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Problem definition

What problems are we interested in?

Given a set V ,

find a partition P(V ) of the set V

so as to minimize a cost function f (P(V ))

With the three additional properties:

U ⊆ V =⇒ f (P∗(U)) ≤ f (P∗(V )) (monotonicity)

∃U ⊆ V , |U| � |V | such that
f (P∗(U)) = f (P∗(V )) (degeneracy)
Possible to build P∗(V ) from enlarging P∗(U) (constructibility)
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The main theorem

The main theorem

Let us consider a set V of nodes

Let us consider a subset U ⊆ V of observations

Let P∗(U), f∗(U) be the optimal partition and its cost

If a node v ∈ V \ U can be added to P∗(U) to form P′
and f (P′) = f∗(U) then P′ = P∗(U ∪ {v}) and
f (P′) = f∗(U ∪ {v})
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The algorithm

The algorithm

Algorithm 1 Chunking method
Require: Set V , function f , number of clusters k
Ensure: Optimal partition P(V ) that minimizes f (P(V ))

U ← ∅, f U , f V ←∞,PU ,PV ← ∅,W ← ∅
repeat

U ← U ∪W
(f U ,PU)← ExactSPP(U, k)
(f V ,PV ,W )← HeuristicSPP(PU ,V \ U)

until W = ∅
return PV
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Clustering problems

We are given a set V of n
observations
Observations must be
partitioned
A cluster must contain
similar observations
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The minimax diameter clustering problem

The minimax diameter clustering problem

Strongly NP-hard (Garey &
Johnson 1979)
Objective: Minimize the
maximum intra-cluser
dissimilarity
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The minimax diameter clustering problem

State-of-the-art algorithms

Complete linkage: most popular heuristic method
Constraint Programming: most efficient exact method

Can solve problems containing up to 5k observations
Both methods:

need to compute and store the dissimilarity matrix (cpu =
mem = O(n2))
therefore, they cannot be applied to large problems
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The minimax diameter clustering problem

Chunking algorithm
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The minimax diameter clustering problem

Observations

Complete problem contains 14 observations
Largest ExactSPP(U, k) contains only 5 nodes
The dissimilarity matrix must only be stored for these
smaller problems

No storage problems
In practice, our method is faster than computing the
dissimilarity matrix (still O(n2) in practice though)

Ordering of the nodes for the heuristic is critical (most likely
to result in an infeasible insertion are inspected first)
The bottleneck of our algorithm is
HeuristicSPP(PU ,V \ U)! (O(n3) in the worst case but
O(n2) in practice)
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Other clustering problems

Maximum split clustering problem

Polynomially solvable
cpu = mem = O(n2)

Objective: Maximize the
minimum inter-cluser dissimilarity 1
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Other clustering problems

Other higly degenerate clustering criteria

Maximize the ratio
(

Split
Diameter

)
Minimize a convex combination of Diameter and −Split
Minimize the (weighted) sum of the diameters
Maximize the (weighted) sum of the splits
Combinations of the above
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Computational experience

Problem n m k d

State-of-the-art



Iris 150 11,175 3 4
Wine 178 15,753 3 13
Glass 214 22,791 7 9
Ionosphere 351 61,425 2 34
User knowledge 403 81,003 4 5
Breast cancer 569 161,596 2 30
Synthetic control 600 179,700 6 60
Vehicle 846 357,435 4 18
Yeast 1,484 1,100,386 10 8
Mfeat (morph) 2,000 1,999,000 10 6
Multiple features 2,000 1,999,000 10 649
Segmentation 2,000 1,999,000 7 19
Image segm 2,310 2,666,895 7 19
Waveform (v1) 5,000 12,497,500 3 21
Waveform (v2) 5,000 12,497,500 3 40

Too large to fit in ram



Ailerons 13,750 94,524,375 10 41
Magic 19,020 180,870,690 2 10
Krkopt 28,056 393,555,540 17 6
Shuttle 58,000 1,681,971,000 7 9
Connect-4 67,557 2,281,940,346 3 42
SensIt (acoustic) 96,080 4,615,635,160 3 50
Twitter 140,707 9,899,159,571 2 77
Census 142,521 10,156,046,460 3 41
HAR 165,633 13,717,062,528 5 18
IJCNN1 191,681 18,370,707,040 2 22
Cod-Rna 488,565 119,347,635,330 2 8
KDD cup 10% 494,090 122,062,217,005 23 41
Cover type 581,012 168,787,181,566 7 54

Table: Problems details
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Computational experience

Problem Opt RBBA BB CP IC
Iris 2.58 1.4 1.8 < 0.1 < 0.1
Wine 458.13 2.0 2.3 < 0.1 < 0.1
Glass 4.97 8.1 42.0 0.2 0.2
Ionosphere 8.6 0.6 0.3 0.2
User knowledge 1.17 3.7 0.2 1.2
Breast cancer 2,377.96 1.8 0.5 0.2
Synthetic control 109.36 1.6 0.4
Vehicle 264.83 0.9 0.2
Yeast 0.67 5.2 1.7
Mfeat (morph) 1,594.96 8.59 0.6
Segmentation 436.4 5.7 0.6
Waveform (v2) 15.58 50.1 2.0

Table: Running times (in seconds) on small datasets
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Computational experience

Problem Opt
Chunking method

dmc
it n′ lch t

Waveform (v1) 13.74 10 21 < 0.1 < 0.1 < 0.1
Waveform (v2) 15.58 9 22 < 0.1 < 0.1 < 0.1
Ailerons 230.71 34 49 < 0.1 0.2 0.17
Magic 692.44 3 12 0.33 0.37 0.27
Krkopt 2.00 60 77 < 0.1 0.39 0.47
Shuttle 6,157.44 5 14 3.23 3.38 2.95
Connect-4 3.87 11 20 2.31 2.73 6.45
SensIt (acoustic) 4.47 6 15 12.72 13.14 12.16
Twitter 80,734 2 11 28.19 28.77 27.91
Census 100,056 3 13 33.27 33.95 33.00
HAR 1,078.73 8 18 18.70 19.25 24.76
IJCNN1 3.97 5 14 12.98 13.36 17.90
Cod-Rna 934.68 3 12 122.86 123.62 97.26
KDD cup 10% 144,165 26 53 25.50 28.43 23.71
Cover type 3,557.3 129 143 122.5 162.94 393.35

Table: Detailed results on the chunking method
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Conclusions

Our method seems to be very sensitive to noise. Noisy
problems (Birch1, 2, 3, pendigits) could not be solved
although smaller in size
We are currently testing our framework to solve other
classification problems presenting high degrees of
degeneracy
The method seems easily adaptable to become a heuristic
capable of handling larger problems (as in online
streaming of data)
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