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The deterministic vehicle routing problem

. e G=(V,E)
. o ° o V={0}uV,
. o Edge lengths ., e € E
° . @ K vehicles, capacity b

. @ Find a set of K routes with
o ° minimum total length

@ Client demands d;,Vi € V4
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The deterministic vehicle routing problem

G=(V,E)

vV ={0}uV,

Edge lengths ¢, e € E
K vehicles, capacity b

¢ ¢ ¢ ¢ ¢

Find a set of K routes with
minimum total length

Client demands d;,Vi € V4

¢

depot

@ Let S; be the set of clients
served by route j.
Then d(Sj) < b
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The stochastic vehicle routing problem

depot

¢ ¢ ¢ ¢ ¢

¢

G=(V,E)

vV ={0}uV,

Edge lengths ¢, e € E
K vehicles, capacity b

Find a set of K routes with
minimum total length

Client-demands—d-¥cV

@ Demands D;,Vi € Vi: random
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variables that only get realized
after routes have been decided

Let S; be the set of clients
served by route j.

Then-d{S;)}-<b
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The chance-constrained vehicle routing problem

G=(V,E)

vV ={0}uV,

Edge lengths ¢., e € E
K vehicles, capacity b

¢ ¢ ¢ ¢ ¢

Find a set of K routes with
minimum total length
Client-demands-di Vi-€- Vo
depot @ Demands D;,Vi € Vi: random

variables that only get realized
after routes have been decided

¢

@ Let S; be the set of clients
served by route j.

Fhen-d{S;)<b
Then P{D(S;) < b} >1—¢
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Literature review

Deterministic VRP
@ State-of-the-art methods use branch-and-cut-and-price

@ Citation:

Dinh, Fukasawa, Luedtke BCP for Chance-constrained VRP



Literature review

Deterministic VRP
@ State-of-the-art methods use branch-and-cut-and-price

@ Citation: Do | need any?

Dinh, Fukasawa, Luedtke BCP for Chance-constrained VRP



Literature review

Deterministic VRP
@ State-of-the-art methods use branch-and-cut-and-price

@ Citation: Do | need any?

Stochastic VRP (2-stage)

@ Heuristics: Stewart & Golden (1983), Dror & Trudeau (1986), Savelsbergh & Goetschalckx (1995),
Novoa et al. (2006), Secomandi and Margot (2009), ...

Integer L-Shaped: Gendreau et al. (1994), Laporte et al. (2002), ...
Branch-and-cut: Laporte et al. (1989), ...
Branch-and-price: Christiansen et al. (2007)

¢ ¢ ¢ ¢

Branch-and-cut-and-price: Gauvin et al. (2014)

Stochastic VRP (chance-constrained)
@ Reduction to deterministic case: Stewart & Golden (1983)
@ Branch-and-cut: Laporte et al. (1989)
@ Branch-and-cut: Beraldi et al. (2015)
@ Branch-and-cut for Robust VRP: Gounaris, Wiesemann, Floudas (2013)
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State of CCVRP

Distribution BC | BP | BCP
Deterministic v v v
* v v v
Independent Normal 7
Correlated Normal v

@ * - Stewart and Golden (83): Reduction to deterministic, only applies to some distributions

e.g. Poisson, Binomial.

Dinh, Fukasawa, Luedtke BCP for Chance-constrained VRP

4/29



State of CCVRP

Distribution BC | BP | BCP
Deterministic v v v
* v v v
Independent Normal 7
Correlated Normal v

@ * - Stewart and Golden (83): Reduction to deterministic, only applies to some distributions

e.g. Poisson, Binomial.

Goal

Develop exact methods for chance-constrained SVRP with very few assumptions on the

demand uncertainty.
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State of CCVRP

Distribution BC | BP | BCP
Deterministic v v v
* v v v
Independent Normal 7
Correlated Normal v

@ * - Stewart and Golden (83): Reduction to deterministic, only applies to some distributions
e.g. Poisson, Binomial.

Goal

Develop exact methods for chance-constrained SVRP with very few assumptions on the
demand uncertainty.

Assumption: Quantile

Qp(S) :=inf {b’ P{) Di<b}> p}
ies
can be computed for any S C V4 and any p € [0, 1].
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State of CCVRP

Distribution BC | BP | BCP
Deterministic v v v
* v v v
Independent Normal 7
Normal v
Correlated Computable Q,(3)
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State of CCVRP

Distribution BC | BP | BCP
Deterministic v v v
* v v v

Independent Normal 7

Normal v

Correlated Computable Q,(S) | »
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Edge formulation for deterministic VRP

di: deterministic demand at customer i € V.
r(S):  number of trucks required to serve S C V.
Xe: number of times a vehicle traverses edge e € E
min Z[exe
x ecE
s.t. > x=2 Vie V,
ecs({i})
Z Xe = 2K
e€s({0})
Z Xxe >2r(S), VSCVy
e€d(S)
Xe <1, Ve € E\ §({0})
Xe € Ly, Ve € E.
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Edge formulation for chance-constrained VRP
Modified capacity inequalities

> xe>2r(S), VSC Vi
e€s(S)

@ re(S): Minimum number of trucks required to serve customer set S, where

probability of capacity violation is at most € for each truck

@ Requires solving stochastic bin-packing
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Edge formulation for chance-constrained VRP
Modified capacity inequalities

> xe>2r(S), VSC Vi
ecs(S)

@ re(S): Minimum number of trucks required to serve customer set S, where
probability of capacity violation is at most € for each truck

@ Requires solving stochastic bin-packing

How to obtain valid lower bounds on r.(S)?

Challenge J

@ Laporte et al. (1989): If demands are independent normal, can use

o)

where @,(S) be pth quantile of the random variable >, D;, i.e.
Qp(S) :==inf{b : P{} ;s Di < b'} > p}.
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Edge formulation for chance-constrained VRP
Modified capacity inequalities

> xe>2r(S), VSC Vi
ecs(S)

@ re(S): Minimum number of trucks required to serve customer set S, where
probability of capacity violation is at most € for each truck

@ Requires solving stochastic bin-packing

How to obtain valid lower bounds on r.(S)?

Challenge J

@ Laporte et al. (1989): If demands are independent normal, can use

o)

where @,(S) be pth quantile of the random variable >, D;, i.e.
Qp(S) :==inf{b : P{} ;s Di < b'} > p}.
@ Not valid in general.
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Bad example for Laporte et al. bound

Scenarios
1 2 3
1 1 2 1
. 2 1 1 1
Clients 3 1 1 5
©) @) 401 1 1
Probability 0.8 0.1 0.1

Table: Demands in each scenario

@ b=2
@ e=0.1
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Bad example for Laporte et al. bound

Scenarios

. 1

Clients 1 1
1 1 1

Probability 0.8 0.1 0.1

A~ W N

Table: Demands in each scenario

@ b=2
@ e=0.1
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Bad example for Laporte et al. bound

Scenarios

2 3
2
1,
I
L

Probability 0.8 0.1 0.1

Clients

A~ W N

Table: Demands in each scenario

@ b=2
@ e=0.1
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Bad example for Laporte et al. bound

Scenarios
1 2 3
1 1 2 1
. 2 1 1 1
Clients 3 1 1 5
3) ® 411 1 1
Probability 0.8 0.1 0.1

Table: Demands in each scenario

@ b=2
@ =01
@) @) @ Solution depicted is feasible
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Bad example for Laporte et al. bound

Scenarios
1 2 3
1 1 2 1
. 2 1 1 1
Clients 3 1 1 5
3) @ 411 1 1
Probability 0.8 0.1 0.1

Table: Demands in each scenario

@ b=2
@ =01
@) @) @ Solution depicted is feasible
@ However, for S = {1,2,3,4},
Q0.9(S)=5

Dinh, Fukasawa, Luedtke BCP for Chance-constrained VRP 8 /29



Bad example for Laporte et al. bound

Scenarios
1 2 3
1 1 2 1
. 2 1 1 1
Clients 3 1 1 5
3) @ 411 1 1
Probability 0.8 0.1 0.1

Table: Demands in each scenario

@ b=2
2 e=01
@) @) @ Solution depicted is feasible
@ However, for S = {1,2,3,4},
Qoo(S) =5
@ Thus using [Ql*TE(S)-‘ requires 3

vehicles to enter S = {1, 2, 3,4}
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Bounds on required trucks more generally

Simple general bound

1 P ZD;gb}Zl—e
ke(S) = i€S
2 otherwise

D xe >2k(S), VSC Vi
ecs(S)

@ ke(S) < re(S) but sufficient to define a valid formulation
@ Cheap to compute for a given set S (thus easy for x € ZE)

@ Cuts may be weak
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Improved general bound

Lemma

r(S) 2 [QT(S(SW
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Improved general bound

Lemma

r(S) > [QT@(SW

@ But we don't know r(S)!
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Improved general bound

Lemma

<5>(5)w

@ But we don't know r(S)!

Lemma
For any k > 2,

r(S) > min {k, [QwT)(S)H

Proof: Either r.(S) > k or re(S) < k—1.
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Improved general bound (2)

Use best k:

k:(5)=max{min{k, F?l‘e‘kf‘”(s)”:kzz,...,;(}.

@ Always at least as good as first simple bound
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Improved general bound (2)

Use best k:
—ek—-1)(S
k:(S):max{min{k, ’VQI(’(TU()—‘} : k:2,...,K}.
@ Always at least as good as first simple bound

Improvements are possible for special cases:

@ Independent and Correlated normal: Can use a stronger closed form formula
(derived from robust CVRP).
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State of CCVRP

Distribution BC | BP | BCP
Deterministic v v v
* v v v

Independent Normal 7

Normal v

Correlated Computable Q,(S) | v
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State of CCVRP

Distribution BC | BP | BCP
Deterministic v v v
* v v v
Independent Normal 7
Normal v
Correlated Computable Q,(S) | v >
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Set partitioning formulation for DETERMINISTIC

Sets :
Q: set of elementary routes
satisfying capacity

Parameters :
ajr: number of times vertex i
appears in route r

Variables :
Ar: (binary) whether to choose
route r

min
by

s.t.

Z Cr\r

reQ

dapA =1,Vie V,
reQ

> -k
reQ
Ar€{0,1}, Vr e Q
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Set partitioning formulation for DETERMINISTIC

Sets :
Q: set of elementary routes

satisfying capacity .
Q’: set of non-elementary routes m/\ln Z crAr
satisfying capacity. reqy
Parameters : st Z airAr =1, Vi€ Vo
a1 number of times vertex i req’
appears in route r Z o= K
F =
Variables : reQ’
Ar: (binary) whether to choose A €{0,1}, VreQ
route r T

@ Pseudo-polynomial pricing.
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Set partitioning formulation for STOCHASTIC

Sets :
Q;: set of elementary routes
satisfying chance-constraint

Parameters :
ajr: number of times vertex i
appears in route r

Variables :
Ar: (binary) whether to choose
route r

min
by

s.t.

Z Cr\r

reQs

S ark=1,VieVy
reQs

>k
reQs
Ar€{0,1}, Vre Q

Dinh, Fukasawa, Luedtke BCP for Chance-constrained VRP 13 /29



Set partitioning formulation for STOCHASTIC

Sets :
Q;: set of elementary routes
saltisfying chance-constraint min E A
Q. set of non-elementary routes A

s H reQ’
satisfying chance-constraint. s

s.t. g apAr =1, Vie V.

Parameters : : e ’ € Vs
aj-: number of times vertex i reQ
appears in route r

pp Z A = K

Variables : reQ!
Ar: (binary) whether to choose
rorutt(e r Y Ar€{0,1}, Vre Q
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ONE DOES NOT'SIMPLY,, +
N\ ’

|

PRICE ﬂHAﬁE—GﬂIISTIIIIIIE ROUTES

Theorem

Finding the least cost non-elementary route in a graph that respects the capacity chance
constraint under the finite distribution model is strongly NP-hard.

Theorem

Finding the least cost non-elementary route in a graph that respects the capacity chance
constraint under the independent normal distribution model is strongly NP-hard.
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ONE DOES NOT'SIMPLY,

PRICE ﬂHAﬁE—GﬂIIS’I’IIIIIIE ROUTES

Theorem

Finding the least cost non-elementary route in a graph that respects the capacity chance
constraint under the finite distribution model is strongly NP-hard.

Theorem

Finding the least cost non-elementary route in a graph that respects the capacity chance
constraint under the independent normal distribution model is strongly NP-hard.

Proof Idea:
Use chance-constraint to enforce elementarity.
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State of CCVRP

Distribution

BC | BP BCP
Deterministic v v v
* v v v
Independent Normal v Hard
Normal v' | Hard
Correlated Computable Q,(S) | v | Hard
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State of CCVRP

Distribution BC | BP BC
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Independent Normal v Hard >
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State of CCVRP

Distribution BC BP BCP
Deterministic v v v
* v v v
Independent Normal v Hard >
Correlated Normal v Hard >
Computable Q,(S) | v | Hard >
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BCP idea
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BCP idea

IR,

Deterministic:

@ Elementary (strongly NP-hard) — Non-elementary (pseudo-polynomial)
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BCP idea

REL A

Deterministic:
@ Elementary (strongly NP-hard) — Non-elementary (pseudo-polynomial)

Chance-constrained

@ Elementary (strongly NP-hard) — Non-elementary (strongly NP-hard)
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BCP idea

REL_ P

Deterministic:
@ Elementary (strongly NP-hard) — Non-elementary (pseudo-polynomial)

Chance-constrained

@ Elementary (strongly NP-hard) — Non-elementary (strongly NP-hard)
— Relax chance-constraint

Dinh, Fukasawa, Luedtke BCP for Chance-constrained VRP



Relaxed pricing scheme

Exact capacity chance constraint

@ y;: binary indicator of whether or not node i is visited

Fo={ye{o, " :P{DTy<b} >1-¢}

Idea

Find w € Z* and 7 € Z; such that:

F¢C R(w,T):= {y ez wly < T}

Use R(w, 7) instead of F€:

Dinh, Fukasawa, Luedtke BCP for Chance-constrained VRP 17 /29



Relaxed pricing scheme

Exact capacity chance constraint

@ y;: binary indicator of whether or not node i is visited

Fo={ye{o, " :P{DTy<b} >1-¢}

Idea

Find w € Z* and 7 € Z; such that:

F¢C R(w,T):= {y ez wly < T}

Use R(w, 7) instead of F€:

@ Capacity cuts ensure only solutions to F¢ will be picked
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Generic relaxed pricing scheme (cont'd)

How to choose coefficients?

@ Natural choice: w; = E[Dj]
Given w, optimize 7 in preprocessing phase:

T = max{WTy : ]P{DTy <b}>1l-eyE€ {0,1}‘/*}

@ Stochastic binary knapsack problem
@ Joint normal random demands = Binary second-order cone program

@ Scenario model of random demands = Structured binary integer program (Song et
al., 2014)

@ Any easily computable upper bound on the above maximum can be used.
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Relaxed pricing with joint normal demands

@ With joint normal random demands, binary second-order cone program can be
replaced with a semidefinite program
@ With mean vector i and covariance matrix X:

P{DTy < b} >1—¢ — uTy—i—(D*l(l —e)VyTZy <b

Idea

& Get a lower bound on y" Xy in terms of 4 y
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Relaxed pricing with joint normal demands

@ With joint normal random demands, binary second-order cone program can be
replaced with a semidefinite program
@ With mean vector i and covariance matrix X:

P{DTy < b} >1—¢ — uTy+¢71(1 —e)VyTZy <b

Idea

& Get a lower bound on y" Xy in terms of 4 y
@ Find 7" such that n* "y < y"Xy for all y € {0,1}"~

ply+07 1—)VnuTy <b ()
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Relaxed pricing with joint normal demands

@ With joint normal random demands, binary second-order cone program can be
replaced with a semidefinite program
@ With mean vector i and covariance matrix X:

P{DTy < b} >1—¢ — uTy+¢71(1 —e)VyTZy <b

Idea

& Get a lower bound on y" Xy in terms of 4 y
@ Find 7" such that n* "y < y"Xy for all y € {0,1}"~

ply+07 1—)VnuTy <b ()

@ 7 found by solving an SDP

n* =max n (3a)
n,p,Q

st. uin < p;i ieVy (3b)

¥ = diag(pi, ..., pr) + @ (39)

Q= 0, (3d)
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Relaxed pricing with joint normal demands

@ With joint normal random demands, binary second-order cone program can be
replaced with a semidefinite program
@ With mean vector i and covariance matrix X:

P{DTy < b} >1—¢ — uTy—&—(D*l(l —e)VyTZy <b

Idea

& Get a lower bound on y" Xy in terms of 4 y
@ Find 7" such that n* "y < y"Xy for all y € {0,1}"~

ply+07 1—)VnuTy <b ()

@ 7 found by solving an SDP

n* =max n (3a)
n,p,Q

st. uin < p;i ieVy (3b)

¥ = diag(pi, ..., pr) + @ (39)

Q= 0, (3d)

@ Solve RCSP using constraint (2) on resource " y.
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Pricing with independent normal demands

Pricing for independent normal with mean vector y and variance vector o>

IP{DTy < b} >1-c = puy+07 (1-0) | y2o2<b
iev,

Relax to:

ply+o 7 (1—eyyTo2 < b

@ Resources: 1"y and y' o2

Dinh, Fukasawa, Luedtke BCP for Chance-constrained VRP 20 /29



Computational tests overview

Test instances
@ Based on deterministic VRP instances

@ 32 to 55 customers
@ Two variance settings: “low” (= 10% of mean) and “high” (= 20% of mean)

@ Three distribution assumptions: independent normal, joint normal, scenario

Implementation details

9o Cplex 12.4.0
@ Implemented in BCP code based from F. et al. (2006)

@ 7200 second time limit

BC BC* BC’ BCP" BCP'
ko(S) kX(S) kJ(S) Rel. pricing Rel. pricing (for ind. normal)

Table: Strategies used

Dinh, Fukasawa, Luedtke BCP for Chance-constrained VRP 21 /29
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Figure: Summary of results for instances with independent normal distribution.
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Figure: Summary of results for instances with joint normal distribution.
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Figure: Summary of results for instances with scenario distribution.
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Concluding remarks

Summary

@ Chance-constrained formulation avoids difficulties in modeling recourse actions
@ Proposed method can solve chance-constrained VRP with correlations

@ Builds on successful approaches for solving deterministic VRP

@ Can be extended to other variants
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Concluding remarks

Summary
@ Chance-constrained formulation avoids difficulties in modeling recourse actions
@ Proposed method can solve chance-constrained VRP with correlations
@ Builds on successful approaches for solving deterministic VRP

@ Can be extended to other variants

Distribution BC BP BCP
Deterministic v v v
* v v v
Independent Normal v Hard v
Correlated Normal v Hard v
orreiate Computable Q,(S) | v | Hard | v
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Future work

Future work
@ Incorporate more “advanced features” of deterministic VRP into solution approach
@ Seek improved “pricing friendly” relaxation of chance-constrained capacity constraint
@ Other models of handling uncertainty

@ How “well” can deterministic constraints “approximate” chance-constraints?
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THANK YOU!
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Comparing solutions

Experiment:
@ For an instance, obtain chance-constrained and recourse model solutions
@ Evaluate each solution in both model metrics

Four instances, size up to 22 nodes, all independent normal

Max Violation Prob. % % Increase

Var CC Sol Rec Sol  Expected Cost
Low 1.7 50.0 2.3%
5.0 7.8 0.9%

2.4 2.4 0

3.1 6.4 0.6%

High 4.0 83 3.4%
3.6 23.7 2.9%

1.0 1.0 0

0.7 16.9 0.3%
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Comparing solutions: Correlated demands

@ Recourse solution: Ignore correlation

@ Evaluate each solution in both model metrics using true distribution

Max Violation Prob. % Increase in

Var CC Sol Rec Sol  Expected Cost
Low 4.0 50.7 1.1%
2.4 13.3 2.2%

0.2 6.3 0.2%

0.6 16.5 0.1%

High 4.6 12.1 3.6%
5.0 28.9 3.1%

1.2 8.6 -0.3%

25 21.5 -0.1%
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