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The deterministic vehicle routing problem

depot

G = (V ,E)

V = {0} ∪ V+

Edge lengths ℓe , e ∈ E

K vehicles, capacity b

Find a set of K routes with
minimum total length

Client demands di ,∀i ∈ V+
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The stochastic vehicle routing problem

depot

G = (V ,E)

V = {0} ∪ V+

Edge lengths ℓe , e ∈ E

K vehicles, capacity b

Find a set of K routes with
minimum total length

Client demands di ,∀i ∈ V+

Demands Di , ∀i ∈ V+: random
variables that only get realized
after routes have been decided

Let Sj be the set of clients
served by route j .
Then d(Sj) ≤ b
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The chance-constrained vehicle routing problem

depot

G = (V ,E)

V = {0} ∪ V+

Edge lengths ℓe , e ∈ E

K vehicles, capacity b

Find a set of K routes with
minimum total length

Client demands di ,∀i ∈ V+

Demands Di , ∀i ∈ V+: random
variables that only get realized
after routes have been decided

Let Sj be the set of clients
served by route j .
Then d(Sj) ≤ b

Then P {D(Sj) ≤ b} ≥ 1− ǫ
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Literature review

Deterministic VRP

State-of-the-art methods use branch-and-cut-and-price

Citation:
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Literature review

Deterministic VRP

State-of-the-art methods use branch-and-cut-and-price

Citation: Do I need any?

Stochastic VRP (2-stage)

Heuristics: Stewart & Golden (1983), Dror & Trudeau (1986), Savelsbergh & Goetschalckx (1995),
Novoa et al. (2006), Secomandi and Margot (2009), . . .

Integer L-Shaped: Gendreau et al. (1994), Laporte et al. (2002), . . .

Branch-and-cut: Laporte et al. (1989), . . .

Branch-and-price: Christiansen et al. (2007)

Branch-and-cut-and-price: Gauvin et al. (2014)

Stochastic VRP (chance-constrained)

Reduction to deterministic case: Stewart & Golden (1983)

Branch-and-cut: Laporte et al. (1989)

Branch-and-cut: Beraldi et al. (2015)

Branch-and-cut for Robust VRP: Gounaris, Wiesemann, Floudas (2013)
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State of CCVRP

Distribution BC BP BCP

Deterministic X X X

Independent
∗ X X X

Normal X

Correlated Normal X

∗ - Stewart and Golden (83): Reduction to deterministic, only applies to some distributions
e.g. Poisson, Binomial.
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State of CCVRP

Distribution BC BP BCP

Deterministic X X X

Independent
∗ X X X

Normal X

Correlated Normal X

∗ - Stewart and Golden (83): Reduction to deterministic, only applies to some distributions
e.g. Poisson, Binomial.

Goal

Develop exact methods for chance-constrained SVRP with very few assumptions on the
demand uncertainty.

Assumption: Quantile

Qp(S) := inf

{

b
′ : P{

∑

i∈S

Di ≤ b
′} ≥ p

}

can be computed for any S ⊆ V+ and any p ∈ [0, 1].
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State of CCVRP
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Edge formulation for deterministic VRP

di : deterministic demand at customer i ∈ V+

r(S): number of trucks required to serve S ⊆ V+

xe : number of times a vehicle traverses edge e ∈ E

min
x

∑

e∈E

ℓexe

s.t.
∑

e∈δ({i})

xe = 2, ∀i ∈ V+

∑

e∈δ({0})

xe = 2K

∑

e∈δ(S)

xe ≥ 2r(S), ∀S ⊆ V+

xe ≤ 1, ∀e ∈ E \ δ({0})

xe ∈ Z+, ∀e ∈ E .
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Edge formulation for chance-constrained VRP

Modified capacity inequalities

∑

e∈δ(S)

xe ≥ 2rǫ(S), ∀S ⊆ V+

rǫ(S): Minimum number of trucks required to serve customer set S , where
probability of capacity violation is at most ǫ for each truck

Requires solving stochastic bin-packing
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Modified capacity inequalities

∑

e∈δ(S)

xe ≥ 2rǫ(S), ∀S ⊆ V+

rǫ(S): Minimum number of trucks required to serve customer set S , where
probability of capacity violation is at most ǫ for each truck

Requires solving stochastic bin-packing

Challenge

How to obtain valid lower bounds on rǫ(S)?

Laporte et al. (1989): If demands are independent normal, can use

⌈

Q1−ǫ(S)

b

⌉

where Qp(S) be pth quantile of the random variable
∑

i∈S
Di , i.e.

Qp(S) := inf
{

b′ : P{
∑

i∈S
Di ≤ b′} ≥ p

}

.
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∑

e∈δ(S)

xe ≥ 2rǫ(S), ∀S ⊆ V+

rǫ(S): Minimum number of trucks required to serve customer set S , where
probability of capacity violation is at most ǫ for each truck

Requires solving stochastic bin-packing

Challenge

How to obtain valid lower bounds on rǫ(S)?

Laporte et al. (1989): If demands are independent normal, can use

⌈

Q1−ǫ(S)

b

⌉

where Qp(S) be pth quantile of the random variable
∑

i∈S
Di , i.e.

Qp(S) := inf
{

b′ : P{
∑

i∈S
Di ≤ b′} ≥ p

}

.

Not valid in general.
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Bad example for Laporte et al. bound

1

23

4

Scenarios
1 2 3

Clients

1 1 2 1
2 1 1 1
3 1 1 2
4 1 1 1

Probability 0.8 0.1 0.1

Table: Demands in each scenario

b = 2

ǫ = 0.1
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Bad example for Laporte et al. bound

1

23

4

Scenarios
1 2 3

Clients

1 1 2 1
2 1 1 1
3 1 1 2
4 1 1 1

Probability 0.8 0.1 0.1

Table: Demands in each scenario

b = 2

ǫ = 0.1

Solution depicted is feasible

However, for S = {1, 2, 3, 4},
Q0.9(S) = 5

Thus using
⌈

Q1−ǫ
(S)

b

⌉

requires 3

vehicles to enter S = {1, 2, 3, 4}
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Bounds on required trucks more generally

Simple general bound

kǫ(S) =







1 P

{

∑

i∈S

Di ≤ b
}

≥ 1− ǫ

2 otherwise

∑

e∈δ(S)

xe ≥ 2kǫ(S), ∀S ⊆ V+

kǫ(S) ≤ rǫ(S) but sufficient to define a valid formulation

Cheap to compute for a given set S (thus easy for x ∈ Z
E
+)

Cuts may be weak
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Improved general bound

Lemma

rǫ(S) ≥

⌈

Q1−ǫrǫ(S)(S)

b

⌉
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Improved general bound

Lemma

rǫ(S) ≥

⌈

Q1−ǫrǫ(S)(S)

b

⌉

But we don’t know rǫ(S)!

Lemma

For any k ≥ 2,

rǫ(S) ≥ min

{

k ,

⌈

Q1−ǫ(k−1)(S)

b

⌉}

Proof: Either rǫ(S) ≥ k or rǫ(S) ≤ k − 1.
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Improved general bound (2)

Use best k :

k
∗
ǫ (S) = max

{

min

{

k ,

⌈

Q1−ǫ(k−1)(S)

b

⌉}

: k = 2, . . . ,K

}

.

Always at least as good as first simple bound
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Improved general bound (2)

Use best k :

k
∗
ǫ (S) = max

{

min

{

k ,

⌈

Q1−ǫ(k−1)(S)

b

⌉}

: k = 2, . . . ,K

}

.

Always at least as good as first simple bound

Improvements are possible for special cases:

Independent and Correlated normal: Can use a stronger closed form formula
(derived from robust CVRP).
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State of CCVRP

Distribution BC BP BCP

Deterministic X X X

Independent
∗ X X X

Normal X

Correlated
Normal X

Computable Qp(S) X
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Set partitioning formulation for DETERMINISTIC

Sets :
Ω: set of elementary routes
satisfying capacity

Parameters :
air : number of times vertex i

appears in route r

Variables :
λr : (binary) whether to choose
route r

min
λ

∑

r∈Ω

crλr

s.t.
∑

r∈Ω

airλr = 1, ∀i ∈ V+

∑

r∈Ω

λr = K

λr ∈ {0, 1}, ∀r ∈ Ω
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Set partitioning formulation for DETERMINISTIC

Sets :
Ω: set of elementary routes
satisfying capacity
Ω′: set of non-elementary routes
satisfying capacity.

Parameters :
air : number of times vertex i

appears in route r

Variables :
λr : (binary) whether to choose
route r

min
λ

∑

r∈Ω′

crλr

s.t.
∑

r∈Ω′

airλr = 1, ∀i ∈ V+

∑

r∈Ω′

λr = K

λr ∈ {0, 1}, ∀r ∈ Ω

Pseudo-polynomial pricing.
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Set partitioning formulation for STOCHASTIC

Sets :
Ωs : set of elementary routes
satisfying chance-constraint

Parameters :
air : number of times vertex i

appears in route r

Variables :
λr : (binary) whether to choose
route r

min
λ

∑

r∈Ωs

crλr

s.t.
∑

r∈Ωs

airλr = 1, ∀i ∈ V+

∑

r∈Ωs

λr = K

λr ∈ {0, 1}, ∀r ∈ Ω
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Set partitioning formulation for STOCHASTIC

Sets :
Ωs : set of elementary routes
satisfying chance-constraint
Ω′

s : set of non-elementary routes
satisfying chance-constraint.

Parameters :
air : number of times vertex i

appears in route r

Variables :
λr : (binary) whether to choose
route r

min
λ

∑

r∈Ω′

s

crλr

s.t.
∑

r∈Ω′

s

airλr = 1, ∀i ∈ V+

∑

r∈Ω′

s

λr = K

λr ∈ {0, 1}, ∀r ∈ Ω
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Theorem

Finding the least cost non-elementary route in a graph that respects the capacity chance

constraint under the finite distribution model is strongly NP-hard.

Theorem

Finding the least cost non-elementary route in a graph that respects the capacity chance

constraint under the independent normal distribution model is strongly NP-hard.
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Theorem

Finding the least cost non-elementary route in a graph that respects the capacity chance

constraint under the finite distribution model is strongly NP-hard.

Theorem

Finding the least cost non-elementary route in a graph that respects the capacity chance

constraint under the independent normal distribution model is strongly NP-hard.

Proof Idea:

Use chance-constraint to enforce elementarity.
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State of CCVRP

Distribution BC BP BCP

Deterministic X X X

Independent
∗ X X X

Normal X Hard

Correlated
Normal X Hard

Computable Qp(S) X Hard
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BCP idea
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BCP idea

Deterministic:

Elementary (strongly NP-hard) → Non-elementary (pseudo-polynomial)

Chance-constrained

Elementary (strongly NP-hard) → Non-elementary (strongly NP-hard)
→ Relax chance-constraint
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Relaxed pricing scheme

Exact capacity chance constraint

yi : binary indicator of whether or not node i is visited

F
ǫ =

{

y ∈ {0, 1}V+ : P
{

D
T
y ≤ b

}

≥ 1− ǫ
}

Idea

Find w ∈ Z
V+
+ and τ ∈ Z+ such that:

F
ǫ ⊆ R(w , τ ) :=

{

y ∈ Z
V+ : wT

y ≤ τ
}

Use R(w , τ ) instead of F ǫ:
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Relaxed pricing scheme

Exact capacity chance constraint

yi : binary indicator of whether or not node i is visited

F
ǫ =

{

y ∈ {0, 1}V+ : P
{

D
T
y ≤ b

}

≥ 1− ǫ
}

Idea

Find w ∈ Z
V+
+ and τ ∈ Z+ such that:

F
ǫ ⊆ R(w , τ ) :=

{

y ∈ Z
V+ : wT

y ≤ τ
}

Use R(w , τ ) instead of F ǫ:

Capacity cuts ensure only solutions to F ǫ will be picked
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Generic relaxed pricing scheme (cont’d)

How to choose coefficients?

Natural choice: wi = E[Di ]

Given w , optimize τ in preprocessing phase:

τ = max
{

w
T
y : P

{

D
T
y ≤ b

}

≥ 1− ǫ, y ∈ {0, 1}V+

}

Stochastic binary knapsack problem

Joint normal random demands ⇒ Binary second-order cone program

Scenario model of random demands ⇒ Structured binary integer program (Song et
al., 2014)

Any easily computable upper bound on the above maximum can be used.
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Relaxed pricing with joint normal demands

With joint normal random demands, binary second-order cone program can be
replaced with a semidefinite program

With mean vector µ and covariance matrix Σ:

P
{

D
T
y ≤ b

}

≥ 1− ǫ ⇐⇒ µ
T
y + Φ−1(1− ǫ)

√

yTΣy ≤ b

Idea

Get a lower bound on yTΣy in terms of µT y
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Relaxed pricing with joint normal demands

With joint normal random demands, binary second-order cone program can be
replaced with a semidefinite program

With mean vector µ and covariance matrix Σ:

P
{

D
T
y ≤ b

}

≥ 1− ǫ ⇐⇒ µ
T
y + Φ−1(1− ǫ)

√

yTΣy ≤ b

Idea

Get a lower bound on yTΣy in terms of µT y

Find η∗ such that η∗µT y ≤ yTΣy for all y ∈ {0, 1}V+

µ
T
y + Φ−1(1− ǫ)

√

η∗µT y ≤ b (2)
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Relaxed pricing with joint normal demands

With joint normal random demands, binary second-order cone program can be
replaced with a semidefinite program

With mean vector µ and covariance matrix Σ:

P
{

D
T
y ≤ b

}

≥ 1− ǫ ⇐⇒ µ
T
y + Φ−1(1− ǫ)

√

yTΣy ≤ b

Idea

Get a lower bound on yTΣy in terms of µT y

Find η∗ such that η∗µT y ≤ yTΣy for all y ∈ {0, 1}V+

µ
T
y + Φ−1(1− ǫ)

√

η∗µT y ≤ b (2)

η found by solving an SDP

η
∗ = max

η,p,Q
η (3a)

s.t. µiη ≤ pi i ∈ V+ (3b)

Σ = diag(p1, ..., pn) + Q (3c)

Q � 0, (3d)
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Relaxed pricing with joint normal demands

With joint normal random demands, binary second-order cone program can be
replaced with a semidefinite program

With mean vector µ and covariance matrix Σ:

P
{

D
T
y ≤ b

}

≥ 1− ǫ ⇐⇒ µ
T
y + Φ−1(1− ǫ)

√

yTΣy ≤ b

Idea

Get a lower bound on yTΣy in terms of µT y

Find η∗ such that η∗µT y ≤ yTΣy for all y ∈ {0, 1}V+

µ
T
y + Φ−1(1− ǫ)

√

η∗µT y ≤ b (2)

η found by solving an SDP

η
∗ = max

η,p,Q
η (3a)

s.t. µiη ≤ pi i ∈ V+ (3b)

Σ = diag(p1, ..., pn) + Q (3c)

Q � 0, (3d)

Solve RCSP using constraint (2) on resource µT y .
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Pricing with independent normal demands

Pricing for independent normal with mean vector µ and variance vector σ2

P

{

D
T
y ≤ b

}

≥ 1− ǫ ⇐⇒ µ
T
y +Φ−1(1− ǫ)

√

∑

i∈V+

y2
i σ

2
i ≤ b

Relax to:
µ
T
y + Φ−1(1− ǫ)

√

yTσ2 ≤ b

Resources: µT y and yTσ2
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Computational tests overview

Test instances

Based on deterministic VRP instances

32 to 55 customers

Two variance settings: “low” (≈ 10% of mean) and “high” (≈ 20% of mean)

Three distribution assumptions: independent normal, joint normal, scenario

Implementation details

Cplex 12.4.0

Implemented in BCP code based from F. et al. (2006)

7200 second time limit

BC BC∗ BC J BCP r BCP i

kǫ(S) k∗
ǫ (S) kJ

ǫ (S) Rel. pricing Rel. pricing (for ind. normal)

Table: Strategies used
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BC
BC∗
BC J
BCP r
BCP i

1 10 100 1000 7200 10% 20%

1

5

10

15

20

Figure: Summary of results for instances with independent normal distribution.
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BC
BC∗
BC J
BCP r

1 10 100 1000 7200 10% 20%

1

5

10

15

20

Figure: Summary of results for instances with joint normal distribution.
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BC
BC∗
BCP r

1 10 100 1000 7200 10% 20%

1

5

10

15

20

Figure: Summary of results for instances with scenario distribution.
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Concluding remarks

Summary

Chance-constrained formulation avoids difficulties in modeling recourse actions

Proposed method can solve chance-constrained VRP with correlations

Builds on successful approaches for solving deterministic VRP

Can be extended to other variants
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Can be extended to other variants

Distribution BC BP BCP

Deterministic X X X

Independent
∗ X X X

Normal X Hard X

Correlated
Normal X Hard X

Computable Qp(S) X Hard X
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Future work

Future work

Incorporate more “advanced features” of deterministic VRP into solution approach

Seek improved “pricing friendly” relaxation of chance-constrained capacity constraint

Other models of handling uncertainty

How “well” can deterministic constraints “approximate” chance-constraints?
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THANK YOU!
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Comparing solutions

Experiment:

For an instance, obtain chance-constrained and recourse model solutions

Evaluate each solution in both model metrics

Four instances, size up to 22 nodes, all independent normal

Max Violation Prob. % % Increase
Var CC Sol Rec Sol Expected Cost

Low 1.7 50.0 2.3%
5.0 7.8 0.9%
2.4 2.4 0
3.1 6.4 0.6%

High 4.0 8.3 3.4%
3.6 23.7 2.9%
1.0 1.0 0
0.7 16.9 0.3%
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Comparing solutions: Correlated demands

Recourse solution: Ignore correlation

Evaluate each solution in both model metrics using true distribution

Max Violation Prob. % Increase in
Var CC Sol Rec Sol Expected Cost

Low 4.0 50.7 1.1%
2.4 13.3 2.2%
0.2 6.3 0.2%
0.6 16.5 0.1%

High 4.6 12.1 3.6%
5.0 28.9 3.1%
1.2 8.6 -0.3%
2.5 21.5 -0.1%
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