
A Joint Routing and Speed

Optimization Problem

Fernando Santos - UNIFEI (Brazil)
joint work with Ricardo Fukasawa (U. Waterloo),

Qie He (U. Minnesota) and Yongjia Song (Virginia C. U.)

Column Generation 2016
Búzios

Introduction

Most of vehicle routing problems assume that vehicles

travel at a constant speed

In the Vehicle Routing Problem with Time Windows

(VRPTW) is assumed that vehicles leave the depot at time

t = 0 and should visit each node i in the interval [ai ,bi]

The Joint Routing and Speed Optimization Problem

(JRSOP) proposes to relax the assumption of the VRPTW

on which vehicles should travel at a constant over arcs

Instead, JRSOP introduces new decision variables

vij ≥ 0 : ∀(i , j) ∈ A to determine which speed vehicles

should travel over each arc

Usually the speed is bounded on each arc lij ≤ vij ≤ uij

This way, more feasible solutions are allowed

Introduction

Another motivation for the JRSOP is about costs

Usually vehicles fuel consumption are affected by

Vehicle weight

Vehicle speed
Distance travelled

Also, JRSOP includes driver’s labour costs into the routing

solution cost

This way the JRSOP provides a better estimative of costs

than the traditional models considering constant speed

Cost Function

JRSOP cost function
∑

(i ,j)

Fij(vij)

︸ ︷︷ ︸

Fuel cost

+ Hourly salary × Total travel time
︸ ︷︷ ︸

Driver’s labour cost

Fuel costs

Fij(vij) = α1

dij

vij
+ α2dij + α3dij fij + α4dijv

2
ij ,

where vehicle load fij depends on the routing decision

Literature Review

Speed Optimization Problem

Quadratic time exact algorithm (Kramer et al. 2015)

Pollution Routing Problem - PRP

MILP formulation for the PRP (Bektaş and Laporte 2011)

Branch-and-cut for the PRP (Fukasawa et al. 2015)

Branch-and-price for the PRP (Dabia et al. 2015)

Adaptive large neighbourhood search (Demir et al. 2012)

Iterated local search-based heuristics (Kramer et al. 2015)

SP Formulation

Classical SP Formulation

min
∑

r∈Ω

cr zr (1)

s.t.
∑

r∈Ω

airzr = 1, i ∈ V0, (2)

∑

r∈Ω

zr = K , (3)

zr ∈ Z+, r ∈ Ω. (4)

Usually set of routes Ω stores all feasible vehicle routes
To adapt this approach for the JRSOP we must consider
speeds over arcs

1) To consider infinity elements in set Ω
2) To evaluate the optimal speed for each r ∈ Ω

JRSOP speed property

Proposition 1:

Let (i , j), (j , k) ∈ Ar be arcs of a given route r ∈ R. Assuming a

convex cost function, if node j is visited in the interval (aj ,bj)
then optimal speeds vij = vjk .

JRSOP speed property

Proposition 1:

Let (i , j), (j , k) ∈ Ar be arcs of a given route r ∈ R. Assuming a

convex cost function, if node j is visited in the interval (aj ,bj)
then optimal speeds vij = vjk .

i

j

k

[]

vij

[]

vjk

[]

vij = vjk

JRSOP SP Formulation

JRSOP SP Formulation

min
∑

(r ,I,s)∈Ω

cr ,I,szr ,I,s (5a)

s.t.
∑

(r ,I,s)∈Ω

airzr ,I,s = 1, i ∈ V0, (5b)

∑

(r ,I,s)∈Ω

zr ,I,s = K , (5c)

zr ,I,s ∈ Z+, (r , I,s) ∈ Ω. (5d)

Elements of set Ω are now defined by a triple (r , I, s)

r is the route performed by the vehicle

I is the set of active nodes of r
s is the service start time of each node j ∈ I (sj = {aj , bj})

JRSOP SP Formulation

Assumptions

1 t0 = 0

Vehicles always leave the depot at time 0

2 lij = l ,uij = u, ∀(i , j) ∈ A

all arcs have the same lower and upper speed limit

3 Fuel cost function is convex

Labelling Algorithm

For each label extension to a given node i ∈ C, we create
3 new labels

1 visits i at time ai

2 visits i at time bi

3 visits i in the interval (ai , bi)

Labelling Algorithm

For each label extension to a given node i ∈ C, we create
3 new labels

1 visits i at time ai

2 visits i at time bi

3 visits i in the interval (ai , bi)

0

i

[]

La
i Lb

i
L
(a,b)
i[]

Labelling Algorithm

For each label extension to a given node i ∈ C, we create
3 new labels

1 visits i at time ai

2 visits i at time bi

3 visits i in the interval (ai , bi)

0

i

[]

La
i Lb

i
L
(a,b)
i[]

When a label L terminates it defines recursively a route r , a set

of active nodes I and a set of service times s of a given triple

(r , I, s) ∈ Ω

Labelling Algorithm

The algorithm is able to evaluate the optimal fuel cost of

the labels created using extension 1 or 2

Each label stores 3 extra parameters

wL stores the last node in the path on which a label hit a
time windows

sL stores the time on which node wL is visited: awL
or bwL

CL stores the optimal fuel cost up until node wL

Labelling Algorithm

Using Proposition 1 and Assumptions 1 and 2, the

algorithm is able to evaluate and store the fuel cost of

labels created in extensions 1 and 2

Labels created by extension 3 store the coefficients of time

and cost functions

FL(vwL i) = α4dwLiv
2
wLi + α1

dwLi

vwLi
+ pL

TL(vwL i) = sL +
dwLi

vwLi

Labelling Algorithm

Label attributes

i : last node visited

N̄: set of visited nodes

w : last node in the path on which a label hit a time windows

s: time on which node wL is visited: awL
or bwL

V : interval with feasible speeds after L visits wL

T (v): arriving time on node i

F (v): fuel cost from node 0 to i

Remark

If i 6= w , T (v) and F (v) store the coefficients of functions in

terms of v ∈ V . Otherwise, they store constant values.

Labelling Algorithm

General Dominance Rule

Given labels LA and LB, we say that LA dominates LB if

1 iA = iB
2 E(LB) ⊆ E(LA)

3 ∀L ∈ E(LB) : c(LA ⊕ L) ≤ c(LB ⊕ L)

Dominance Rule for JRSOP

Given labels LA and LB, we say that LA dominates LB if

1 iA = iB
2 N̄A ⊆ N̄B

3 TA(v) ≤ TB(v)

4 FA(v) −
∑

n∈N̄A
δn ≤ FB(v) −

∑

n∈N̄B
δn

Labelling Algorithm

if iA = iB = wA = wB, all 4 conditions can be checked by

comparing constant values

i []
LA LB

i []
LB LA

i []
LA

LB

i []
LB

LA

Labelling Algorithm

Otherwise, LA and/or LB visit i on the interval (ai ,bi)

i []
LA

LB

Conditions 3 and 4 are checked as following

For any v ∈ VB, there exists v ′ ∈ VA such that

TA(v
′) ≤ TB(v) and

FA(v
′)−

∑

n∈N̄A

δn ≤ FB(v) −
∑

n∈N̄B

δn

Labelling Algorithm

g(v) = min
v ′∈VA

{F (v ′)−
∑

n∈N̄A

δn | TA(v
′) ≤ TB(v)}

g(v) = min
v ′∈VA

{F (v ′)−
∑

n∈N̄A

δn | sA +
dwA i

v ′
≤ sB +

dwB i

v
}

g(v) = min{F (v ′)−
∑

n∈N̄A

δn | sA+
dwA i

v ′
≤ sB +

dwB i

v
,V min

A ≤ v ′ ≤ V max
A }

g(v) = min{F (v ′)−
∑

n∈N̄A

δn | max{
dwA iv

(sb − sA)v + dwB i

,V min
A } ≤ v ′ ≤ V max

A }

Resulting optimization problem

D = max
v∈VB

{g(v)− F (v)−
∑

n∈N̄B

δn} (6)

Labelling Algorithm

Solution of (10) is obtained by solving a continuous
differentiable problem

Optimal solution is among KKT points (points with

derivative zero or boundary points)
Finding stationary points amounts to solving roots of a
degree 4 polynomial.

If D < 0 on the interval VB , LA dominates LB

Otherwise, no dominance is allowed.

Implementation Details

Cuts

Inequalities introduced on model (5)-(8) to improve the LP

lower bounds

Capacity Cuts - derived from VRP
∑

i∈S

∑

j /∈S

xij ≥ π(S) : S ⊆ C (7)

- xij is the value assumed by arc (i , j) ∈ A in a given LP solution

- π(S) is the minimum number of vehicles to attend customers

of subset S

Cuts are separated via a heuristic from Lysgaard (2004)

Implementation Details

Q-routes

Elementary routes are harder to evaluate

Label LA dominates LB if N̄A ⊆ N̄B

This condition prevents many labels to be discarded

Christofides et al. (1981) proposed Q-routes

Q-route is a walk on the Graph that respect the vehicle’s

capacity
Relax that condition imposing customers are visited at most

once

Condition N̄A ⊆ N̄B is replaced by qA ≤ qB

Set of all feasible Q-routes include all elementary routes

Computational Settings

Test instances (Bektaş and Laporte 2011, Demir et al.
2012, Kramer et al. 2014)

Based on UK cities, 10-city instances to 25-city instances

Three series: UK-A, UK-B, UK-C.
Widths of time windows: UK-A > UK-C > UK-B

SCIP as the framework for branch-cut-and-price

All code implemented in C++

One-hour time limit

Computational Results

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 2 4 6 8 10 12 14

P
er

ce
nt

ag
e

of
 in

st
an

ce
s

(x
 1

00
%

)

Times slower than fastest

elementary
q-routes

elementary + cuts
q-routes + cuts

2-cycle-free
2-cycle-free + cuts

Computational Results

Branch-and-cut Algorithm Branch-and-cut-and-price

instance optimal time(s) gap optimal time(s) gap(%)

UK10A-1 170.64 1354.4 0.0% 170.64 3.3 0.0%

UK10A-2 204.88 813.7 0.0% 204.88 1.5 0.0%

UK10A-3 200.34 1708.3 0.0% 200.34 0.6 0.0%

UK10A-4 189.88 844.9 0.0% 189.88 3.9 0.0%

UK10A-5 175.59 2649.2 0.0% 175.59 3.5 0.0%

UK10A-6 214.48 1472.8 0.0% 214.48 0.7 0.0%

UK10A-7 190.14 882.5 0.0% 190.14 4.0 0.0%

UK10A-8 222.17 564.3 0.0% 222.17 0.2 0.0%

UK10A-9 174.54 352.0 0.0% 174.54 5.4 0.0%

UK10A-10 189.82 211.1 0.0% 189.82 0.5 0.0%

Computational Results

Branch-and-cut Algorithm Branch-and-cut-and-price

instance optimal time(s) gap optimal time(s) gap(%)

UK10A-1 170.64 1354.4 0.0% 170.64 3.3 0.0%

UK10A-2 204.88 813.7 0.0% 204.88 1.5 0.0%

UK10A-3 200.34 1708.3 0.0% 200.34 0.6 0.0%

UK10A-4 189.88 844.9 0.0% 189.88 3.9 0.0%

UK10A-5 175.59 2649.2 0.0% 175.59 3.5 0.0%

UK10A-6 214.48 1472.8 0.0% 214.48 0.7 0.0%

UK10A-7 190.14 882.5 0.0% 190.14 4.0 0.0%

UK10A-8 222.17 564.3 0.0% 222.17 0.2 0.0%

UK10A-9 174.54 352.0 0.0% 174.54 5.4 0.0%

UK10A-10 189.82 211.1 0.0% 189.82 0.5 0.0%

Computational Results

Branch-and-cut Algorithm Branch-and-cut-and-price

instance optimal time(s) gap optimal time(s) gap(%)

UK20A-1 352.45 3600 22.9% 351.82 24.1 0.0%

UK20A-2 365.77 3600 20.7% 365.77 3.8 0.0%

UK20A-3 230.49 3600 23.6% 230.49 25.1 0.0%

UK20A-4 347.04 3600 21.2% 347.04 109 0.0%

UK20A-5 329.63 3600 24.3% 323.44 26.3 0.0%

UK20A-6 367.73 3600 25.0% 364.23 27.2 0.0%

UK20A-7 258.75 3600 23.3% 258.75 3600 7.3%

UK20A-8 303.17 3600 23.0% 301.51 19.5 0.0%

UK20A-9 362.56 3600 19.5% 362.56 17.4 0.0%

UK20A-10 317.79 3600 26.3% 313.33 20.1 0.0%

Computational Results

Branch-and-cut Algorithm Branch-and-cut-and-price

instance optimal time(s) gap optimal time(s) gap(%)

UK20A-1 352.45 3600 22.9% 351.82 24.1 0.0%

UK20A-2 365.77 3600 20.7% 365.77 3.8 0.0%

UK20A-3 230.49 3600 23.6% 230.49 25.1 0.0%

UK20A-4 347.04 3600 21.2% 347.04 109 0.0%

UK20A-5 329.63 3600 24.3% 323.44 26.3 0.0%

UK20A-6 367.73 3600 25.0% 364.23 27.2 0.0%

UK20A-7 258.75 3600 23.3% 258.75 3600 7.3%

UK20A-8 303.17 3600 23.0% 301.51 19.5 0.0%

UK20A-9 362.56 3600 19.5% 362.56 17.4 0.0%

UK20A-10 317.79 3600 26.3% 313.33 20.1 0.0%

Concluding Remarks

The proposed algorithm outperforms the previous

approach for all instances of our test set

The framework can be applied to any JRSOP variants as

long as the cost is convex in the speed

As future work, we suggest allow variable departure time

at the depot

