Branch-and-Benders-Cut Algorithms for the Single Source Capacitated Facility Location Problem

Furkan Enderer^{1,2}, Claudio Contardo^{1,3}, Bernard Gendron^{1,2}

 ¹CIRRELT , Centre Interuniversitaire de Recherche sur les Réseaux d'Entreprise, la Logistique et le Transport
 ² Département d'informatique et de recherche opérationnelle, Université de Montréal
 ³ Département de management et technologie, ESG UQAM

Column Generation 2016

Furkan Enderer^{1,2}, Claudio Contardo^{1,3}, Ber

2 Mathematical Models

æ

イロト イ団ト イヨト イヨト

- 2 Mathematical Models
- O Proposed Algorithms

Furkan Enderer^{1,2}, Claudio Contardo^{1,3}, Ber

æ

₹ Ξ > < Ξ >

Image: Image:

- 2 Mathematical Models
- O Proposed Algorithms
- 4 Computational Results

▲콜▶ ▲콜≯

- 2 Mathematical Models
- O Proposed Algorithms
- 4 Computational Results
- 5 Conclusions and Future Research

B ▶ < B ▶

• Given a set of potential facility locations and a set of customers, FLPs aim to determine the subset of facilities to open and serve customers so as to satisfy customer demands.

• Given a set of potential facility locations and a set of customers, FLPs aim to determine the subset of facilities to open and serve customers so as to satisfy customer demands.

• Given a set of potential facility locations and a set of customers, FLPs aim to determine the subset of facilities to open and serve customers so as to satisfy customer demands.

- Given a set of potential facility locations and a set of customers, FLPs aim to determine the open a subset of facilities and serve customers so as to satisfy customer demands.
- CFLP: Capacitated facilities.
- SSCFLP: Each customer must be served by exactly one facility.
- Applications: Logistics, Transportation, Telecommunication.

- Given a set of potential facility locations and a set of customers, FLPs aim to determine the open a subset of facilities and serve customers so as to satisfy customer demands.
- CFLP: Capacitated facilities.
- SSCFLP: Each customer must be served by exactly one facility.
- Applications: Logistics, Transportation, Telecommunication.

Solution Methodologies

- Lagrangian relaxation (Holmberg et al. [1999], Darby-Dowman and Lewis [1988])
- LR Heuristics (Agar and Salhi [1998], Klincewicz and Luss [1986], Sridharan [1993])
- Branch-and-Price (Díaz and Fernández [2002], Neebe and Rao [1983])
- Heuristics (Ahuja et al. [2004], Contreras and Díaz [2008])
- Cutting Plane methods (Yang et al. [2012])

Standard Formulation

- I : set of potential facilities
- J : set of customers
- f_i : fixed cost of opening a facility
- c_{ij} : cost of assigning customer j to facility i
- b_i : capacity of each facility
- d_i : demand of each customer

Standard Formulation

$$z(SSCFLP) = \text{Minimize} \qquad \sum_{j \in J} \sum_{i \in I} c_{ij} x_{ij} + \sum_{i \in I} f_i y_i \tag{1}$$

Subject to

$$\sum_{i\in I} x_{ij} = 1 \qquad j \in J \tag{2}$$

$$\sum_{j\in J} d_j x_{ij} \le b_i y_i \qquad i\in I \tag{3}$$

$$x_{ij} \le y_i \qquad i \in I, j \in J \tag{4}$$

イロト イヨト イヨト イヨト

$$\begin{array}{ll} x_{ij} \in \{0,1\} & i \in I, j \in J \\ y_i \in \{0,1\} & i \in I. \end{array} \tag{5}$$

2

Set Partitioning Formulation

- Ω_i : set of feasible assignment patterns for each facility $i \in I$.
- c_p : total cost of assignment pattern $p \in \Omega_i$.
- a_{ii}^p : binary constant defining the assignment pattern $p \in \Omega_i$.

 \mathbf{S}

$$z(SSCFLP) = Minimize \qquad \sum_{p \in \Omega} c_p \theta_p$$
 (7)

ubject to

$$\sum_{i \in I} \sum_{p \in \Omega^{i}} a_{ij}^{p} \theta_{p} = 1 \qquad j \in J \qquad (8)$$

$$\sum_{p \in \Omega^{i}} \theta_{p} \leq 1 \qquad i \in I \qquad (9)$$

$$\theta_{p} \in \{0, 1\} \qquad p \in \Omega \qquad (10)$$

æ

・ロト ・聞ト ・ ほト ・ ほト

Minimize	$\sum_{j\in J}\sum_{i\in I}c_{ij}x_{ij}$	$y_j + \sum_{i \in I} f_i y_i$	
Subject to			
	$\sum_{i\in I} x_{ij} = 1$	$j \in J$	(11)
$\sum_{i \in I}$	$\int d_j x_{ij} \leq b_i y_i$	i ∈ I	(12)
$\sum_{i\in I} x_{ij} = \sum_{i}^{j\in J}$	$\sum_{e \in I} \sum_{p \in \Omega^i} a^p_{ij} \theta_p$	$j \in J$	(13)
	$\sum_{p \in \Omega^i} \theta_p \le 1$	$i \in I$	(14)
	$x_{ij} \in \{0,1\}$	$i \in I, j \in J$	(15)
	$y_i \in \{0,1\}$	$i \in I$	(16)
	$ heta_{p} \in \{0,1\}$	$p\in\Omega_{A}\mathbb{P}\times\mathbb{P}\times\mathbb{P}\times\mathbb{P}\times\mathbb{P}\times\mathbb{P}\times\mathbb{P}\times\mathbb{P}$	<u></u> (17) (

Benders Master Problem I

$$z(M(x,y)) =$$
Minimize

$$\sum_{j\in J}\sum_{i\in I}c_{ij}x_{ij}+\sum_{i\in I}f_iy_i$$
(18)

Subject to

$$\sum_{i\in I} x_{ij} = 1 \qquad j \in J \tag{19}$$

$$\sum_{j\in J} d_j x_{ij} \le b_i y_i \qquad i\in I \tag{20}$$

$$x_{ij} \leq y_i \qquad i \in I, j \in J$$
 (21)

イロト イヨト イヨト イヨト

$$x_{ij} \in [0,1]$$
 $i \in I, j \in J$ (22)

$$y_i \in \{0,1\}$$
 $i \in I.$ (23)

æ

$$z(S(\theta_p, \bar{y})) =$$
Minimize $\sum_{p \in \Omega} c_p \theta_p$ (24)

Subject to

$$\sum_{i \in I: \bar{y}_i = 1}^{} \sum_{p \in \Omega^i} a_{ij}^p \theta_p = 1 \qquad j \in J \qquad (25)$$

$$\sum_{\substack{p \in \Omega^i \\ \theta_p \in \{0, 1\}}}^{} \theta_p \leq 1 \qquad i \in I: \bar{y}_i = 1 \qquad (26)$$

イロト イヨト イヨト イヨト

æ

Benders Cuts I

If the LP relaxation of the Benders subproblem is infeasible, we can identify an extreme ray (α_i^r, π_i^r) and generate the following feasibility cut:

$$\sum_{j \in J} \sum_{i \in I | \bar{y}_i = 1} \alpha_j^r x_{ij} + \sum_{i \in I | \bar{y}_i = 1} \pi_i^r y_i \le 0.$$
(28)

If the LP relaxation of the Benders subproblem feasible, we can identify an extreme point (α_i^k, π_i^k) and generate the following optimality cut:

$$\sum_{j \in J} \sum_{i \in I} c_{ij} x_{ij} - \sum_{j \in J} \sum_{i \in I | \bar{y}_i = 1} \alpha_j^k x_{ij} - \sum_{i \in I | \bar{y}_i = 1} \pi_j^k y_i \ge 0.$$
(29)

In this case, (30) is a valid lower bound on the optimal solution value of the original problem.

$$\sum_{i\in I} f_i \bar{y}_i + \sum_{j\in J} \sum_{i\in I \mid \bar{y}_i=1} \alpha_j^k + \sum_{i\in I \mid \bar{y}_i=1} \pi_i^k$$
(30)

・ 国 ト ・ 国 ト ・ 国 ト …

The cuts (28)-(29) are classical LP-duality based Benders cuts and are generated when the LP relaxation of the Benders subproblem is solved. On the other hand, if the integer subproblem $(S(\theta_p, \bar{y}))$ is solved to optimality by Branch-and-Price, the cuts (31) can be added to the master problem.

$$\sum_{i \in I | \bar{y}_i = 0} y_i - \sum_{i \in I | \bar{y}_i = 1} (1 - y_i) \ge 1$$
(31)

- Branch on y variables in the Benders Master problem
- Solve the LP relaxation of the Benders subproblem with $\bar{y}_i \in \{0, 1\}$
- Add feasibility/optimality cuts
- If branching is complete, solve the Benders subproblem by B&P
- Add canonical cuts and restart B&B at the same node

Benders Master Problem II

$$z(M_2(x, y)) =$$
Minimize

$$\sum_{j\in J}\sum_{i\in I}c_{ij}x_{ij}+\sum_{i\in I}f_iy_i$$

Subject to

$$\sum_{i \in I} x_{ij} = 1 \qquad j \in J \tag{32}$$

$$\sum_{j\in J} d_j x_{ij} \le b_i y_i \qquad i \in I \tag{33}$$

$$x_{ij} \leq y_i \qquad i \in I, j \in J$$
 (34)

イロト イヨト イヨト イヨト

$$\mathbf{x}_{ij} \in [0,1] \qquad i \in I, j \in J \tag{35}$$

$$y_i \in \{0, 1\}$$
 $i \in I$ (36)

æ

$$z(S_2(\theta_p, \bar{x}, \bar{y})) =$$
Minimize $\sum_{p \in \Omega} c_p \theta_p$ (37)

Subject to

$$\sum_{p \in \Omega^{i}} a_{ij}^{p} \theta_{p} = \bar{x}_{ij} \qquad i \in I, j \in J : \bar{x}_{ij} > 0$$

$$\sum_{p \in \Omega^{i}} \theta_{p} \leq \bar{y}_{i} \qquad i \in I : \bar{y}_{i} = 1$$

$$\theta_{p} \in [0, 1] \qquad p \in \Omega$$
(38)
(39)
(39)

イロト イ団ト イヨト イヨト

æ

If $S_2(\theta_p, \bar{x}, \bar{y})$ is infeasible, we identify an extreme ray (α_{ij}^r, π_i^r) defined by the region 38-39 and generate the following feasibility cut and add it to the Benders master problem $M_2(x, y)$:

$$\sum_{j \in J | x_{ij} > 0} \sum_{i \in I | \bar{y}_i = 1} \alpha_{ij}^r x_{ij} + \sum_{i \in I | \bar{y}_i = 1} \pi_i^r y_i \le 0.$$
(41)

If $S_2(\theta_p, \bar{x}, \bar{y})$ is feasible, we can identify an extreme point (α_{ij}^k, π_i^k) defined by the region 38-39 and generate the following optimality cut:

$$\sum_{j \in J} \sum_{i \in I} c_{ij} x_{ij} - \sum_{j \in J | x_{ij} > 0} \sum_{i \in I | \bar{y}_i = 1} \alpha_{ij}^k x_{ij} - \sum_{i \in I | \bar{y}_i = 1} \pi_i^k y_i \ge 0.$$
(42)

In this case,

$$z(S_2(\theta_p, \bar{x}, \bar{y})) = \sum_{p \in P} c_p \theta_p = \sum_{j \in J | x_{ij} > 0} \sum_{i \in I | \bar{y}_i = 1} \alpha_{ij}^k + \sum_{i \in I | \bar{y}_i = 1} \pi_i^k$$
(43)

(43) is the optimal solution value to the Benders subproblem and (44) is a valid lower bound on the optimal solution value of the SSCFLP.

$$\sum_{i \in I} f_i \bar{y}_i + \sum_{j \in J | x_{ij} > 0} \sum_{i \in I | \bar{y}_i = 1} \alpha_{ij}^k + \sum_{i \in I | \bar{y}_i = 1} \pi_i^k$$
(44)

Lower bounds obtained by solving the standard formulation by CPLEX and the lower bounds obtained by BBC algorithms. Two sets of benchmark instances:

- The first set: 71 problem instances introduced by Holmberg et al. [1999] and by Ahuja et al. [2004].
- The second set: 57 problem instances introduced by Delmaire et al. [1999].

Lower bounds obtained by solving the standard formulation by CPLEX and the lower bounds obtained by BBC algorithms. Two sets of benchmark instances:

- The first set: 71 problem instances introduced by Holmberg et al. [1999] and by Ahuja et al. [2004].
- The second set: 57 problem instances introduced by Delmaire et al. [1999].

The second BBC algorithm produced very fractional x_{ij} values after adding several cuts at a specic node. We set a tolerance of $\epsilon = 0.1$ in order to avoid solving the benders subproblem for very fractional solutions $(0 < x_{ij} < 0.1)$.

Table: Computational Results on Holmberg's instances

			CPLEX			В	вс	BBC2	
Instance	<i>I</i>	J	time	gap_1	time ₁	gap ₂	time ₂	gap ₃	time ₃
P1-P12	10	50	0.16	0.71	0.07	0.00	0.15	0.00	0.11
P13-P24	20	50	0.23	0.45	0.11	0.00	0.10	0.00	0.07
P25-P40	30	150	6.26	0.18	0.74	0.02	47.14	0.02	5.23
P41-P49	10-30	70-90	0.32	0.64	0.19	0.00	0.42	0.00	0.99
P50-P55	10-20	100	1.04	0.55	0.25	0.02	69.09	0.02	4.62
P56-P71	30	200	34.57	0.18	3.15	0.03	28.21	0.03	7.46

Table: Computational Results on Delmaire's instances

			CPLEX			В	BC	BBC2	
Instance	I	J	time	gap_1	$time_1$	gap ₂	time ₂	gap ₃	time ₃
A1-A6	10	20	2.69	4.24	0.12	0.31	0.35	0.43	16.66
A7-A17	15	30	8.26	2.46	0.15	0.69	4.26	0.84	7.70
A18-A25	20	40	32.50	1.15	0.42	0.35	14.02	0.47	4.86
A26-A33	20	50	321.31	1.04	0.49	0.20	56.79	0.42	8.55
A34-A41	30	60	73.90	0.38	0.84	0.02	145.81	0.15	9.35
A42-A49	30	75	1196.15	0.20	0.98	0.02	372.30	0.06	21.06
A50-A57	30	90	1314.96	0.20	0.92	0.01	420.93	0.08	23.44

- Combining the two proposed BBC algorithms in one lower bounding procedure.
- Embedding column generation in an enumeration tree for the subproblems.

Thank you for listening!

伺下 イヨト イヨト

Solving the Benders Subproblem

$$(RMP) = \text{Minimize} \qquad \sum_{p \in \Omega_t} c_p \theta_p \tag{45}$$
$$\sum_{i \in I: \bar{y}_i = 1}^{} \sum_{p \in \Omega_t^i} a_{ij}^p \theta_p = 1 \qquad j \in J \qquad (46)$$
$$\sum_{\substack{p \in \Omega_t^i \\ \theta_p \in [0, 1]}} \theta_p \leq 1 \qquad i \in I: \bar{y}_i = 1 \qquad (47)$$

Let α_j and π_i be the dual values associated with constraints (46) and (47), respectively. Then, the reduced cost coefficient associated with facility *i* and assignment pattern *p* is:

$$\bar{C}_i^p = \sum_{j \in J} c_{ij} a_{ij}^p - \sum_{j \in J} \alpha_j a_{ij}^p - \pi_i.$$
(49)

For each $i \in I$, given the optimal dual vector (α_j^t, π_i^t) of the RMP at iteration t, the pricing subproblem can be stated as follows:

$$(PP) = \text{Minimize} \qquad \sum_{j \in J} c_{ij} a_{ij} - \sum_{j \in J} \alpha_j^t a_{ij}^p - \pi_i^t$$

Subject to

$$\sum_{j\in J} a_{ij}d_j \leq b_i \tag{50}$$
$$a_{ij} \in \{0,1\} \qquad j \in J.$$

- M. C. Agar and S. Salhi. Lagrangean heuristics applied to a variety of large capacitated plant location problems. *The Journal of the Operational Research Society*, 49(10): 1072–1084, 1998.
- R. K. Ahuja, J. B. Orlin, S. Pallottino, M. P. Scaparra, and M. G. Scutellà. A multi-exchange heuristic for the single-source capacitated facility location problem. *Management Science*, 50(6), 2004.
- Iván A. Contreras and Juan A. Díaz. Scatter search for the single source capacitated facility location problem. Annals of Operations Research, 157(1):73–89, 2008.
- Kenneth Darby-Dowman and Holly S. Lewis. Lagrangian relaxation and the single-source capacitated facility-location problem. *The Journal of the Operational Research Society*, 39(11), 1988.
- H. Delmaire, J. Díaz, E. Fernández, and M. Ortega. Reactive grasp and tabu search based heuristics for the single source capacitated plant location problem. *Information Systems and Operational Research*, 37(3):194–225, 1999.
- J. A. Díaz and E. Fernández. A branch-and-price algorithm for the single source capacitated plant location problem. *The Journal of the Operational Research Society*, 53(7):728–740, 2002.

3

イロト イ理ト イヨト イヨトー

- Kaj Holmberg, Mikael Rönnqvist, and Di Yuan. An exact algorithm for the capacitated facility location problems with single sourcing. *European Journal of Operational Research*, 113(3):544 559, 1999.
- John G. Klincewicz and Hanan Luss. A lagrangian relaxation heuristic for capacitated facility location with single-source constraints. *The Journal of the Operational Research Society*, 37(5), 1986.
- A. W. Neebe and M. R. Rao. An algorithm for the fixed-charge assigning users to sources problem. *The Journal of the Operational Research Society*, 34(11):1107–1113, 1983.
- R. Sridharan. A lagrangian heuristic for the capacitated plant location problem with single source constraints. *European Journal of Operational Research*, 66(3):305 312, 1993.
- Zhen Yang, Feng Chu, and Haoxun Chen. A cut-and-solve based algorithm for the single-source capacitated facility location problem. *European Journal of Operational Research*, 221(3):521 – 532, 2012.

2

イロン イ理と イヨン イヨン