Pricing problems

Jacques Desrosiers¹

Jean Bertrand Gauthier¹ Marco E. Lübbecke²

(¹) HEC Montréal and GERAD(²) RWTH Aachen University

Column Generation 2016

May 22-25, Búzios, Brazil.

- Primal Simplex (PS, 1945) for LPs : many degenerate pivots.
- Column Generation (CG, 1960) for huge LPs : CG ≡ PS Scheduling with thousands of flight legs/month
 ⇒ gazillion of aircraft and crew schedules.

Degeneracy level above 90% in integer solutions. Perturbation of the master problem (1985-2000).

- Primal Simplex (PS, 1945) for LPs : many degenerate pivots.
- Column Generation (CG, 1960) for huge LPs : CG ≡ PS Scheduling with thousands of flight legs/month ⇒ gazillion of aircraft and crew schedules. Degeneracy level above 90% in integer solutions. Perturbation of the master problem (1985-2000).

EFFICIENT TOOLS WITHIN A COLUMN GENERATION FRAMEWORK

- Dual Variable Stabilization and Dual-Optimal Inequalities du Merle et al. (1999), Valerio de Carvalho (2003), Irnich et al. (2014)
- Dynamic Constraint Aggregation (DCA) for Set Partitioning Problems Elhallaoui, Metrane, Desaulniers, Soumis (2005-08)
- Improved Primal Simplex (IPS) : Non degenerate pivots at every iteration. Vincent, Soumis, Metrane, Desaulniers (2008-11).

- Primal Simplex (PS, 1945) for LPs : many degenerate pivots.
- Column Generation (CG, 1960) for huge LPs : CG ≡ PS Scheduling with thousands of flight legs/month ⇒ gazillion of aircraft and crew schedules. Degeneracy level above 90% in integer solutions. Perturbation of the master problem (1985-2000).

Efficient tools within a column generation framework

- Dual Variable Stabilization and Dual-Optimal Inequalities du Merle et al. (1999), Valerio de Carvalho (2003), Irnich et al. (2014)
- Dynamic Constraint Aggregation (DCA) for Set Partitioning Problems Elhallaoui, Metrane, Desaulniers, Soumis (2005-08)
- Improved Primal Simplex (IPS) : Non degenerate pivots at every iteration. Vincent, Soumis, Metrane, Desaulniers (2008-11).
- Minimum Mean Cycle-Canceling (MMCC) for network flow problems. Goldberg and Tarjan (1989). *Strongly polynomial*.

MMCC (1989), IPS (2008), DCA (2005), and PS (1945) are all special cases of the generic pricing framework $VSD(\bullet)$

by selecting a subset $P \subseteq B$ of the *basic columns*.

Generic pricing framework

MMCC (1989), IPS (2008), DCA (2005), and PS (1945) are all special cases of the generic pricing framework VSD(•)

by selecting a subset $P \subseteq B$ of the *basic columns*.

Primal Degeneracy

Definition

A degenerate solution occurs if some basic variables are at one of their bounds.

Part 1

$VSD(\bullet)$ for network flow problems.

NETWORK FLOW PROBLEM ON A DIRECTED GRAPH G = (N, A)

CAPACITATED MIN COST FLOW (CMCF)

$$\begin{aligned} z^*_{\mathsf{CMCF}} &:= \min \sum_{(i,j) \in A} c_{ij} x_{ij} \\ & \mathsf{st.} \sum_{j: (i,j) \in A} x_{ij} - \sum_{j: (j,i) \in A} x_{ji} = b_i \quad [\pi_i] \quad \forall i \in N \\ & 0 \le \ell_{ij} \le x_{ij} \le u_{ij} \qquad \forall (i,j) \in A, \end{aligned}$$

where $\boldsymbol{\pi} := [\pi_i]_{i \in N}$ is the vector of dual variables.

N : set of vertices A : set of arcs c : arc cost vector

When vector $\mathbf{b} := [b_i]_{i \in N} = \mathbf{0}$, one faces a *circulation problem*.

Cost vs. Reduced cost of a cycle

Let $\pi = [\pi_i]_{i \in N}$ and define the arc reduced costs as $\bar{c}_{ij} := c_{ij} - \pi_i + \pi_j$, $(i, j) \in A$.

Property. ** The reduced cost of a cycle is equal to the cost of that cycle. **

$\begin{array}{c} \mathrm{Cycle} \ W: 1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \end{array}$

$$ar{c}(W) = c_{12} - \pi_1 + \pi_2 + c_{23} - \pi_2 + \pi_3 + c_{31} - \pi_3 + \pi_1 = c(W)$$

Change of variables at \boldsymbol{x}^0

Each arc $(i, j) \in A$ is replaced by two arcs representing possible variations :

- upward residual flow $0 \le y_{ij} \le r_{ij}^0$ downward residual flow $0 \le y_{ji} \le r_{ji}^0$

Change of variables at \mathbf{x}^{0}

Each arc $(i, j) \in A$ is replaced by two arcs representing possible variations :

- upward residual flow $0 \le y_{ij} \le r_{ij}^0$ downward residual flow $0 \le y_{ji} \le r_{ji}^0$

Arc set $A(x^0)$

Among the arc support $A' := \{ (i,j) \cup (j,i) \mid (i,j) \in A \},\$ only those with strictly positive residual capacities are of interest :

$$A(\mathbf{x}^{0}) := \{ (i,j) \in A' \mid r_{ij}^{0} > 0 \}.$$

Change of variables at x^0

Each arc $(i, j) \in A$ is replaced by two arcs representing possible variations :

- upward residual flow $0 \le y_{ij} \le r_{ij}^0$ downward residual flow $0 \le y_{ji} \le r_{ji}^0$

Arc set $A(x^0)$

Among the arc support $A' := \{ (i,j) \cup (j,i) \mid (i,j) \in A \},\$ only those with strictly positive residual capacities are of interest :

$$A(\mathbf{x}^{0}) := \{ (i,j) \in A' \mid r_{ij}^{0} > 0 \}.$$

Change of variables at $\mathbf{x}^{\mathbf{0}}$

$$x_{ij} = x_{ij}^0 + y_{ij} - y_{ji}, \ \forall (i,j) \in A$$

Change of variables at x^0

Each arc $(i, j) \in A$ is replaced by two arcs representing possible variations :

- upward residual flow $0 \le y_{ij} \le r_{ij}^0$ downward residual flow $0 \le y_{ji} \le r_{ji}^0$

Arc set $A(x^0)$

Among the arc support $A' := \{ (i,j) \cup (j,i) \mid (i,j) \in A \},\$ only those with strictly positive residual capacities are of interest :

$$A(\mathbf{x}^{0}) := \{(i,j) \in A' \mid r_{ij}^{0} > 0\}.$$

Change of variables at $\mathbf{x}^{\mathbf{0}}$

$$egin{aligned} x_{ij} &= x_{ij}^{0} + y_{ij} - y_{ji}, \ orall (i,j) \in A \ x_{ij} &= x_{ij}^{0} = y_{ij} - y_{ji}, \ orall (i,j) \in A \end{aligned}$$

Change of variables at x^0

Each arc $(i, j) \in A$ is replaced by two arcs representing possible variations :

- upward residual flow $0 \le y_{ij} \le r_{ij}^0$ downward residual flow $0 \le y_{ji} \le r_{ji}^0$

Arc set $A(x^0)$

Among the arc support $A' := \{ (i,j) \cup (j,i) \mid (i,j) \in A \},\$ only those with strictly positive residual capacities are of interest :

$$A(\mathbf{x}^{0}) := \{ (i,j) \in A' \mid r_{ij}^{0} > 0 \}.$$

Change of variables at x ⁰ Direction at x ⁰
$x_{ij}=x_{ij}^{\mathtt{0}}+y_{ij}-y_{ji}, \; orall(i,j)\in {\mathcal A}$
$x_{ij}-x_{ij}^{\mathtt{0}}=y_{ij}-y_{ji}, \ orall (i,j)\in \mathcal{A}$
$ec{v}_{ij}=x_{ij}-x_{ij}^{0}=y_{ij}-y_{ji}, \; orall (i,j)\in \mathcal{A}$

FIGURE : Arc status on the original network G

ARC STATUS ON THE RESIDUAL NETWORK $G(x^0)$

F : index set of FREE variables

When an arc is free, flow can be carried in either direction thus meaning the presence of two residual arcs.

FIGURE : Arc status on the residual network $G(\mathbf{x}^0)$

REFORMULATION ON THE RESIDUAL NETWORK $G(\mathbf{x}^0) = (N, A(\mathbf{x}^0))$

LET
$$z^{0} := \mathbf{c}^{\mathsf{T}} \mathbf{x}^{0}$$
 And $x_{ij} = x_{ij}^{0} + y_{ij} - y_{ji}, \ \forall (i, j) \in A$
 $z^{*}_{\mathsf{CMCF}} := z^{0} + \min \sum_{(i,j) \in A(\mathbf{x}^{0})} d_{ij} y_{ij}$
st. $\sum_{j: (i,j) \in A(\mathbf{x}^{0})} y_{ij} - \sum_{j: (j,i) \in A(\mathbf{x}^{0})} y_{ji} = 0 \quad [\pi_{i}] \quad \forall i \in N$
 $0 \le y_{ij} \le r_{ij}^{0} \qquad \forall (i,j) \in A(\mathbf{x}^{0}).$

N : set of vertices $A(x^0)$: set of arcs **d** : arc cost vector

The reformulation corresponds to a circulation problem on $G(x^0)$.

Klein algorithm (1967)

• Find a *negative cost directed cycle* y^0 on $G(x^0)$.

2 Determine step-size $\rho := \min_{(i,j) \in W} \frac{r_{ij}^0}{y_{ij}^0} > 0.$

③ Compute $\mathbf{x}^{0} + \rho \vec{\mathbf{v}}^{0}$, update $G(\bullet)$ and repeat until optimality.

REFORMULATION ON THE RESIDUAL NETWORK $G(\mathbf{x}^0) = (N, A(\mathbf{x}^0))$

Let
$$z^{0} := \mathbf{c}^{\mathsf{T}} \mathbf{x}^{0}$$
 and $x_{ij} = x_{ij}^{0} + y_{ij} - y_{ji}, \ \forall (i, j) \in A$
 $z^{*}_{\mathsf{CMCF}} := z^{0} + \min \sum_{\substack{(i,j) \in A(\mathbf{x}^{0}) \\ j:(i,j) \in A(\mathbf{x}^{0})}} d_{ij}y_{ij}$
st. $\sum_{j:(i,j) \in A(\mathbf{x}^{0})} y_{ji} - \sum_{j:(j,i) \in A(\mathbf{x}^{0})} y_{ji} = 0 \quad [\pi_{i}] \quad \forall i \in N$
 $0 \le y_{ij} \le r_{ij}^{0} \qquad \forall (i,j) \in A(\mathbf{x}^{0}).$

N : set of vertices $A(x^0)$: set of arcs **d** : arc cost vector

11/31

The reformulation corresponds to a circulation problem on $G(x^0)$.

Klein algorithm (1967)

• Find a *negative cost directed cycle* y^0 on $G(x^0)$.

2 Determine step-size $\rho := \min_{(i,j) \in W} \frac{r_{ij}^0}{y_{ii}^0} > 0.$

Sompute $\mathbf{x}^{0} + \rho \vec{\mathbf{v}}^{0}$, update $G(\bullet)$ and repeat until optimality.

*** How many variables are involved in a cycle?

The sequence of negative cost cycles is important

9.19. Show that if we apply the cycle-canceling algorithm to the minimum cost flow problem shown in Figure 9.24, some sequence of augmentations requires 2×10^6 iterations to solve the problem.

Figure 9.24 Network where cycle canceling algorithm performs 2×10^6 iterations.

PS : Spanning tree given a basic solution at x^0

FIGURE : Non-basic arc (7,4) induces a unique cycle of zero step size.

Occurrence of degenerate pivots in the Primal Network Simplex

Figure 18.7 Occurance of degenerate pivots.

d= network density, Ahuja, Magnanti, Orlin (1993)

75%–90% of the Primal Simplex pivots are degenerate on network problems.

Optimality conditions on G and $G(x^0)$

Arc reduced costs

Let $\pi = [\pi_i]_{i \in N}$. $\bar{c}_{ij} := c_{ij} - \pi_i + \pi_j, \qquad (i, j) \in A$ $\bar{d}_{ij} := d_{ij} - \pi_i + \pi_j, \qquad (i, j) \in A(\mathbf{x}^0).$

Equivalent conditions. \mathbf{x}^0 is optimal \Leftrightarrow Primal. No negative cost directed cycle on $G(\mathbf{x}^0)$. \Leftrightarrow Dual. $\exists \pi$ such that $\overline{d}_{ij} \ge 0, \forall (i,j) \in A(\mathbf{x}^0)$. \Leftrightarrow Complementary slackness. $\exists \pi$ such that $\forall (i,j) \in A$, $\overline{c}_{ij} > 0 \Rightarrow (i,j) \in L$; $\overline{c}_{ij} < 0 \Rightarrow (i,j) \in U$; $(i,j) \in F \Rightarrow \overline{c}_{ij} = 0$.

Optimality conditions on G and $G(x^0)$

Arc reduced costs

Let $\pi = [\pi_i]_{i \in N}$. $\bar{c}_{ij} := c_{ij} - \pi_i + \pi_j, \qquad (i, j) \in A$ $\bar{d}_{ij} := d_{ij} - \pi_i + \pi_j, \qquad (i, j) \in A(\mathbf{x}^0).$

Equivalent conditions. x⁰ is optimal

- \Leftrightarrow **Primal.** No negative cost directed cycle on $G(x^0)$.
- $\Leftrightarrow \textbf{Dual.} \quad \exists \pi \text{ such that } \bar{d}_{ij} \geq 0, \forall (i,j) \in A(\mathbf{x}^0).$

 $\Leftrightarrow \textbf{Complementary slackness.} \ \exists \pi \text{ such that } \forall (i,j) \in A,$ $\bar{c}_{ij} > 0 \Rightarrow (i,j) \in L;$ $\bar{c}_{ij} < 0 \Rightarrow (i,j) \in U;$ $(i,j) \in F \Rightarrow \bar{c}_{ij} = 0.$

G vs. $G(\mathbf{x}^0)$

Primal and dual conditions on $G(x^0)$.

Complementary slackness conditions on *G*.

Find a cycle
$$\mathbf{y}^0 = \begin{bmatrix} \mathbf{y}^0_H \\ \mathbf{y}^0_V \end{bmatrix}$$
 (a ray)

Given $P \subseteq B$, partition of the set of arcs of $A(\mathbf{x}^0)$ into $\{H^0_P, \mathbf{V}^0_P\}$.

Find a cycle
$$\mathbf{y}^0 = \begin{bmatrix} \mathbf{y}^0_H \\ \mathbf{y}^0_V \end{bmatrix}$$
 (a ray)

Given $P \subseteq B$, partition of the set of arcs of $A(x^0)$ into $\{H^0_P, V^0_P\}$.

Visible arcs \mathbf{y}_V^0 computed first (pricing); *Hidden arcs* \mathbf{y}_H^0 computed second.

Find a cycle
$$\mathbf{y}^0 = \begin{bmatrix} \mathbf{y}_H^0 \\ \mathbf{y}_V^0 \end{bmatrix}$$
 (a ray)

Given $P \subseteq B$, partition of the set of arcs of $A(\mathbf{x}^0)$ into $\{H_P^0, \mathbf{V}_P^0\}$. Visible arcs \mathbf{y}_V^0 computed first (pricing); *Hidden arcs* \mathbf{y}_H^0 computed second. Compute direction $\vec{\mathbf{v}}^0$.

Find a cycle
$$\mathbf{y}^0 = \begin{bmatrix} \mathbf{y}^0_H \\ \mathbf{y}^0_V \end{bmatrix}$$
 (a ray)

Given $P \subseteq B$, partition of the set of arcs of $A(\mathbf{x}^0)$ into $\{H_P^0, \mathbf{V}_P^0\}$.

Visible arcs y_V^0 computed first (pricing); Hidden arcs y_H^0 computed second. Compute direction \vec{v}^0 .

 $VSD(\bullet)$

Find a cycle
$$\mathbf{y}^0 = \begin{bmatrix} \mathbf{y}^0_H \\ \mathbf{y}^0_V \end{bmatrix}$$
 (a ray)

Given $P \subseteq B$, partition of the set of arcs of $A(\mathbf{x}^0)$ into $\{H^0_P, \mathbf{V}^0_P\}$.

Visible arcs \mathbf{y}_{V}^{0} computed first (pricing); *Hidden arcs* \mathbf{y}_{H}^{0} computed second. Compute direction $\vec{\mathbf{v}}^{0}$.

Find a cycle
$$\mathbf{y}^0 = \begin{bmatrix} \mathbf{y}^0_H \\ \mathbf{y}^0_V \end{bmatrix}$$
 (a ray)

Given $P \subseteq B$, partition of the set of arcs of $A(\mathbf{x}^0)$ into $\{H_P^0, \mathbf{V}_P^0\}$.

Visible arcs y_V^0 computed first (pricing); *Hidden arcs* y_H^0 computed second. Compute direction \vec{v}^0 .

Find a cycle
$$\mathbf{y}^{0} = \begin{bmatrix} \mathbf{y}^{0}_{H} \\ \mathbf{y}^{0}_{V} \end{bmatrix}$$
 (a ray)

Given $P \subseteq B$, partition of the set of arcs of $A(\mathbf{x}^0)$ into $\{H_P^0, \mathbf{V}_P^0\}$.

Visible arcs y_V^0 computed first (pricing); *Hidden arcs* y_H^0 computed second. Compute direction \vec{v}^0 .

Family with nondegenerate pivots

Algorithmic process for network flow problems

- Given a feasible flow solution x^0 and the residual network $G(x^0)$.
- Select $P \subseteq B$.
- Hide a subset $H_P = \{(i, j), (j, i) \mid (i, j) \in P\}$ of the arcs. Apply a cost transfer by manipulating the dual vector π

such that the reduced cost of the hidden arcs becomes zero.

- Pricing : On the set of visible arcs, find a directed cycle y_V⁰ of minimum average reduced cost μ_V.
- If $\mu_V \ge 0$, terminate with an optimality certificate for x^0 .
- Recover \mathbf{y}_{H}^{0} and the uniquely extended cycle $\mathbf{y}^{0} = \begin{bmatrix} \mathbf{y}_{H}^{0} \\ \mathbf{y}_{V}^{0} \end{bmatrix}$.

• Determine the step-size
$$\rho = \min_{(i,j)\in W} \frac{r_{ij}^0}{y_{ii}^0} \ge 0.$$

• Compute $\mathbf{x}^1 = \mathbf{x}^0 + \rho \, \vec{\mathbf{v}}^0$, update $G(\mathbf{x}^1)$ and repeat until optimality.

x^0 optimal \Leftrightarrow

$\mathbf{x^0}$ optimal \Leftrightarrow

Dual : $\exists \pi$ such that $\bar{d}_{ij} \geq 0$, $\forall (i,j) \in A(\mathbf{x}^0)$. PRICING : Find π such that the smallest REDUCED COST μ is as large as possible

max μ_V

st. $\mu_V \leq d_{ij} - \pi_i + \pi_j$ $[y_{ij}] \quad \forall (i,j) \in A(\mathbf{x}^0)$

Optimize π to prove optimality ($\mu \ge 0$), that is, maximize the smallest reduced cost value.

Primal : $G(\mathbf{x}^0)$ contains *no* negative cost directed cycle.

Dual : $\exists \pi$ such that $\bar{d}_{ii} > 0$,

 $\forall (i,j) \in A(\mathbf{x}^0).$

PRICING : Find π such that the smallest REDUCED COST μ is as large as possible

max μ_V

st. $\mu_V \leq d_{ij} - \pi_i + \pi_j$ $[y_{ij}] \quad \forall (i,j) \in A(\mathbf{x}^0)$

Optimize π to prove optimality ($\mu \ge 0$), that is, maximize the smallest reduced cost value.

$$\mu_{V} := \min \sum_{(i,j) \in A(\mathbf{x}^{\mathbf{0}})} d_{ij} y_{ij}$$

st.
$$\sum_{j:(i,j) \in A(\mathbf{x}^{\mathbf{0}})} y_{ij} - \sum_{j:(j,i) \in A(\mathbf{x}^{\mathbf{0}})} y_{ji} = 0 \qquad [\pi_{i}] \quad \forall i \in N$$
$$\sum_{(i,j) \in A(\mathbf{x}^{\mathbf{0}})} y_{ij} = 1 \qquad [\mu_{V}]$$
$$y_{ij} \ge 0 \qquad \forall (i,j) \in A(\mathbf{x}^{\mathbf{0}})_{18/31}$$

PRICING OF IPS ON A CONTRACTED NETWORK

PRICING OF IPS ON A CONTRACTED NETWORK

PRICING OF IPS ON A CONTRACTED NETWORK

• Remove dominated arcs.

Find a *directed cycle* of minimum <u>average</u> reduced cost μ_V : $\rho > 0$

PRICING OF PS ON A CONTRACTED NETWORK

PRICING OF PS ON A CONTRACTED NETWORK

- Select a root node for the spanning tree.
- Set to 0 the reduced cost of basic arcs.
- Compute reduced costs of arcs $(i, j) \notin B$.
- Shrink the spanning tree of basic arcs. *Orientation of some hidden arcs is lost.*

PRICING OF PS ON A CONTRACTED NETWORK

- Select a root node for the spanning tree.
- Set to 0 the reduced cost of basic arcs.
- Compute reduced costs of arcs $(i, j) \notin B$.
- Shrink the spanning tree of basic arcs. *Orientation of some hidden arcs is lost.*

Find a loop (a single arc) of **minimum average** reduced cost $\mu_V : \rho \ge 0$ ****** *Extended cycle* can be infeasible on $G(\mathbf{x}^0)$.

$$\mu_V \ge 0 \Rightarrow x^0$$
 optimal

Pricing : directed cycle of minimum mean reduced cost μ_V on the visible graph...

Part 2

VSD(A_P) for linear problems, where A_P is a submatrix of basis A_B. Nonsingular transformation $T^{-1}(Ax = b)$.

LP AND RESIDUAL PROBLEM $LP(\mathbf{x}^0)$

LINEAR PROGRAM LP

 $\begin{array}{rll} z_{LP}^{\star} := & \min \ \mathbf{c}^{\mathsf{T}} \mathbf{x} \\ & \mathsf{st.} & \mathbf{A} \mathbf{x} &= \mathbf{b} & [\pi] \\ & \boldsymbol{\ell} &\leq \mathbf{x} &\leq \mathbf{u}, \end{array}$ where $\mathbf{x} \in \mathbb{R}^n_+$ and $\pi \in \mathbb{R}^m$.

Let $\boldsymbol{x^0}$ be feasible

$$\mathbf{x} := \mathbf{x}^0 + (\mathbf{y} - \mathbf{y}) \quad \Rightarrow \quad \mathbf{A} \neq \mathbf{x}^0 + \mathbf{A}(\mathbf{y} - \mathbf{y}) = \mathbf{y}^0$$

$$\begin{aligned} z_{LP}^{\star} &= \mathbf{c}^{\mathsf{T}} \mathbf{x}^{\mathsf{0}} + \min \quad \mathbf{c}^{\mathsf{T}} (\vec{\mathbf{y}} - \mathbf{\tilde{y}}) \\ \text{st.} \quad \mathbf{A} (\vec{\mathbf{y}} - \mathbf{\tilde{y}}) &= \mathbf{0} \quad [\pi] \\ \mathbf{0} &\leq \vec{\mathbf{y}} \leq \vec{\mathbf{r}}^{\mathsf{0}} \\ \mathbf{0} &\leq \mathbf{\tilde{y}} \leq \mathbf{\tilde{r}}^{\mathsf{0}} \end{aligned}$$

$LP(\mathbf{x}^0)$ $z_{IP}^{\star} := z^{0} + \min \qquad \mathbf{c}^{\mathsf{T}}(\mathbf{y} - \mathbf{y})$ st. $A(\vec{y} - \vec{y}) = 0$ $[\pi]$ $\mathbf{0} \leq \mathbf{\vec{y}} \leq \mathbf{\vec{r}}^{\mathbf{0}}$ $0 < \bar{v} < \bar{r}^{0}$

$$G(\mathbf{x}^0) \quad LP(\mathbf{x}^0)$$

Circulation network

Homogeneous system Directed cycles Combinations of the $\vec{\mathbf{y}}$ and $\vec{\mathbf{y}}$ variables

x⁰ OPTIMAL

 \Leftrightarrow **Primal** : $LP(\mathbf{x}^0)$ contains no negative cost combination of the \vec{y}, \vec{y} -variables.

- \Leftrightarrow **Dual** : $\exists \pi$ such that $\bar{d}_i \geq 0$, $\forall \vec{y_i}, \mathbf{\bar{y}}_i \text{ such that } \vec{r_i^0} > 0, \mathbf{\bar{r}}_i^0 > 0.$
- ⇔ Complementary slackness conditions verified on LP.

UNDERLYING STRUCTURES GIVEN A_P , A SUBMATRIX OF BASIS A_B

Transformation matrix T^{-1} (a special case is the inverse of the simplex basis)

$$\mathbf{T} = \begin{bmatrix} \mathbf{A}_{RP} & \mathbf{0} \\ \mathbf{A}_{SP} & \mathbf{I}_{m-p} \end{bmatrix} \quad \mathbf{T}^{-1} = \begin{bmatrix} \mathbf{A}_{RP}^{-1} & \mathbf{0} \\ -\mathbf{A}_{SP}\mathbf{A}_{RP}^{-1} & \mathbf{I}_{m-p} \end{bmatrix}$$
$$\bar{\mathbf{A}} = \mathbf{T}^{-1} \begin{bmatrix} \mathbf{A}_{RP} & \mathbf{A}_{RQ} \\ \mathbf{A}_{SP} & \mathbf{A}_{SQ} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{p} & \bar{\mathbf{A}}_{RQ} \\ \mathbf{0} & \bar{\mathbf{A}}_{SQ} \end{bmatrix}$$

Residual problem $LP(x^0)$ after transformation

$$\begin{aligned} \mathbf{c}^{\mathsf{T}} \mathbf{x}^{\mathsf{0}} + \min & \mathbf{c}_{P}^{\mathsf{T}} \mathbf{y}_{H} & + & \mathbf{c}_{Q}^{\mathsf{T}} \mathbf{y}_{V} \\ & \mathbf{y}_{H} & + & \bar{\mathbf{A}}_{RQ} \mathbf{y}_{V} = & \mathbf{0} \quad [\boldsymbol{\psi}_{R} = \mathbf{c}_{P}] \\ & & \bar{\mathbf{A}}_{SQ} \mathbf{y}_{V} = & \mathbf{0} \quad [\boldsymbol{\psi}_{S}] \\ & & - \bar{\mathbf{r}}_{P}^{\mathsf{0}} \leq \mathbf{y}_{H} \leq \bar{\mathbf{r}}_{P}^{\mathsf{0}} & - \bar{\mathbf{r}}_{Q}^{\mathsf{0}} \leq \mathbf{y}_{V} \leq \bar{\mathbf{r}}_{Q}^{\mathsf{0}} \end{aligned}$$

Interpretation

Dynamic Dantzig-Wolfe decomposition based on the actual value of x^0 . Transformation T^{-1} can be changed at every iteration, or kept forever.

SET P SELECTION

- P = B, primal simplex
- $P \supseteq F$, dynamic constraint aggregation
- P = F, improved primal simplex (all moves are on edges)
- $P = \emptyset$, minimum mean cycle-canceling

Proposition.

When $P \subseteq F$, the step size $\rho > 0$.

Generic framework	MMCCIPSNondegeneratepivots		DCA PS Possibly degenerate pivots	
$\emptyset \subseteq P \subseteq B$	Ø	F	$F \subseteq P$	В
Z	$z^0 > z^1$	$z^{0} > z^{1}$	$z^0 \geq z^1$	$z^0 \ge z^1$
μ	$\mu^{0} \leq \mu^{1}$	oscillations	oscillations	oscillations

Interior directions $P \subset F$

\max	$130x_{1}$	$+80x_{2}$	$+60x_{3}$	
s.t	$2x_1$	$-x_{2}$	$+ 2x_3$	≤ 21
	$-x_{1}$	$+ x_2$	$-x_{3}$	≤ 8
	$2x_1$	$-x_{2}$	$-x_{3}$	≤ 15
	$-x_{1}$	$-x_{2}$	$+ 2x_3$	≤ 32
	x_1 ,	x_2 ,	x_3	≥ 0

Figure 6: Directions found at \mathbf{x}^0 in pricing for P=F and $P=\emptyset$

Weighted combinations

Figure 2: At \mathbf{x}^k , the cone $\{\mathbf{y} \ge \mathbf{0} \mid \mathbf{K}\mathbf{y} = \mathbf{0}\}$ cut by $\mathbf{w}^{\mathsf{T}}\mathbf{y} = \mathbf{1}$

$$\max \mu_V$$
s.t. $\mu_V \le \frac{\bar{d}_j}{w_j} = \frac{1}{w_j} (d_j - \boldsymbol{\psi}_R^{\mathsf{T}} \mathbf{k}_{Rj} - \boldsymbol{\psi}_S^{\mathsf{T}} \bar{\mathbf{k}}_{Sj}) \quad [y_j] \quad \forall j \in V_P,$
(4)

where the vector $\boldsymbol{\psi}_{R}^{\mathsf{T}} = \mathbf{c}_{P}^{\mathsf{T}} \mathbf{A}_{RP}^{-1}$ is fixed by (24) whereas the vector $\boldsymbol{\psi}_{S}^{\mathsf{T}}$ is part of the optimization so as to maximize the minimum reduced cost.

Dualizing (25), we obtain the primal form of the oracle which comprises m - p + 1 constraints and writes as

$$\min \sum_{j \in V_P} \tilde{d}_j y_j$$
s.t.
$$\sum_{j \in V_P} \bar{\mathbf{k}}_{Sj} y_j = \mathbf{0} \qquad [\psi_S]$$

$$\sum_{j \in V_P} w_j y_j = 1 \qquad [\mu_V]$$

$$y_j \ge 0, \quad \forall j \in V_P.$$

$$d = \mathbf{e}_{\mathbf{i}} \mathbf{A}^{-1} \mathbf{h}_{\mathsf{P}}, \quad \forall j \in V_P.$$
(5)

where $\tilde{d}_j := d_j - \boldsymbol{\psi}_R^{\mathsf{T}} \mathbf{k}_{Rj} = d_j - \mathbf{c}_P^{\mathsf{T}} \mathbf{A}_{RP}^{-1} \mathbf{k}_{Rj}, \forall j \in V_P.$

Adding information to the pricing problem

Optimize π with stabilization intervals

max μ

st.
$$\mu \leq d_j - \pi^{\mathsf{T}} \mathbf{a}_j \quad \forall j$$

 $\pi_i \in [inf_i, sup_i] \quad \forall i$

Adding information to the pricing problem

Optimize π with stabilization intervals

$$\begin{array}{ll} \max \ \mu \\ \text{st.} \ \mu & \leq d_j - \boldsymbol{\pi}^{\mathsf{T}} \mathbf{a}_j \quad \forall j \\ \pi_i & \in [\mathit{inf}_i, \mathit{sup}_i] \quad \forall i \end{array}$$

Optimize π with a link with the current objective value

 $\begin{array}{ll} \max \ \mu \\ & \text{st. } \mu \\ & \mathbf{a}^\mathsf{T} \mathbf{b} \\ \end{array} \leq d_j - \boldsymbol{\pi}^\mathsf{T} \mathbf{a}_j \quad \forall j \\ \boldsymbol{\pi}^\mathsf{T} \mathbf{b} \\ \end{array} \geq z^k$

Adding information to the pricing problem

Optimize π with stabilization intervals

$$\begin{array}{ll} \max \ \mu \\ \text{st.} \ \mu & \leq d_j - \boldsymbol{\pi}^{\mathsf{T}} \mathbf{a}_j \quad \forall j \\ \pi_i & \in [\mathit{inf}_i, \mathit{sup}_i] \quad \forall i \end{array}$$

Optimize π with a link with the current objective value						
	max	μ	-Ta. ∀i			
st. $\mu \leq d_j - \pi \cdot \mathbf{a}_j \forall j$ $\pi^T \mathbf{b} \geq z^k$						
Properties :	$z^{0} > z^{1}$	$\mu^{0} < \mu^{1}$	$s^0 < s^1$	Interior directions		

- About the Minimum Mean Cycle-Canceling Algorithm Discrete Applied Mathematics, 2015. doi :10.1016/j.dam.2014.07.005
 Primal/dual formulations of the pricing problem; new complexity result.
- Tools for Primal Degenerate Linear Programs : IPS, DCA, and PE European Journal of Transportation and Logistics, 2015. doi :10.1007/s13676-015-0077-5
 VSD(•) links DCA, IPS, and PE (positive edge rule).
- Oecomposition Theorems for Linear Programs *Operations Research Letters*. 2014. doi :10.1016/j.orl.2014.10.001 Theorems on Networks → Linear programs.
- A Strongly Polynomial Contraction-Expansion Algorithm for Networks Understanding degeneracy on network flow problems.
- Vector Space Decomposition for Linear and Network Flow Problems Family of algorithms with nondegenerate pivots + interior directions.
- A linear fractional pricing problem for solving linear programs. Interior directions.