Pricing problems

Jacques Desrosiers ${ }^{1}$
Jean Bertrand Gauthier ${ }^{1}$
Marco E. Lübbecke ${ }^{2}$

$\left({ }^{1}\right)$ HEC Montréal and GERAD
$\left.{ }^{(2}\right)$ RWTH Aachen University

Column Generation 2016
May 22-25, Búzios, Brazil.

- Primal Simplex (PS, 1945) for LPs : many degenerate pivots.
- Column Generation (CG, 1960) for huge LPs: CG \equiv PS Scheduling with thousands of flight legs/month
\Rightarrow gazillion of aircraft and crew schedules. Degeneracy level above 90% in integer solutions. Perturbation of the master problem (1985-2000).

- Primal Simplex (PS, 1945) for LPs : many degenerate pivots.
- Column Generation (CG, 1960) for huge LPs: CG \equiv PS Scheduling with thousands of flight legs/month
\Rightarrow gazillion of aircraft and crew schedules. Degeneracy level above 90% in integer solutions. Perturbation of the master problem (1985-2000).

Efficient tools within a column generation framework

- Dual Variable Stabilization and Dual-Optimal Inequalities du Merle et al. (1999), Valerio de Carvalho (2003), Irnich et al. (2014)
- Dynamic Constraint Aggregation (DCA) for Set Partitioning Problems Elhallaoui, Metrane, Desaulniers, Soumis (2005-08)
- Improved Primal Simplex (IPS) : Non degenerate pivots at every iteration. Vincent, Soumis, Metrane, Desaulniers (2008-11).
- Primal Simplex (PS, 1945) for LPs : many degenerate pivots.
- Column Generation (CG, 1960) for huge LPs: CG \equiv PS Scheduling with thousands of flight legs/month
\Rightarrow gazillion of aircraft and crew schedules. Degeneracy level above 90% in integer solutions. Perturbation of the master problem (1985-2000).

Efficient tools within a column generation framework

- Dual Variable Stabilization and Dual-Optimal Inequalities du Merle et al. (1999), Valerio de Carvalho (2003), Irnich et al. (2014)
- Dynamic Constraint Aggregation (DCA) for Set Partitioning Problems Elhallaoui, Metrane, Desaulniers, Soumis (2005-08)
- Improved Primal Simplex (IPS) : Non degenerate pivots at every iteration. Vincent, Soumis, Metrane, Desaulniers (2008-11).
- Minimum Mean Cycle-Canceling (MMCC) for network flow problems. Goldberg and Tarjan (1989). Strongly polynomial.

MMCC (1989), IPS (2008), DCA (2005), and PS (1945) are all special cases of the generic pricing framework VSD(\bullet)
by selecting a subset $P \subseteq B$ of the basic columns.

Generic pricing framework

MMCC (1989), IPS (2008), DCA (2005), and PS (1945) are all special cases of the generic pricing framework VSD(•)
by selecting a subset $P \subseteq B$ of the basic columns.

Primal Degeneracy

Definition

A degenerate solution occurs if some basic variables are at one of their bounds.

Basic
variables
$x_{B} \geq 0$
Non-basic variables $\boldsymbol{x}_{\boldsymbol{N}}=\mathbf{0}$

Part 1

VSD(•) for network flow problems.

Network Flow Problem on a directed graph $G=(N, A)$

CAPACITATED MIN COST FLOW (CMCF)

$$
z_{\text {CMCF }}^{*}:=\min \sum_{(i, j) \in A} c_{i j} x_{i j}
$$

$$
\begin{array}{lll}
\text { st. } \sum_{j:(i, j) \in A} x_{i j}-\sum_{j:(i, i) \in A} x_{j i}=b_{i} & {\left[\pi_{i}\right]} & \forall i \in N \\
0 \leq \ell_{i j} \leq x_{i j} \leq u_{i j} & \forall(i, j) \in A,
\end{array}
$$

N : set of vertices
A : set of arcs
c : arc cost vector
where $\boldsymbol{\pi}:=\left[\pi_{i}\right]_{i \in N}$ is the vector of dual variables.

When vector $\mathbf{b}:=\left[b_{i}\right]_{i \in N}=\mathbf{0}$, one faces a circulation problem.

Cost vs. Reduced cost of a cycle

Let $\pi=\left[\pi_{i}\right]_{i \in N}$ and define the arc reduced costs as
$\bar{c}_{i j}:=c_{i j}-\pi_{i}+\pi_{j}, \quad(i, j) \in A$.
Property. ${ }^{* *}$ The reduced cost of a cycle is equal to the cost of that cycle. ${ }^{* *}$

$$
\begin{aligned}
& \text { CYCLE } W: 1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \\
& \qquad \begin{aligned}
\bar{c}(W) & =c_{12}-\pi_{1}+\pi_{2} \\
& +c_{23}-\pi_{2}+\pi_{3} \\
& +c_{31}-\pi_{3}+\pi_{1} \quad=c(W)
\end{aligned}
\end{aligned}
$$

Residual network $G\left(x^{0}\right)=\left(N, A\left(x^{0}\right)\right)$

Change of variables at x^{0}

Each arc $(i, j) \in A$ is replaced by two arcs representing possible variations :

- upward residual flow $0 \leq y_{i j} \leq r_{i j}^{0}$
- downward residual flow $0 \leq y_{j i} \leq r_{j i}^{0}$

Change of variables at x^{0}

Each arc $(i, j) \in A$ is replaced by two arcs representing possible variations :

- upward residual flow $0 \leq y_{i j} \leq r_{i j}^{0}$
- downward residual flow $0 \leq y_{j i} \leq r_{j i}^{0}$

Arc set $A\left(x^{0}\right)$

Among the arc support
$A^{\prime}:=\{(i, j) \cup(j, i) \mid(i, j) \in A\}$, only those with strictly positive residual capacities are of interest :

$$
A\left(\mathrm{x}^{0}\right):=\left\{(i, j) \in A^{\prime} \mid r_{i j}^{0}>0\right\} .
$$

$$
\begin{aligned}
& y_{j i} \leq x_{i j}^{0}-\ell_{i j} \\
& \hdashline d_{j i}=-c_{i j}
\end{aligned} \begin{gathered}
y_{i j} \leq u_{i j}-x_{i j}^{0} \\
d_{i j}=c_{i j}
\end{gathered}
$$

Change of variables at x^{0}

Each arc $(i, j) \in A$ is replaced by two arcs representing possible variations :

- upward residual flow $0 \leq y_{i j} \leq r_{i j}^{0}$
- downward residual flow $0 \leq y_{j i} \leq r_{j i}^{0}$

Arc set $A\left(x^{0}\right)$

Among the arc support
$A^{\prime}:=\{(i, j) \cup(j, i) \mid(i, j) \in A\}$, only those with strictly positive residual capacities are of interest :

$$
A\left(\mathrm{x}^{0}\right):=\left\{(i, j) \in A^{\prime} \mid r_{i j}^{0}>0\right\} .
$$

$$
\begin{gathered}
y_{i j} \leq u_{i j}-x_{i j}^{0} \\
\hdashline d_{i j}=c_{i j}
\end{gathered}
$$

$$
y_{j i} \leq x_{i j}^{0}-\ell_{i j} \quad--d_{i j}=c_{i j}
$$

$$
d_{j i}=-c_{i j}
$$

Change of variables at x^{0}

$$
x_{i j}=x_{i j}^{0}+y_{i j}-y_{j i}, \forall(i, j) \in A
$$

Change of variables at x^{0}

Each arc $(i, j) \in A$ is replaced by two arcs representing possible variations :

- upward residual flow $0 \leq y_{i j} \leq r_{i j}^{0}$
- downward residual flow $0 \leq y_{j i} \leq r_{j i}^{0}$

Arc set $A\left(x^{0}\right)$

Among the arc support
$A^{\prime}:=\{(i, j) \cup(j, i) \mid(i, j) \in A\}$, only those with strictly positive residual capacities are of interest :

$$
A\left(\mathrm{x}^{0}\right):=\left\{(i, j) \in A^{\prime} \mid r_{i j}^{0}>0\right\} .
$$

$$
\begin{gathered}
y_{i j} \leq u_{i j}-x_{i j}^{0} \\
d_{i j}=c_{i j}
\end{gathered}
$$

$$
y_{j i} \leq x_{i j}^{0}-\ell_{i j} \quad--d_{i j}=c_{i j}
$$

$$
d_{j i}=-c_{i j}
$$

Change of variables at x^{0}

$$
\begin{aligned}
& x_{i j}=x_{i j}^{0}+y_{i j}-y_{j i}, \quad \forall(i, j) \in A \\
& x_{i j}-x_{i j}^{0}=y_{i j}-y_{j i}, \quad \forall(i, j) \in A
\end{aligned}
$$

Change of variables at x^{0}

Each arc $(i, j) \in A$ is replaced by two arcs representing possible variations :

- upward residual flow $0 \leq y_{i j} \leq r_{i j}^{0}$
- downward residual flow $0 \leq y_{j i} \leq r_{j i}^{0}$

Arc set $A\left(x^{0}\right)$

Among the arc support
$A^{\prime}:=\{(i, j) \cup(j, i) \mid(i, j) \in A\}$, only those with strictly positive residual capacities are of interest :

$$
A\left(\mathrm{x}^{0}\right):=\left\{(i, j) \in A^{\prime} \mid r_{i j}^{0}>0\right\} .
$$

$$
\begin{gathered}
y_{i j} \leq u_{i j}-x_{i j}^{0} \\
d_{i j}=c_{i j}
\end{gathered}
$$

$$
d_{j i}=-c_{i j}
$$

Change of variables at x^{0} Direction at x^{0}

$$
\begin{gathered}
x_{i j}=x_{i j}^{0}+y_{i j}-y_{j i}, \quad \forall(i, j) \in A \\
x_{i j}-x_{i j}^{0}=y_{i j}-y_{j i}, \quad \forall(i, j) \in A \\
\vec{v}_{i j}=x_{i j}-x_{i j}^{0}=y_{i j}-y_{j i}, \quad \forall(i, j) \in A
\end{gathered}
$$

Arc status on G at \mathbf{x}^{0} : Free, Lower or Upper

Index sets F, L, U at x^{0}

Free $\quad F=\left\{(i, j) \in A \mid \ell_{i j}<x_{i j}^{0}<u_{i j}\right\}$
Lower $L=\left\{(i, j) \in A \mid \ell_{i j}=x_{i j}^{0}\right\}$
Upper $U=\left\{(i, j) \in A \mid x_{i j}^{0}=u_{i j}\right\}$

Figure : Arc status on the original network G

Arc status on the residual network $G\left(x^{0}\right)$

$F:$ index set of FREE variables

When an arc is free, flow can be carried in either direction thus meaning the presence of two residual arcs.

Figure: Arc status on the residual network $G\left(\mathbf{x}^{0}\right)$

REformulation on the residual network $G\left(x^{0}\right)=\left(N, A\left(x^{0}\right)\right)$

$$
\operatorname{LET} z^{0}:=\mathbf{c}^{\top} x^{0} \quad \text { AND } \quad x_{i j}=x_{i j}^{0}+y_{i j}-y_{j i}, \forall(i, j) \in A
$$

$$
\begin{aligned}
& z_{\text {CMCF }}^{*}:=z^{0}+\min \sum_{(i, j) \in A\left(x^{0}\right)} d_{i j} y_{i j} \\
& \text { st. } \sum_{j:(i, j) \in A\left(x^{0}\right)} y_{i j}-\sum_{j:(j, i) \in A\left(x^{0}\right)} y_{j i}=0 \quad\left[\pi_{i}\right] \quad \forall i \in N \\
& 0 \leq y_{i j} \leq r_{i j}^{0} \quad \forall(i, j) \in A\left(\mathrm{x}^{0}\right) .
\end{aligned}
$$

N : set of vertices $A\left(\mathrm{x}^{0}\right)$: set of arcs d : arc cost vector

The reformulation corresponds to a circulation problem on $G\left(x^{0}\right)$.

Klein algorithm (1967)

(1) Find a negative cost directed cycle \mathbf{y}^{0} on $G\left(\mathbf{x}^{0}\right)$.
(2) Determine step-size $\rho:=\min _{(i, j) \in W} \frac{r_{i j}^{0}}{y_{i j}^{0}}>0$.
(3) Compute $\mathbf{x}^{0}+\rho \overrightarrow{\mathbf{v}}^{0}$, update $G(\bullet)$ and repeat until optimality.

$$
\operatorname{LET} z^{0}:=\mathbf{c}^{\top} x^{0} \quad \text { AND } \quad x_{i j}=x_{i j}^{0}+y_{i j}-y_{j i}, \forall(i, j) \in A
$$

$$
\begin{aligned}
& z_{\text {CMCF }}^{*}:=z^{0}+\min \sum_{(i, j) \in A\left(x^{0}\right)} d_{i j} y_{i j} \\
& \text { st. } \sum_{j:(i, j) \in A\left(x^{0}\right)} y_{i j}-\sum_{j:(j, i) \in A\left(x^{0}\right)} y_{j i}=0 \quad\left[\pi_{i}\right] \quad \forall i \in N \\
& 0 \leq y_{i j} \leq r_{i j}^{0} \quad \forall(i, j) \in A\left(\mathrm{x}^{0}\right) .
\end{aligned}
$$

N : set of vertices $A\left(\mathrm{x}^{0}\right)$: set of arcs d : arc cost vector

The reformulation corresponds to a circulation problem on $G\left(x^{0}\right)$.

Klein algorithm (1967)

(1) Find a negative cost directed cycle \mathbf{y}^{0} on $G\left(\mathbf{x}^{0}\right)$.
(2) Determine step-size $\rho:=\min _{(i, j) \in W} \frac{r_{i j}^{0}}{y_{i j}^{0}}>0$.
(3) Compute $\mathrm{x}^{0}+\rho \overrightarrow{\mathbf{v}}^{0}$, update $G(\bullet)$ and repeat until optimality.
*** How many variables are involved in a cycle?
9.19. Show that if we apply the cycle-canceling algorithm to the minimum cost flow problem shown in Figure 9.24, some sequence of augmentations requires 2×10^{6} iterations to solve the problem.

Figure 9.24 Network where cycle canceling algorithm performs 2×10^{6} iterations.

Figure : Non-basic arc $(7,4)$ induces a unique cycle of zero step size.

Occurrence of degenerate pivots in the Primal Network Simplex

Figure 18.7 Occurance of degenerate pivots.

$d=$ network density, Ahuja, Magnanti, Orlin (1993)

$\mathbf{7 5 \%} \mathbf{- 9 0 \%}$ of the Primal Simplex pivots are degenerate on network problems.

Optimality conditions on G and $G\left(x^{0}\right)$

Arc Reduced costs

Let $\boldsymbol{\pi}=\left[\pi_{i}\right]_{i \in N}$.

$$
\begin{array}{ll}
\bar{c}_{i j}:=c_{i j}-\pi_{i}+\pi_{j}, & (i, j) \in A \\
\bar{d}_{i j}:=d_{i j}-\pi_{i}+\pi_{j}, & (i, j) \in A\left(\mathrm{x}^{0}\right)
\end{array}
$$

Equivalent conditions. $\quad x^{0}$ is optimal

\Leftrightarrow Primal. No negative cost directed cycle on $G\left(x^{0}\right)$.
\Leftrightarrow Dual. $\exists \boldsymbol{\pi}$ such that $\bar{d}_{i j} \geq 0, \forall(i, j) \in A\left(x^{0}\right)$.
\Leftrightarrow Complementary slackness. $\exists \pi$ such that $\forall(i, j) \in A$,

$$
\begin{aligned}
& \bar{c}_{i j}>0 \Rightarrow(i, j) \in L \\
& \bar{c}_{i j}<0 \Rightarrow(i, j) \in U \\
& (i, j) \in F \Rightarrow \bar{c}_{i j}=0
\end{aligned}
$$

Optimality conditions on G and $G\left(x^{0}\right)$

Arc Reduced costs

Let $\boldsymbol{\pi}=\left[\pi_{i}\right]_{i \in N}$.

$$
\begin{array}{ll}
\bar{c}_{i j}:=c_{i j}-\pi_{i}+\pi_{j}, & (i, j) \in A \\
\bar{d}_{i j}:=d_{i j}-\pi_{i}+\pi_{j}, & (i, j) \in A\left(\mathrm{x}^{0}\right) .
\end{array}
$$

Equivalent conditions. $\quad x^{0}$ is optimal

\Leftrightarrow Primal. No negative cost directed cycle on $G\left(x^{0}\right)$.
\Leftrightarrow Dual. $\quad \exists \boldsymbol{\pi}$ such that $\bar{d}_{i j} \geq 0, \forall(i, j) \in A\left(\mathrm{x}^{0}\right)$.
\Leftrightarrow Complementary slackness. $\exists \pi$ such that $\forall(i, j) \in A$,

$$
\begin{aligned}
& \bar{c}_{i j}>0 \Rightarrow(i, j) \in L ; \\
& \bar{c}_{i j}<0 \Rightarrow(i, j) \in U ; \\
& (i, j) \in F \Rightarrow \bar{c}_{i j}=0
\end{aligned}
$$

G vs. $G\left(\mathrm{x}^{0}\right)$
Primal and dual conditions on $G\left(x^{0}\right)$.

Complementary slackness conditions on G.

Framework

$$
\text { Find a cycle } y^{0}=\left[\begin{array}{l}
y_{H}^{0} \\
y_{V}^{0}
\end{array}\right] \text { (a ray) }
$$

Given $P \subseteq B$, partition of the set of arcs of $A\left(\mathrm{x}^{0}\right)$ into $\left\{H_{P}^{0}, \mathrm{~V}_{\mathrm{P}}^{0}\right\}$.

Framework

$$
\text { Find a cycle } y^{0}=\left[\begin{array}{l}
y_{H}^{0} \\
y_{V}^{0}
\end{array}\right] \text { (a ray) }
$$

Given $P \subseteq B$, partition of the set of arcs of $A\left(\mathrm{x}^{0}\right)$ into $\left\{H_{p}^{0}, \mathrm{~V}_{\mathrm{p}}^{0}\right\}$. Visible arcs y_{V}^{0} computed first (pricing) ; Hidden $\operatorname{arcs} \mathrm{y}_{H}^{0}$ computed second.

MMCC $\square \square \square \square \square \cdots$ IPS $\square \square \square \cdots$ PS

Framework

$$
\text { Find a cycle } y^{0}=\left[\begin{array}{l}
y_{H}^{0} \\
y_{V}^{0}
\end{array}\right] \text { (a ray) }
$$

Given $P \subseteq B$, partition of the set of arcs of $A\left(\mathrm{x}^{0}\right)$ into $\left\{H_{p}^{0}, \mathrm{~V}_{\mathrm{p}}^{0}\right\}$. Visible arcs y_{V}^{0} computed first (pricing) ; Hidden arcs \mathbf{y}_{H}^{0} computed second.

Compute direction \vec{v}^{0}.

Framework

$$
\text { Find a cycle } y^{0}=\left[\begin{array}{l}
y_{H}^{0} \\
y_{V}^{0}
\end{array}\right] \text { (a ray) }
$$

Given $P \subseteq B$, partition of the set of arcs of $A\left(\mathrm{x}^{0}\right)$ into $\left\{H_{p}^{0}, \mathrm{~V}_{\mathrm{p}}^{0}\right\}$. Visible arcs y_{V}^{0} computed first (pricing) ; Hidden arcs \mathbf{y}_{H}^{0} computed second.

Compute direction \vec{v}^{0}.

$$
\operatorname{VSD}(\bullet)
$$

MMCC $\square \square \square \square \square \cdots$ IPS $\square \square \square \cdots$ PS

Framework

$$
\text { Find a cycle } y^{0}=\left[\begin{array}{l}
y_{H}^{0} \\
y_{V}^{0}
\end{array}\right] \text { (a ray) }
$$

Given $P \subseteq B$, partition of the set of arcs of $A\left(\mathrm{x}^{0}\right)$ into $\left\{H_{P}^{0}, \mathrm{~V}_{\mathrm{P}}^{0}\right\}$. Visible arcs y_{V}^{0} computed first (pricing) ; Hidden arcs \mathbf{y}_{H}^{0} computed second.

Compute direction \vec{v}^{0}.
$\operatorname{VSD}(\bullet)$

MMCC $\square \square \square \square \square \cdots$ IPS $\square \square \square \cdots$ PS

Framework

$$
\text { Find a cycle } y^{0}=\left[\begin{array}{l}
y_{H}^{0} \\
y_{V}^{0}
\end{array}\right] \text { (a ray) }
$$

Given $P \subseteq B$, partition of the set of arcs of $A\left(\mathrm{x}^{0}\right)$ into $\left\{H_{P}^{0}, \mathrm{~V}_{\mathrm{P}}^{0}\right\}$. Visible arcs y_{V}^{0} computed first (pricing) ; Hidden arcs \mathbf{y}_{H}^{0} computed second.

Compute direction \vec{v}^{0}.

Framework

$$
\text { Find a cycle } y^{0}=\left[\begin{array}{l}
y_{H}^{0} \\
y_{V}^{0}
\end{array}\right] \text { (a ray) }
$$

Given $P \subseteq B$, partition of the set of arcs of $A\left(\mathrm{x}^{0}\right)$ into $\left\{H_{P}^{0}, \mathrm{~V}_{\mathrm{P}}^{0}\right\}$.
Visible arcs y_{V}^{0} computed first (pricing) ; Hidden arcs y_{H}^{0} computed second.
Compute direction \vec{v}^{0}.

Family with nondegenerate pivots

Algorithmic process for network flow problems

- Given a feasible flow solution x^{0} and the residual network $G\left(\mathrm{x}^{0}\right)$.
- Select $P \subseteq B$.
- Hide a subset $H_{P}=\{(i, j),(j, i) \mid(i, j) \in P\}$ of the arcs.

Apply a cost transfer by manipulating the dual vector π such that the reduced cost of the hidden arcs becomes zero.

- Pricing : On the set of visible arcs, find a directed cycle \mathbf{y}_{V}^{0} of minimum average reduced cost μ_{V}.
- If $\mu \nu \geq 0$, terminate with an optimality certificate for \mathbf{x}^{0}.
- Recover \mathbf{y}_{H}^{0} and the uniquely extended cycle $\mathbf{y}^{0}=\left[\begin{array}{l}\mathbf{y}_{H}^{0} \\ \mathbf{y}_{V}^{0}\end{array}\right]$.
- Determine the step-size $\rho=\min _{(i, j) \in W} \frac{r_{i j}^{0}}{y_{i j}^{0}} \geq 0$.
- Compute $\mathbf{x}^{1}=\mathbf{x}^{0}+\rho \overrightarrow{\mathbf{v}}^{0}$, update $G\left(\mathbf{x}^{1}\right)$ and repeat until optimality.

Pricing of MMCC on $A\left(x^{0}\right)$

Find a directed cycle of minimum average (reduced) cost $\mu_{V}: \rho>0$

Pricing of MMCC on $A\left(x^{0}\right)$

Find a directed cycle of minimum average (reduced) cost $\mu_{V}: \rho>0$

MMCC (1989) $\quad P=\emptyset$

Figure: Arcs of $G\left(x^{0}\right)$
Find a directed cycle of minimum average (reduced) cost $\mu_{V}: \rho>0$

Pricing : Find π such that the smallest REDUCED COST μ IS AS LARGE AS POSSIBLE

$$
\begin{array}{r}
\max \mu_{V} \\
\text { st. } \mu_{V} \leq d_{i j}-\pi_{i}+\pi_{j} \quad\left[y_{i j}\right] \quad \forall(i, j) \in A\left(\mathrm{x}^{0}\right)
\end{array}
$$

Optimize π to prove optimality $(\mu \geq 0)$, that is, maximize the smallest reduced cost value.
x^{0} OPTIMAL \Leftrightarrow

Dual : $\exists \pi$ such that $\bar{d}_{i j} \geq 0$, $\forall(i, j) \in A\left(\mathrm{x}^{0}\right)$.
MMCC (1989) $\quad P=\emptyset$

Figure: Arcs of $G\left(x^{0}\right)$

Pricing : Find π such that the smallest REDUCED COST μ IS AS LARGE AS POSSIBLE

$$
\max \mu v
$$

st. $\mu_{V} \leq d_{i j}-\pi_{i}+\pi_{j} \quad\left[y_{i j}\right] \quad \forall(i, j) \in A\left(\mathrm{x}^{0}\right)$
Optimize π to prove optimality $(\mu \geq 0)$, that is, maximize the smallest reduced cost value.

Find a directed cycle of minimum average (reduced) cost $\mu_{V}: \rho>0$
x^{0} OPTIMAL \Leftrightarrow
Primal : $G\left(x^{0}\right)$ contains no negative cost directed cycle.

Dual : $\exists \pi$ such that $\bar{d}_{i j} \geq 0$, $\forall(i, j) \in A\left(\mathrm{x}^{0}\right)$.

$$
\mu_{V}:=\min \sum_{(i, j) \in A\left(x^{0}\right)} d_{i j} y_{i j}
$$

$$
\text { st. } \sum_{j:(i, j) \in A\left(x^{0}\right)} y_{i j}-\sum_{j:(j, i) \in A\left(x^{0}\right)} y_{j i}=0 \quad\left[\pi_{i}\right] \quad \forall i \in N
$$

$$
\sum_{(i, j) \in A\left(x^{0}\right)} y_{i j}=1 \quad\left[\mu_{V}\right]
$$

$$
y_{i j} \geq 0
$$

$$
\forall(i, j) \in A\left(\mathrm{x}^{0}\right)_{18 / 31}
$$

Improved Primal Simplex (2008) $P=F$

Improved Primal Simplex (2008) $\quad P=F$

- Select a root node for each tree of F.
- Set to zero the reduced cost of free arcs.
- Compute reduced costs of arcs $(i, j) \notin F$.
- Shrink the trees of free arcs.
- Remove dominated arcs.

Find a directed cycle of minimum average reduced cost $\mu_{V}: \rho>0$

Improved Primal Simplex (2008) $\quad P=F$

- Select a root node for each tree of F.
- Set to zero the reduced cost of free arcs.
- Compute reduced costs of arcs $(i, j) \notin F$.
- Shrink the trees of free arcs.
- Remove dominated arcs.

Find a directed cycle of minimum average reduced cost $\mu_{V}: \rho>0$

$$
\mu_{V} \geq 0 \Leftrightarrow \mathbf{x}^{0} \text { optimal }
$$

Figure: Contracted network $F\left(\mathrm{x}^{0}\right)$

Primal Simplex (1945) $\quad P=B$

- Select a root node for the spanning tree.
- Set to 0 the reduced cost of basic arcs.
- Compute reduced costs of arcs $(i, j) \notin B$.
- Shrink the spanning tree of basic arcs.
Orientation of some hidden arcs is lost.

- Select a root node for the spanning tree.
- Set to 0 the reduced cost of basic arcs.
- Compute reduced costs of arcs $(i, j) \notin B$.
- Shrink the spanning tree of basic arcs. *Orientation of some hidden arcs is lost. *

Find a loop (a single arc) of minimum average reduced cost $\mu_{V}: \rho \geq 0$ ** Extended cycle can be infeasible on $G\left(x^{0}\right)$.

$$
\mu_{V} \geq 0 \Rightarrow \mathbf{x}^{0} \text { optimal }
$$

Remove dominated arcs Pricing Step

A minimum réduced cost arc
Figure: Single node network $B\left(x^{0}\right)$

Pricing : directed cycle of minimum mean reduced cost μ_{V} on the visible graph...

Part 2

$\operatorname{VSD}\left(\mathrm{A}_{P}\right)$ for linear problems,

 where A_{P} is a submatrix of basis A_{B}. Nonsingular transformation$$
T^{-1}(A x=b)
$$

$$
\begin{aligned}
& \text { LINEAR PROGRAM } L P \\
& \begin{aligned}
z_{L P}^{\star}:= & \min \mathbf{c}^{\top} \mathbf{x} \\
\text { st. } & \mathbf{A x}=\mathbf{b} \quad[\boldsymbol{\pi}] \\
& \ell \leq \mathbf{x} \leq \mathbf{u}
\end{aligned}
\end{aligned}
$$

where $\mathbf{x} \in \mathbb{R}_{+}^{n}$ and $\pi \in \mathbb{R}^{m}$.

LET \mathbf{x}^{0} BE FEASIble

$$
\begin{aligned}
& \mathbf{x}:=\mathrm{x}^{0}+(\overrightarrow{\mathbf{y}}-\overleftarrow{\mathbf{y}}) \quad \Rightarrow \quad \mathbf{A}(\mathrm{x} 9+\mathbf{A}(\overrightarrow{\mathbf{y}}-\overleftarrow{\mathbf{y}})=\not \mathbf{b} \\
& z_{L P}^{\star}=\mathbf{c}^{\top} \mathbf{x}^{0}+\min \quad \mathbf{c}^{\top}(\overrightarrow{\mathbf{y}}-\overleftarrow{\mathbf{y}}) \\
& \text { st. } \mathbf{A}(\overrightarrow{\mathbf{y}}-\overleftarrow{\mathbf{y}})=0 \quad[\boldsymbol{\pi}] \\
& \mathbf{0} \leq \overrightarrow{\mathbf{y}} \leq \overrightarrow{\mathbf{r}}^{0} \\
& \mathbf{0} \leq \overleftarrow{\mathbf{y}} \leq \overleftarrow{\mathbf{r}}^{0}
\end{aligned}
$$

$$
G\left(\mathrm{x}^{0}\right) \quad L P\left(\mathrm{x}^{0}\right)
$$

Circulation network Homogeneous system
Directed cycles Combinations of the $\overrightarrow{\mathbf{y}}$ and $\overleftarrow{\mathbf{y}}$ variables

$$
\begin{aligned}
z_{L P}^{\star}:=z^{0}+\min & \mathbf{c}^{\top}(\overrightarrow{\mathbf{y}}-\overleftarrow{\mathbf{y}}) \\
\text { st. } & \mathbf{A}(\overrightarrow{\mathbf{y}}-\overleftarrow{\mathbf{y}})=0 \quad[\boldsymbol{\pi}] \\
& 0 \leq \overrightarrow{\mathbf{y}} \leq \stackrel{\mathbf{r}}{ }^{0} \\
& 0 \leq \overleftarrow{\mathbf{y}} \leq \overleftarrow{\mathbf{r}}^{0}
\end{aligned}
$$

x^{0} OPTIMAL
\Leftrightarrow Primal : $L P\left(\mathrm{x}^{0}\right)$ contains no negative cost combination of the $\vec{y}, \overleftarrow{y}$-variables.
\Leftrightarrow Dual : $\exists \boldsymbol{\pi}$ such that $\bar{d}_{j} \geq 0$, $\forall \vec{y}_{j}, \overleftarrow{y}_{j}$ such that $\vec{r}_{j}^{0}>0,{ }_{r}^{r}{ }_{j}^{0}>0$.
\Leftrightarrow Complementary slackness conditions verified on $L P$.

Underlying structures given \boldsymbol{A}_{P}, A submatrix of basis \boldsymbol{A}_{B}

Transformation matrix T^{-1}
(a special case is the inverse of the simplex basis)

$$
\begin{gathered}
\mathbf{T}=\left[\begin{array}{cc}
\mathbf{A}_{R P} & 0 \\
\mathbf{A}_{S P} & \mathbf{I}_{m-p}
\end{array}\right] \quad \mathbf{T}^{-\mathbf{1}}=\left[\begin{array}{cc}
\mathbf{A}_{R P}^{-1} & \mathbf{0} \\
-\mathbf{A}_{S P} \mathbf{A}_{R P}^{-1} & \mathbf{I}_{m-p}
\end{array}\right] \\
\overline{\mathbf{A}}=\mathbf{T}^{-\mathbf{1}}\left[\begin{array}{ll}
\mathbf{A}_{R P} & \mathbf{A}_{R Q} \\
\mathbf{A}_{S P} & \mathbf{A}_{S Q}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I}_{p} & \overline{\mathbf{A}}_{R Q} \\
\mathbf{0} & \overline{\mathbf{A}}_{S Q}
\end{array}\right]
\end{gathered}
$$

Residual problem $L P\left(\mathrm{x}^{0}\right)$ after transformation

$$
\begin{array}{rrrr}
\mathbf{c}^{\top} \mathbf{x}^{0}+\min & \mathbf{c}_{P}^{\top} \mathbf{y}_{H} & + & \mathbf{c}_{Q}^{\top} \mathbf{y}_{V} \\
\mathbf{y}_{H} & +\quad \overline{\mathbf{A}}_{R Q} \mathbf{y}_{V} & =\mathbf{0} \quad\left[\psi_{R}=\mathbf{c}_{P}\right] \\
& & \overline{\mathbf{A}}_{S Q} \mathbf{y}_{V} & =0 \quad\left[\psi_{S}\right] \\
-\overleftarrow{\mathbf{r}}_{P}^{0} \leq \mathbf{y}_{H} \leq \overrightarrow{\mathbf{r}}_{P}^{0} & & -\overleftarrow{\mathbf{r}}_{Q}^{0} \leq \mathbf{y}_{V} \leq \overrightarrow{\mathbf{r}}_{Q}^{0} &
\end{array}
$$

Interpretation

Dynamic Dantzig-Wolfe decomposition based on the actual value of x^{0}.
Transformation \mathbf{T}^{-1} can be changed at every iteration, or kept forever.

Variants

SET P SELECTION

- $P=B$, primal simplex
- $P \supseteq F$, dynamic constraint aggregation
- $P=F$, improved primal simplex (all moves are on edges)
- $P=\emptyset$, minimum mean cycle-canceling

Proposition.

When $P \subseteq F$, the step size $\rho>0$.

Generic framework	MMCC Nondegenerate pivots	Possibly degenerate pivots		
$\emptyset \subseteq P \subseteq B$	\emptyset	F	$F \subseteq P$	B
z	$z^{0}>z^{1}$	$z^{0}>z^{1}$	$z^{0} \geq z^{1}$	$z^{0} \geq z^{1}$
μ	$\mu^{0} \leq \mu^{1}$	oscillations	oscillations	oscillations

$$
\begin{aligned}
& \max 130 x_{1}+80 x_{2}+60 x_{3} \\
& \text { s.t. } 2 x_{1}-x_{2}+2 x_{3} \leq 21 \\
& -x_{1}+x_{2}-x_{3} \leq 8 \\
& 2 x_{1}-x_{2}-x_{3} \leq 15 \\
& -x_{1}-x_{2}+2 x_{3} \leq 32 \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0
\end{aligned}
$$

	c_{j} coefficient	130	80	60									
Variant	Direction \& Solution	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	s_{4}	z^{1}	μ_{V}^{0}	ρ^{0}		
$P=F$	$\overrightarrow{\mathbf{v}}^{0}$ (edge)	1	0	0	-2	1	-2	1		130	7.5		
	\mathbf{x}^{1}	7.5	0	0	6	15.5	0	39.5	975				
$P=\emptyset$	$\overrightarrow{\mathbf{v}}^{0}$ (interior) $w_{j}=1$	$1 / 6$	$1 / 4$	$1 / 12$	$-1 / 4$	0	0	$1 / 4$		$140 / 3$	84		
	\mathbf{x}^{1}	14	21	7	0	8	15	53	3920				
$P=\emptyset$	$\overrightarrow{\mathbf{v}}^{0}$ (face) $w_{j}=\left\\|\mathbf{a}_{j}\right\\|^{2}$	$1 / 22$	$1 / 11$	0	0	$-1 / 22$	0	$3 / 22$		$145 / 11$	176		
	\mathbf{x}^{1}	8	16	0	21	0	15	56	2320				

Figure 6: Directions found at \mathbf{x}^{0} in pricing for $P=F$ and $P=\emptyset$

Figure 2: At \mathbf{x}^{k}, the cone $\{\mathbf{y} \geq \mathbf{0} \mid \mathbf{K y}=\mathbf{0}\}$ cut by $\mathbf{w}^{\top} \mathbf{y}=\mathbf{1}$
$\max \mu_{V}$
s.t. $\quad \mu_{V} \leq \frac{\bar{d}_{j}}{w_{j}}=\frac{1}{w_{j}}\left(d_{j}-\boldsymbol{\psi}_{R}^{\top} \mathbf{k}_{R j}-\boldsymbol{\psi}_{S}^{\top} \overline{\mathbf{k}}_{S j}\right) \quad\left[y_{j}\right] \quad \forall j \in V_{P}$,
where the vector $\boldsymbol{\psi}_{R}^{\top}=\mathbf{c}_{P}^{\top} \mathbf{A}_{R P}^{-1}$ is fixed by (24) whereas the vector $\boldsymbol{\psi}_{S}^{\top}$ is part of the optimization so as to maximize the minimum reduced cost.

Dualizing (25), we obtain the primal form of the oracle which comprises $m-p+1$ constraints and writes as

$$
\begin{align*}
& \min \sum_{j \in V_{P}} \tilde{d}_{j} y_{j} \\
& \text { s.t. } \quad \sum_{j \in V_{P}} \overline{\mathbf{k}}_{S j} y_{j}=\mathbf{0} \quad\left[\boldsymbol{\psi}_{S}\right] \tag{5}\\
& \sum_{j \in V_{P}} w_{j} y_{j}=1 \quad\left[\mu_{V}\right] \\
& y_{j} \geq 0, \quad \forall j \in V_{P} .
\end{align*}
$$

where $\tilde{d}_{j}:=d_{j}-\boldsymbol{\psi}_{R}^{\top} \mathbf{k}_{R j}=d_{j}-\mathbf{c}_{P}^{\top} \mathbf{A}_{R P}^{-1} \mathbf{k}_{R j}, \forall j \in V_{P}$.

Adding information to the pricing problem

Optimize π with stabilization intervals

$$
\begin{array}{rll}
\max \mu & & \\
\text { st. } \mu & \leq d_{j}-\pi^{\top} \mathbf{a}_{j} & \forall j \\
\pi_{i} & \in\left[i n f_{i}, \sup _{i}\right] & \forall i
\end{array}
$$

Adding information to the pricing problem

Optimize π with stabilization intervals

$$
\begin{array}{rrr}
\max \mu & & \\
\text { st. } \mu & \leq d_{j}-\pi^{\top} \mathbf{a}_{j} & \forall j \\
\pi_{i} & \in\left[i n f_{i}, \sup _{i}\right] & \forall i
\end{array}
$$

Optimize π with a link with the current objective value

$$
\begin{aligned}
\max \mu & \\
\text { st. } \mu & \leq d_{j}-\pi^{\top} \mathbf{a}_{j} \quad \forall j \\
\pi^{\top} \mathbf{b} & \geq z^{k}
\end{aligned}
$$

Adding information to the pricing problem

Optimize π with stabilization intervals

$$
\begin{array}{rll}
\max \mu & & \\
\text { st. } \mu & \leq d_{j}-\pi^{\top} \mathbf{a}_{j} & \forall j \\
\pi_{i} & \in\left[i n f_{i}, \sup _{i}\right] & \forall i
\end{array}
$$

Optimize π with a link with the current objective value

$$
\begin{aligned}
\max \mu & \\
\text { st. } \mu & \leq d_{j}-\pi^{\top} \mathbf{a}_{j} \quad \forall j \\
\pi^{\top} \mathbf{b} & \geq z^{k}
\end{aligned}
$$

Properties: $z^{0}>z^{1} \quad \mu^{0}<\mu^{1} \quad s^{0}<s^{1} \quad$ Interior directions
(1) About the Minimum Mean Cycle-Canceling Algorithm

Discrete Applied Mathematics, 2015.
doi :10.1016/j.dam.2014.07.005
Primal/dual formulations of the pricing problem; new complexity result.
(2) Tools for Primal Degenerate Linear Programs: IPS, DCA, and PE

European Journal of Transportation and Logistics, 2015.
doi :10.1007/s13676-015-0077-5
VSD(•) links DCA, IPS, and PE (positive edge rule).
(3) Decomposition Theorems for Linear Programs

Operations Research Letters. 2014. doi :10.1016/j.orl.2014.10.001
Theorems on Networks \mapsto Linear programs.
(9) A Strongly Polynomial Contraction-Expansion Algorithm for Networks Understanding degeneracy on network flow problems.
(3) Vector Space Decomposition for Linear and Network Flow Problems Family of algorithms with nondegenerate pivots + interior directions.
(6) A linear fractional pricing problem for solving linear programs.

Interior directions.

