

Finding the least cost non-elementary route in a graph that respects the capacity chance constraint under the independent normal distribution model is strongly NP-hard.

Theorem

Finding the least cost non-elementary route in a graph that respects the capacity chance constraint under the finite distribution model is strongly NP-hard.

Theorem

Finding the least cost non-elementary route in a graph that respects the capacity chance constraint under the independent normal distribution model is strongly NP-hard.

Proof Idea:

Use chance-constraint to enforce elementarity.

State of CCVRP

Distribution		BC	BP	BCP
Deterministic		\checkmark	\checkmark	\checkmark
Independent	$*$	\checkmark	\checkmark	\checkmark
	Normal	\checkmark	Hard	
Correlated	Normal	\checkmark	Hard	
	Computable $Q_{p}(S)$	\checkmark	Hard	

State of CCVRP

Distribution		BC	BP	BCP
Deterministic		\checkmark	\checkmark	\checkmark
Independent	$*$	\checkmark	\checkmark	\checkmark
	Normal	\checkmark	Hard	\checkmark
	Normal	\checkmark	Hard	\checkmark
	Computable $Q_{p}(S)$	\checkmark	Hard	\checkmark

State of CCVRP

Distribution		BC	BP	BCP
Deterministic		\checkmark	\checkmark	\checkmark
Independent	*	\checkmark	\checkmark	\checkmark
	Normal	\checkmark	Hard	-
Correlated	Normal	\checkmark	Hard	-
	Computable $Q_{p}(S)$	\checkmark	Hard	-

BCP idea

BCP idea

Deterministic:

- Elementary (strongly NP-hard) \rightarrow Non-elementary (pseudo-polynomial)

BCP idea

Deterministic:

- Elementary (strongly NP-hard) \rightarrow Non-elementary (pseudo-polynomial) Chance-constrained
- Elementary (strongly NP-hard) \rightarrow Non-elementary (strongly NP-hard)

BCP idea

Deterministic:

- Elementary (strongly NP-hard) \rightarrow Non-elementary (pseudo-polynomial) Chance-constrained
- Elementary (strongly NP-hard) \rightarrow Non-elementary (strongly NP-hard) \rightarrow Relax chance-constraint

Relaxed pricing scheme

Exact capacity chance constraint

- y_{i} : binary indicator of whether or not node i is visited

$$
F^{\epsilon}=\left\{y \in\{0,1\}^{V_{+}}: \mathbb{P}\left\{D^{T} y \leq b\right\} \geq 1-\epsilon\right\}
$$

Idea

Find $w \in \mathbb{Z}_{+}^{V_{+}}$and $\tau \in \mathbb{Z}_{+}$such that:

$$
F^{\epsilon} \subseteq R(w, \tau):=\left\{y \in \mathbb{Z}^{v_{+}}: w^{\top} y \leq \tau\right\}
$$

Use $R(w, \tau)$ instead of F^{ϵ} :

Relaxed pricing scheme

Exact capacity chance constraint

- y_{i} : binary indicator of whether or not node i is visited

$$
F^{\epsilon}=\left\{y \in\{0,1\}^{V_{+}}: \mathbb{P}\left\{D^{T} y \leq b\right\} \geq 1-\epsilon\right\}
$$

Idea

Find $w \in \mathbb{Z}_{+}^{V_{+}}$and $\tau \in \mathbb{Z}_{+}$such that:

$$
F^{\epsilon} \subseteq R(w, \tau):=\left\{y \in \mathbb{Z}^{v_{+}}: w^{\top} y \leq \tau\right\}
$$

Use $R(w, \tau)$ instead of F^{ϵ} :

- Capacity cuts ensure only solutions to F^{ϵ} will be picked

Generic relaxed pricing scheme (cont'd)

How to choose coefficients?

- Natural choice: $w_{i}=\mathbb{E}\left[D_{i}\right]$

Given w, optimize τ in preprocessing phase:

$$
\tau=\max \left\{w^{\top} y: \mathbb{P}\left\{D^{T} y \leq b\right\} \geq 1-\epsilon, y \in\{0,1\}^{V_{+}}\right\}
$$

- Stochastic binary knapsack problem
- Joint normal random demands \Rightarrow Binary second-order cone program
- Scenario model of random demands \Rightarrow Structured binary integer program (Song et al., 2014)
- Any easily computable upper bound on the above maximum can be used.

Relaxed pricing with joint normal demands

- With joint normal random demands, binary second-order cone program can be replaced with a semidefinite program
- With mean vector μ and covariance matrix Σ :

$$
P\left\{D^{T} y \leq b\right\} \geq 1-\epsilon \Longleftrightarrow \mu^{T} y+\Phi^{-1}(1-\epsilon) \sqrt{y^{T} \Sigma y} \leq b
$$

Idea

- Get a lower bound on $y^{\top} \Sigma y$ in terms of $\mu^{T} y$

Relaxed pricing with joint normal demands

- With joint normal random demands, binary second-order cone program can be replaced with a semidefinite program
- With mean vector μ and covariance matrix Σ :

$$
P\left\{D^{T} y \leq b\right\} \geq 1-\epsilon \Longleftrightarrow \mu^{T} y+\Phi^{-1}(1-\epsilon) \sqrt{y^{T} \Sigma y} \leq b
$$

Idea

- Get a lower bound on $y^{\top} \Sigma y$ in terms of $\mu^{T} y$
- Find η^{*} such that $\eta^{*} \mu^{T} y \leq y^{\top} \Sigma y$ for all $y \in\{0,1\}^{V_{+}}$

$$
\begin{equation*}
\mu^{T} y+\Phi^{-1}(1-\epsilon) \sqrt{\eta^{*} \mu^{T} y} \leq b \tag{2}
\end{equation*}
$$

Relaxed pricing with joint normal demands

- With joint normal random demands, binary second-order cone program can be replaced with a semidefinite program
- With mean vector μ and covariance matrix Σ :

$$
P\left\{D^{T} y \leq b\right\} \geq 1-\epsilon \Longleftrightarrow \mu^{T} y+\Phi^{-1}(1-\epsilon) \sqrt{y^{T} \Sigma y} \leq b
$$

Idea

- Get a lower bound on $y^{\top} \Sigma y$ in terms of $\mu^{T} y$
- Find η^{*} such that $\eta^{*} \mu^{T} y \leq y^{T} \Sigma y$ for all $y \in\{0,1\}^{V_{+}}$

$$
\begin{equation*}
\mu^{\top} y+\Phi^{-1}(1-\epsilon) \sqrt{\eta^{*} \mu^{T} y} \leq b \tag{2}
\end{equation*}
$$

- η found by solving an SDP

$$
\begin{align*}
& \eta^{*}=\max _{\eta, p, Q} \eta \tag{3a}\\
& \text { s.t. } \mu_{i} \eta \leq p_{i} \quad i \in V_{+} \tag{3b}\\
& \Sigma=\operatorname{diag}\left(p_{1}, \ldots, p_{n}\right)+Q \tag{3c}\\
& Q \succeq 0, \tag{3d}
\end{align*}
$$

Relaxed pricing with joint normal demands

- With joint normal random demands, binary second-order cone program can be replaced with a semidefinite program
- With mean vector μ and covariance matrix Σ :

$$
P\left\{D^{T} y \leq b\right\} \geq 1-\epsilon \Longleftrightarrow \mu^{T} y+\Phi^{-1}(1-\epsilon) \sqrt{y^{T} \Sigma y} \leq b
$$

Idea

- Get a lower bound on $y^{\top} \Sigma y$ in terms of $\mu^{T} y$
- Find η^{*} such that $\eta^{*} \mu^{T} y \leq y^{\top} \Sigma y$ for all $y \in\{0,1\}^{V_{+}}$

$$
\begin{equation*}
\mu^{\top} y+\Phi^{-1}(1-\epsilon) \sqrt{\eta^{*} \mu^{T} y} \leq b \tag{2}
\end{equation*}
$$

- η found by solving an SDP

$$
\begin{align*}
\eta^{*}=\max _{\eta, p, Q} & \eta \tag{3a}\\
\text { s.t. } & \mu_{i} \eta \leq p_{i} \quad i \in V_{+} \tag{3b}\\
& \Sigma=\operatorname{diag}\left(p_{1}, \ldots, p_{n}\right)+Q \tag{3c}\\
& Q \succeq 0, \tag{3d}
\end{align*}
$$

- Solve RCSP using constraint (2) on resource $\mu^{T} y$.

Pricing with independent normal demands

Pricing for independent normal with mean vector μ and variance vector σ^{2}

$$
\mathbb{P}\left\{D^{T} y \leq b\right\} \geq 1-\epsilon \Longleftrightarrow \mu^{T} y+\Phi^{-1}(1-\epsilon) \sqrt{\sum_{i \in V_{+}} y_{i}^{2} \sigma_{i}^{2}} \leq b
$$

Relax to:

$$
\mu^{\top} y+\Phi^{-1}(1-\epsilon) \sqrt{y^{\top} \sigma^{2}} \leq b
$$

- Resources: $\mu^{\top} y$ and $y^{\top} \sigma^{2}$

Computational tests overview

Test instances

- Based on deterministic VRP instances
- 32 to 55 customers
- Two variance settings: "low" ($\approx 10 \%$ of mean) and "high" ($\approx 20 \%$ of mean)
- Three distribution assumptions: independent normal, joint normal, scenario Implementation details
- Cplex 12.4.0
- Implemented in BCP code based from F. et al. (2006)
- 7200 second time limit

$B C$	$B C^{*}$	$B C^{J}$	$B C P^{r}$	$B C P^{i}$
$k_{\epsilon}(S)$	$k_{\epsilon}^{*}(S)$	$k_{\epsilon}^{J}(S)$	Rel. pricing	Rel. pricing (for ind. normal)

Table: Strategies used

Figure: Summary of results for instances with independent normal distribution.

Figure: Summary of results for instances with joint normal distribution.

Figure: Summary of results for instances with scenario distribution.

Concluding remarks

Summary

- Chance-constrained formulation avoids difficulties in modeling recourse actions
- Proposed method can solve chance-constrained VRP with correlations
- Builds on successful approaches for solving deterministic VRP
- Can be extended to other variants

Concluding remarks

Summary

- Chance-constrained formulation avoids difficulties in modeling recourse actions
- Proposed method can solve chance-constrained VRP with correlations
- Builds on successful approaches for solving deterministic VRP
- Can be extended to other variants

Distribution		BC	BP	BCP
Deterministic		\checkmark	\checkmark	\checkmark
Independent	$*$	\checkmark	\checkmark	\checkmark
	Normal	\checkmark	Hard	\checkmark
	Normal	\checkmark	Hard	\checkmark
	Computable $Q_{p}(S)$	\checkmark	Hard	\checkmark

Future work

Future work

- Incorporate more "advanced features" of deterministic VRP into solution approach
- Seek improved "pricing friendly" relaxation of chance-constrained capacity constraint
- Other models of handling uncertainty
- How "well" can deterministic constraints "approximate" chance-constraints?

THANK YOU!

Comparing solutions

Experiment:

- For an instance, obtain chance-constrained and recourse model solutions
- Evaluate each solution in both model metrics

Four instances, size up to 22 nodes, all independent normal

	Max Violation Prob. \%		\% Increase Expected Cost
	CC Sol	Rec Sol	Exper
Low	1.7	50.0	2.3%
	5.0	7.8	0.9%
	2.4	2.4	0
	3.1	6.4	0.6%
High	4.0	8.3	3.4%
	3.6	23.7	2.9%
	1.0	1.0	0
	0.7	16.9	0.3%

Comparing solutions: Correlated demands

- Recourse solution: Ignore correlation
- Evaluate each solution in both model metrics using true distribution

Var	Max Violation Prob.		\% Increase in Expected Cost
	4.0	Rec Sol	1.1%
	2.4	50.7	2.2%
	0.2	13.3	0.2%
	0.6	16.5	0.1%
High	4.6	12.1	3.6%
	5.0	28.9	3.1%
	1.2	8.6	-0.3%
	2.5	21.5	-0.1%

