A Joint Routing and Speed Optimization Problem

Fernando Santos - UNIFEI (Brazil) joint work with Ricardo Fukasawa (U. Waterloo), Qie He (U. Minnesota) and Yongjia Song (Virginia C. U.)

Column Generation 2016

Búzios

Introduction

- Most of vehicle routing problems assume that vehicles travel at a constant speed
- In the Vehicle Routing Problem with Time Windows (VRPTW) is assumed that vehicles leave the depot at time $t=0$ and should visit each node i in the interval $\left[a_{i}, b_{i}\right]$
- The Joint Routing and Speed Optimization Problem (JRSOP) proposes to relax the assumption of the VRPTW on which vehicles should travel at a constant over arcs
- Instead, JRSOP introduces new decision variables $v_{i j} \geq 0: \forall(i, j) \in A$ to determine which speed vehicles should travel over each arc
- Usually the speed is bounded on each arc $l_{i j} \leq v_{i j} \leq u_{i j}$
- This way, more feasible solutions are allowed

Introduction

- Another motivation for the JRSOP is about costs
- Usually vehicles fuel consumption are affected by
- Vehicle weight
- Vehicle speed
- Distance travelled
- Also, JRSOP includes driver's labour costs into the routing solution cost
- This way the JRSOP provides a better estimative of costs than the traditional models considering constant speed

Cost Function

JRSOP cost function

$$
\underbrace{\sum_{(i, j)} F_{i j}\left(v_{i j}\right)}+\underbrace{\text { Hourly salary } \times \text { Total travel time }}_{\text {Driver's labour cost }}
$$

Fuel costs

$$
F_{i j}\left(v_{i j}\right)=\alpha_{1} \frac{d_{i j}}{v_{i j}}+\alpha_{2} d_{i j}+\alpha_{3} d_{i j} f_{i j}+\alpha_{4} d_{i j} v_{i j}^{2}
$$

where vehicle load $f_{i j}$ depends on the routing decision

Literature Review

Speed Optimization Problem

- Quadratic time exact algorithm (Kramer et al. 2015)

Pollution Routing Problem - PRP

- MILP formulation for the PRP (Bektaş and Laporte 2011)
- Branch-and-cut for the PRP (Fukasawa et al. 2015)
- Branch-and-price for the PRP (Dabia et al. 2015)
- Adaptive large neighbourhood search (Demir et al. 2012)
- Iterated local search-based heuristics (Kramer et al. 2015)

SP Formulation

Classical SP Formulation

$$
\begin{align*}
\min & \sum_{r \in \Omega} c_{r} z_{r} \tag{1}\\
\text { s.t. } & \sum_{r \in \Omega} a_{i r} z_{r}=1, i \in V_{0}, \tag{2}\\
& \sum_{r \in \Omega} z_{r}=K \tag{3}\\
& z_{r} \in \mathbb{Z}_{+}, r \in \Omega \tag{4}
\end{align*}
$$

- Usually set of routes Ω stores all feasible vehicle routes
- To adapt this approach for the JRSOP we must consider speeds over arcs

1) To consider infinity elements in set Ω
2) To evaluate the optimal speed for each $r \in \Omega$

JRSOP speed property

Proposition 1:

Let $(i, j),(j, k) \in A_{r}$ be arcs of a given route $r \in R$. Assuming a convex cost function, if node j is visited in the interval $\left(a_{j}, b_{j}\right)$ then optimal speeds $v_{i j}=v_{j k}$.

JRSOP speed property

Proposition 1:

Let $(i, j),(j, k) \in A_{r}$ be arcs of a given route $r \in R$. Assuming a convex cost function, if node j is visited in the interval $\left(a_{j}, b_{j}\right)$ then optimal speeds $v_{i j}=v_{j k}$.

JRSOP SP Formulation

JRSOP SP Formulation

$$
\begin{align*}
\min & \sum_{(r, l, \mathbf{s}) \in \Omega} c_{r, l, \mathbf{s}} z_{r, l, \mathbf{s}} \tag{5a}\\
\text { s.t. } & \sum_{(r, l, \mathbf{s}) \in \Omega} a_{i r} z_{r, l, \mathbf{s}}=1, i \in V_{0}, \tag{5b}\\
& \sum_{(r, l, \mathbf{s}) \in \Omega} z_{r, l, \mathbf{s}}=K \\
& z_{r, l, \mathbf{s}} \in \mathbb{Z}_{+},(r, l, \mathbf{s}) \in \Omega \tag{5c}
\end{align*}
$$

- Elements of set Ω are now defined by a triple (r, I, s)
- r is the route performed by the vehicle
- l is the set of active nodes of r
- s is the service start time of each node $j \in I\left(s_{j}=\left\{a_{j}, b_{j}\right\}\right)$

JRSOP SP Formulation

Assumptions

(1) $t_{0}=0$

Vehicles always leave the depot at time 0
(2) $I_{i j}=I, u_{i j}=u, \quad \forall(i, j) \in A$
all arcs have the same lower and upper speed limit
(3) Fuel cost function is convex

Labelling Algorithm

- For each label extension to a given node $i \in C$, we create 3 new labels
(a) visits i at time a_{i}
(2) visits i at time b_{i}
(3) visits i in the interval $\left(a_{i}, b_{i}\right)$

Labelling Algorithm

- For each label extension to a given node $i \in C$, we create 3 new labels
(1) visits i at time a_{i}
(2) visits i at time b_{i}
(3) visits i in the interval $\left(a_{i}, b_{i}\right)$

Labelling Algorithm

- For each label extension to a given node $i \in C$, we create 3 new labels
(1) visits i at time a_{i}
(2) visits i at time b_{i}
(3) visits i in the interval $\left(a_{i}, b_{i}\right)$

When a label L terminates it defines recursively a route r, a set of active nodes I and a set of service times s of a given triple $(r, I, s) \in \Omega$

Labelling Algorithm

- The algorithm is able to evaluate the optimal fuel cost of the labels created using extension 1 or 2
- Each label stores 3 extra parameters
- w_{L} stores the last node in the path on which a label hit a time windows
- s_{L} stores the time on which node w_{L} is visited: $a_{w_{L}}$ or $b_{w_{L}}$
- C_{L} stores the optimal fuel cost up until node w_{L}

Labelling Algorithm

- Using Proposition 1 and Assumptions 1 and 2, the algorithm is able to evaluate and store the fuel cost of labels created in extensions 1 and 2
- Labels created by extension 3 store the coefficients of time and cost functions

$$
\begin{gathered}
F_{L}\left(v_{w_{L} i}\right)=\alpha_{4} d_{w_{L} i} v_{w_{L} i}^{2}+\alpha_{1} \frac{d_{w_{L} i}}{v_{w_{L} i}}+p_{L} \\
T_{L}\left(v_{w_{L} i}\right)=s_{L}+\frac{d_{w_{L} i}}{v_{w_{L} i}}
\end{gathered}
$$

Labelling Algorithm

Label attributes

- i : last node visited
- \bar{N} : set of visited nodes
- w: last node in the path on which a label hit a time windows
- s : time on which node w_{L} is visited: $a_{w_{L}}$ or $b_{w_{L}}$
- V : interval with feasible speeds after L visits w_{L}
- $T(v)$: arriving time on node i
- $F(v)$: fuel cost from node 0 to i

Remark

If $i \neq w, T(v)$ and $F(v)$ store the coefficients of functions in terms of $v \in V$. Otherwise, they store constant values.

Labelling Algorithm

General Dominance Rule

Given labels L_{A} and L_{B}, we say that L_{A} dominates L_{B} if
(1) $i_{A}=i_{B}$
(2) $E\left(L_{B}\right) \subseteq E\left(L_{A}\right)$
(3) $\forall L \in E\left(L_{B}\right): c\left(L_{A} \oplus L\right) \leq c\left(L_{B} \oplus L\right)$

Dominance Rule for JRSOP

Given labels L_{A} and L_{B}, we say that L_{A} dominates L_{B} if
(1) $i_{A}=i_{B}$
(2) $\bar{N}_{A} \subseteq \bar{N}_{B}$
(3) $T_{A}(v) \leq T_{B}(v)$
(4) $F_{A}(v)-\sum_{n \in \bar{N}_{A}} \delta_{n} \leq F_{B}(v)-\sum_{n \in \bar{N}_{B}} \delta_{n}$

Labelling Algorithm

- if $i_{A}=i_{B}=w_{A}=w_{B}$, all 4 conditions can be checked by comparing constant values

Labelling Algorithm

- Otherwise, L_{A} and/or L_{B} visit i on the interval $\left(a_{i}, b_{i}\right)$

- Conditions 3 and 4 are checked as following

For any $v \in V_{B}$, there exists $v^{\prime} \in V_{A}$ such that

$$
\begin{gathered}
T_{A}\left(v^{\prime}\right) \leq T_{B}(v) \text { and } \\
F_{A}\left(v^{\prime}\right)-\sum_{n \in \bar{N}_{A}} \delta_{n} \leq F_{B}(v)-\sum_{n \in \bar{N}_{B}} \delta_{n}
\end{gathered}
$$

Labelling Algorithm

$$
\begin{gathered}
g(v)=\min _{v^{\prime} \in V_{A}}\left\{F\left(v^{\prime}\right)-\sum_{n \in \bar{N}_{A}} \delta_{n} \mid T_{A}\left(v^{\prime}\right) \leq T_{B}(v)\right\} \\
g(v)=\min _{v^{\prime} \in V_{A}}\left\{F\left(v^{\prime}\right)-\sum_{n \in \bar{N}_{A}} \delta_{n} \left\lvert\, s_{A}+\frac{d_{w_{A} i}}{v^{\prime}} \leq s_{B}+\frac{d_{w^{\prime} i}}{v}\right.\right\} \\
g(v)=\min \left\{F\left(v^{\prime}\right)-\sum_{n \in \bar{N}_{A}} \delta_{n} \left\lvert\, s_{A}+\frac{d_{w_{A} i}}{v^{\prime}} \leq s_{B}+\frac{d_{w_{B} i}}{v}\right., V_{A}^{\min } \leq v^{\prime} \leq V_{A}^{\max }\right\} \\
g(v)=\min \left\{F\left(v^{\prime}\right)-\sum_{n \in \bar{N}_{A}} \delta_{n} \left\lvert\, \max \left\{\frac{d_{w_{A} A} v}{\left(s_{b}-s_{A}\right) v+d_{w_{B} i}}, V_{A}^{\min }\right\} \leq v^{\prime} \leq V_{A}^{\max }\right.\right\}
\end{gathered}
$$

Resulting optimization problem

$$
\begin{equation*}
D=\max _{v \in V_{B}}\left\{g(v)-F(v)-\sum_{n \in \bar{N}_{B}} \delta_{n}\right\} \tag{6}
\end{equation*}
$$

Labelling Algorithm

- Solution of (10) is obtained by solving a continuous differentiable problem
- Optimal solution is among KKT points (points with derivative zero or boundary points)
- Finding stationary points amounts to solving roots of a degree 4 polynomial.
- If $D<0$ on the interval V_{B}, L_{A} dominates L_{B}
- Otherwise, no dominance is allowed.

Implementation Details

Cuts

- Inequalities introduced on model (5)-(8) to improve the LP lower bounds

Capacity Cuts - derived from VRP

$$
\begin{equation*}
\sum_{i \in S} \sum_{j \notin S} x_{i j} \geq \pi(S): S \subseteq C \tag{7}
\end{equation*}
$$

- $x_{i j}$ is the value assumed by $\operatorname{arc}(i, j) \in A$ in a given LP solution
$-\pi(S)$ is the minimum number of vehicles to attend customers of subset S
- Cuts are separated via a heuristic from Lysgaard (2004)

Implementation Details

Q-routes

- Elementary routes are harder to evaluate
- Label L_{A} dominates L_{B} if $\bar{N}_{A} \subseteq \bar{N}_{B}$
- This condition prevents many labels to be discarded
- Christofides et al. (1981) proposed Q-routes
- Q-route is a walk on the Graph that respect the vehicle's capacity
- Relax that condition imposing customers are visited at most once
- Condition $\bar{N}_{A} \subseteq \bar{N}_{B}$ is replaced by $q_{A} \leq q_{B}$
- Set of all feasible Q-routes include all elementary routes

Computational Settings

- Test instances (Bektaş and Laporte 2011, Demir et al. 2012, Kramer et al. 2014)
- Based on UK cities, 10-city instances to 25-city instances
- Three series: UK-A, UK-B, UK-C.
- Widths of time windows: UK-A > UK-C > UK-B
- SCIP as the framework for branch-cut-and-price
- All code implemented in C++
- One-hour time limit

Computational Results

Computational Results

	Branch-and-cut Algorithm			Branch-and-cut-and-price			
instance	optimal	time(s)	gap		optimal	time(s)	gap(\%)
UK10A-1	170.64	1354.4	0.0%		170.64	3.3	0.0%
UK10A-2	204.88	813.7	0.0%		204.88	1.5	0.0%
UK10A-3	200.34	1708.3	0.0%		200.34	0.6	0.0%
UK10A-4	189.88	844.9	0.0%		189.88	3.9	0.0%
UK10A-5	175.59	2649.2	0.0%		175.59	3.5	0.0%
UK10A-6	214.48	1472.8	0.0%		214.48	0.7	0.0%
UK10A-7	190.14	882.5	0.0%		190.14	4.0	0.0%
UK10A-8	222.17	564.3	0.0%		222.17	0.2	0.0%
UK10A-9	174.54	352.0	0.0%		174.54	5.4	0.0%
UK10A-10	189.82	211.1	0.0%		189.82	0.5	0.0%

Computational Results

	Branch-and-cut Algorithm				Branch-and-cut-and-price		
instance	optimal	time(s)	gap		optimal	time(s)	gap(\%)
UK10A-1	170.64	1354.4	0.0%		170.64	3.3	0.0%
UK10A-2	204.88	813.7	0.0%		204.88	1.5	0.0%
UK10A-3	200.34	1708.3	0.0%		200.34	0.6	0.0%
UK10A-4	189.88	844.9	0.0%		189.88	3.9	0.0%
UK10A-5	175.59	2649.2	0.0%		175.59	3.5	0.0%
UK10A-6	214.48	1472.8	0.0%		214.48	0.7	0.0%
UK10A-7	190.14	882.5	0.0%		190.14	4.0	0.0%
UK10A-8	222.17	564.3	0.0%		222.17	0.2	0.0%
UK10A-9	174.54	352.0	0.0%		174.54	5.4	0.0%
UK10A-10	189.82	211.1	0.0%		189.82	0.5	0.0%

Computational Results

	Branch-and-cut Algorithm				Branch-and-cut-and-price			
instance	optimal	time(s)	gap			optimal	time(s)	gap(\%)
UK20A-1	352.45	3600	22.9%		351.82	24.1	0.0%	
UK20A-2	365.77	3600	20.7%		365.77	3.8	0.0%	
UK20A-3	230.49	3600	23.6%		230.49	25.1	0.0%	
UK20A-4	347.04	3600	21.2%		347.04	109	0.0%	
UK20A-5	329.63	3600	24.3%		323.44	26.3	0.0%	
UK20A-6	367.73	3600	25.0%		364.23	27.2	0.0%	
UK20A-7	258.75	3600	23.3%		258.75	3600	7.3%	
UK20A-8	303.17	3600	23.0%		301.51	19.5	0.0%	
UK20A-9	362.56	3600	19.5%		362.56	17.4	0.0%	
UK20A-10	317.79	3600	26.3%		313.33	20.1	0.0%	

Computational Results

	Branch-and-cut Algorithm					Branch-and-cut-and-price		
instance	optimal	time(s)	gap			optimal	time(s)	gap(\%)
UK20A-1	352.45	3600	22.9%		351.82	24.1	0.0%	
UK20A-2	365.77	3600	20.7%		365.77	3.8	0.0%	
UK20A-3	230.49	3600	23.6%		230.49	25.1	0.0%	
UK20A-4	347.04	3600	21.2%		347.04	109	0.0%	
UK20A-5	329.63	3600	24.3%		323.44	26.3	0.0%	
UK20A-6	367.73	3600	25.0%		364.23	27.2	0.0%	
UK20A-7	258.75	3600	23.3%		258.75	3600	7.3%	
UK20A-8	303.17	3600	23.0%		301.51	19.5	0.0%	
UK20A-9	362.56	3600	19.5%		362.56	17.4	0.0%	
UK20A-10	317.79	3600	26.3%		313.33	20.1	0.0%	

Concluding Remarks

- The proposed algorithm outperforms the previous approach for all instances of our test set
- The framework can be applied to any JRSOP variants as long as the cost is convex in the speed
- As future work, we suggest allow variable departure time at the depot

