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Motivation

Primal Simplex (PS, 1945) for LPs : many degenerate pivots.

Column Generation (CG, 1960) for huge LPs : CG ≡ PS
Scheduling with thousands of flight legs/month

⇒ gazillion of aircraft and crew schedules.
Degeneracy level above 90% in integer solutions.

Perturbation of the master problem (1985-2000).

Efficient tools within a column generation framework

Dual Variable Stabilization and Dual-Optimal Inequalities
du Merle et al. (1999), Valerio de Carvalho (2003), Irnich et al. (2014)
Dynamic Constraint Aggregation (DCA) for Set Partitioning Problems
Elhallaoui, Metrane, Desaulniers, Soumis (2005-08)
Improved Primal Simplex (IPS) : Non degenerate pivots at every iteration.
Vincent, Soumis, Metrane, Desaulniers (2008-11).

Minimum Mean Cycle-Canceling (MMCC) for network flow problems.
Goldberg and Tarjan (1989). Strongly polynomial .
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Generic pricing framework

MMCC (1989), IPS (2008), DCA (2005), and PS (1945)
are all special cases of the generic pricing framework VSD(•)

by selecting a subset P ⊆ B of the basic columns.

VSD(•)

PSMMCC DCAIPS... ...

P = BP = ∅

P = F

Nondegenerate pivots Possibly degenerate pivots

3/31



Generic pricing framework

MMCC (1989), IPS (2008), DCA (2005), and PS (1945)
are all special cases of the generic pricing framework VSD(•)

by selecting a subset P ⊆ B of the basic columns.

VSD(•)

PSMMCC DCAIPS... ...

P = BP = ∅

P = F

Nondegenerate pivots Possibly degenerate pivots

3/31



Primal Degeneracy

Definition

A degenerate solution occurs if some basic variables are at one of their bounds.
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Part 1

VSD(•) for network flow problems.
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Network Flow Problem on a directed graph G = (N,A)

Capacitated min cost flow (CMCF)

z∗CMCF := min
∑

(i,j)∈A

cijxij

st.
∑

j :(i,j)∈A

xij −
∑

j :(j,i)∈A

xji = bi [πi ] ∀i ∈ N

0 ≤ `ij ≤ xij ≤ uij ∀(i , j) ∈ A,

where π := [πi ]i∈N is the vector of dual variables.

When vector b := [bi ]i∈N = 0,
one faces a circulation problem.

N : set of vertices
A : set of arcs
c : arc cost vector
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Cost vs. Reduced cost of a cycle

Cost vs. Reduced cost of a cycle

Let π = [πi ]i∈N and define the arc reduced costs as
c̄ij := cij − πi + πj , (i , j) ∈ A.

Property. ** The reduced cost of a cycle is equal to the cost of that cycle. **

Cycle W : 1→ 2→ 3→ 1

c̄(W ) = c12 − π1 + π2

+c23 − π2 + π3

+c31 − π3 + π1 = c(W )
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Residual network G (x0) = (N,A(x0))

Change of variables at x0

Each arc (i , j) ∈ A is replaced by two arcs
representing possible variations :

upward residual flow 0 ≤ yij ≤ r0
ij

downward residual flow 0 ≤ yji ≤ r0
ji

Arc set A(x0)

Among the arc support
A′ := {(i , j) ∪ (j , i) | (i , j) ∈ A},
only those with strictly positive
residual capacities are of interest :

A(x0) := {(i , j) ∈ A′ | r0
ij > 0}.

xij

yij ≤ uij − x0
ij

yji ≤ x0
ij − `ij

dji = −cij

dij = cij

uij`ij x0
ij

Change of variables at x0

Direction at x0

xij = x0
ij + yij − yji , ∀(i , j) ∈ A

xij − x0
ij = yij − yji , ∀(i , j) ∈ A

~vij = xij − x0
ij = yij − yji , ∀(i , j) ∈ A
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Arc status on G at x0 : Free, Lower or Upper

Index sets F , L,U at x0

Free F ={(i , j) ∈ A | `ij < x0
ij < uij}

Lower L ={(i , j) ∈ A | `ij = x0
ij }

Upper U ={(i , j) ∈ A | x0
ij = uij}

i j
Free

i j
Lower

i j
Upper

1

4 5

6

2

7
8

9

10

3

Figure : Arc status on the original network G
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Arc status on the residual network G (x0)

i j
Free

i j
Lower

i j
Upper

F : index set of FREE variables

When an arc is free, flow can be carried in either direction
thus meaning the presence of two residual arcs.
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Figure : Arc status on the residual network G(x0)
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Reformulation on the residual network G (x0) = (N,A(x0))

Let z0 := cᵀx0 and xij = x0
ij + yij − yji , ∀(i , j) ∈ A

z∗CMCF := z0 + min
∑

(i,j)∈A(x0)

dijyij

st.
∑

j :(i,j)∈A(x0)

yij −
∑

j :(j,i)∈A(x0)

yji= 0 [πi ] ∀i ∈ N

0 ≤ yij ≤ r0
ij ∀(i , j) ∈ A(x0).

N : set of vertices
A(x0) : set of arcs
d : arc cost vector

The reformulation corresponds to a circulation problem on G(x0).

Klein algorithm (1967)

1 Find a negative cost directed cycle y0 on G(x0).

2 Determine step-size ρ := min
(i,j)∈W

r0
ij

y0
ij

> 0.

3 Compute x0 + ρ~v 0, update G(•) and repeat until optimality.

*** How many variables are involved in a cycle ?
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The sequence of negative cost cycles is important
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PS : Spanning tree given a basic solution at x0

1

4 5

6

2

7
8

9

10

3

Figure : Non-basic arc (7, 4) induces a unique cycle of zero step size.
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Occurrence of degenerate pivots in the Primal Network Simplex

d= network density, Ahuja, Magnanti, Orlin (1993)

75%–90% of the Primal Simplex pivots are degenerate on network problems.
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Optimality conditions on G and G (x0)

Arc reduced costs

Let π = [πi ]i∈N .

c̄ij := cij − πi + πj , (i , j) ∈ A

d̄ij := dij − πi + πj , (i , j) ∈ A(x0).

Equivalent conditions. x0 is optimal

⇔ Primal. No negative cost directed cycle on G(x0).

⇔ Dual. ∃π such that d̄ij ≥ 0,∀(i , j) ∈ A(x0).

⇔ Complementary slackness. ∃π such that ∀(i , j) ∈ A,

c̄ij > 0⇒ (i , j) ∈ L ;

c̄ij < 0⇒ (i , j) ∈ U ;

(i , j) ∈ F ⇒ c̄ij = 0.

G vs. G(x0)

Primal and dual
conditions on G(x0).

Complementary slackness
conditions on G .
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Partition of the variables for MMCC, IPS, and PS

Framework

PSIPSMMCC ... ...

Given P ⊆ B, partition of the set of arcs of A(x0) into {H0
P ,V

0
P}.

Find a cycle y0 =

[
y0
H

y0
V

]
(a ray)

Visible arcs y0
V computed first (pricing) ; Hidden arcs y0

H computed second.

Compute direction ~v 0.

VSD(•)

{B,N}

{F , L ∪ U}

{∅,F ∪ L ∪ U}

Family with nondegenerate pivots
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Algorithmic process for network flow problems

Given a feasible flow solution x0 and the residual network G(x0).

Select P ⊆ B.

Hide a subset HP = {(i , j), (j , i) | (i , j) ∈ P} of the arcs.
Apply a cost transfer by manipulating the dual vector π
such that the reduced cost of the hidden arcs becomes zero.

Pricing : On the set of visible arcs, find a directed cycle y0
V

of minimum average reduced cost µV .

If µV ≥ 0, terminate with an optimality certificate for x0.

Recover y0
H and the uniquely extended cycle y0 =

[
y0
H

y0
V

]
.

Determine the step-size ρ = min
(i,j)∈W

r0
ij

y0
ij

≥ 0.

Compute x1 = x0 + ρ~v 0, update G(x1) and repeat until optimality.
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Pricing of MMCC on A(x0)

MMCC (1989) P = ∅

Find a directed cycle of minimum
average (reduced) cost µV : ρ > 0

Pricing : Find π such that the smallest
reduced cost µ is as large as possible

max µV

st. µV ≤ dij − πi + πj [yij ] ∀(i , j) ∈ A(x0)

Optimize π to prove optimality (µ ≥ 0), that is,
maximize the smallest reduced cost value.

x0 optimal ⇔

Primal : G(x0) contains no
negative cost directed cycle.

Dual : ∃π such that d̄ij ≥ 0,
∀(i , j) ∈ A(x0).

µV := min
∑

(i,j)∈A(x0)

dijyij

st.
∑

j :(i,j)∈A(x0)

yij −
∑

j :(j,i)∈A(x0)

yji = 0 [πi ] ∀i ∈ N

∑
(i,j)∈A(x0)

yij = 1 [µV ]

yij ≥ 0 ∀(i , j) ∈ A(x0)
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Pricing of IPS on a contracted network

Improved Primal Simplex (2008) P = F

Select a root node for each tree of F .
Set to zero the reduced cost of free arcs.
Compute reduced costs of arcs (i , j) /∈ F .
Shrink the trees of free arcs.
Remove dominated arcs.

Find a directed cycle of minimum average
reduced cost µV : ρ > 0

1

2

3

µV ≥ 0⇔ x0 optimal

Figure : Contracted network F (x0)
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Pricing of PS on a contracted network

Primal Simplex (1945) P = B

Select a root node for the spanning tree.
Set to 0 the reduced cost of basic arcs.
Compute reduced costs of arcs (i , j) /∈ B.
Shrink the spanning tree of basic arcs.
*Orientation of some hidden arcs is lost.*

Find a loop (a single arc) of minimum
average reduced cost µV : ρ ≥ 0
** Extended cycle can be infeasible on G(x0).

µV ≥ 0⇒ x0 optimal

Pricing StepRemove dominated arcs

A minimum reduced cost arc

Figure : Single node network B(x0)
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Pricing of PS on a contracted network
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PSIPSMMCC

VSD(•)

Pricing : directed cycle of minimum mean reduced cost µV on the visible graph...

P = B

P = F

P = ∅

Nondegenerate pivots

∅ ⊆ P ⊆ F

Possibly degenerate pivots

P ∩ {L ∪ U} 6= ∅
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Part 2

VSD(AP) for linear problems,
where AP is a submatrix of basis AB.

Nonsingular transformation
T−1(Ax = b).

PSIPSMMCC ... ...

VSD(AP)

P = B

P = F

P = ∅
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LP and residual problem LP(x0)

Linear program LP

z?LP := min cᵀx

st. Ax = b [π]
`̀̀ ≤ x ≤ u,

where x ∈ Rn
+ and π ∈ Rm.

xj

→
yj

←
yj

−cj

cj

uj`j x0
j

Let x0 be feasible

x := x0 + (~y − ~y) ⇒ Ax0//// + A(~y − ~y) = b/

z?LP = cᵀx0 + min cᵀ(~y − ~y)

st. A(~y − ~y) = 0 [π]

0 ≤ ~y ≤~r 0

0 ≤ ~y ≤ ~r0
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Network vs. LP

LP(x0)

z?LP := z0 + min cᵀ(~y − ~y)

st. A(~y − ~y)= 0 [π]

0 ≤ ~y ≤~r 0

0 ≤ ~y ≤ ~r0

G(x0) LP(x0)

Circulation network Homogeneous system
Directed cycles Combinations of the

~y and ~y variables

x0 optimal

⇔ Primal : LP(x0) contains no negative cost
combination of the ~y , ~y -variables.

⇔ Dual : ∃π such that d̄j ≥ 0,

∀~yj , ~y j such that ~r 0
j > 0, ~r0

j > 0.

⇔ Complementary slackness conditions
verified on LP.
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Underlying structures given AP , a submatrix of basis AB

Transformation matrix T−1

(a special case is the inverse of the simplex basis)

T =

[
ARP 0
ASP Im−p

]
T−1 =

[
A−1

RP 0
−ASPA−1

RP Im−p

]

Ā = T−1

[
ARP ARQ

ASP ASQ

]
=

[
Ip ĀRQ

0 ĀSQ

]

Residual problem LP(x0) after transformation

cᵀx0 + min cᵀPyH + cᵀQyV
yH + ĀRQyV = 0 [ψR = cP ]

ĀSQyV = 0 [ψS ]

− ~r0P ≤ yH ≤~r 0
P − ~r0Q ≤ yV ≤~r 0

Q

Interpretation

Dynamic Dantzig-Wolfe decomposition based on the actual value of x0.

Transformation T−1 can be changed at every iteration, or kept forever.
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Variants

PSDCAIPSMMCC ... ...

VSD(AP)

P = B
P = F

P = ∅

∅ ⊆ P ⊆ F P ∩ {L ∪ U} 6= ∅

set P selection

P = B, primal simplex
P ⊇ F , dynamic constraint aggregation
P = F , improved primal simplex (all moves are on edges)
P = ∅, minimum mean cycle-canceling

Proposition.

When P ⊆ F , the step size ρ > 0.
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Properties

Generic framework MMCC IPS DCA PS
Nondegenerate pivots Possibly degenerate pivots

∅ ⊆ P ⊆ B ∅ F F ⊆ P B

z z0 > z1 z0 > z1 z0 ≥ z1 z0 ≥ z1

µ µ0 ≤ µ1 oscillations oscillations oscillations
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Interior directions P ⊂ F
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Weighted combinations
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Adding information to the pricing problem

Optimize π with stabilization intervals

max µ

st. µ ≤ dj − πᵀaj ∀j
πi ∈ [infi , supi ] ∀i

Optimize π with a link with the current objective value

max µ

st. µ ≤ dj − πᵀaj ∀j

πᵀb ≥ zk

Properties : z0 > z1 µ0 < µ1 s0 < s1 Interior directions
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