The problem O	The algorithm	Applications to clustering	Computational experience	Conclusions

On the solution of some very large-scale, highly degenerate combinatorial optimization problems: Applications to clustering

D. Aloise C. Contardo

ESG UQAM, GERAD and CIRRELT

Column Generation 2016, Búzios, Brazil, 2016

(日) (日) (日) (日) (日) (日) (日)

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions
Outline				

- Problem definition
- The algorithm
 - The main theorem
 - The algorithm
- 3 Applications to clustering
 - The minimax diameter clustering problem

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Other clustering problems
- Computational experience
- Conclusions

The problem ●	The algorithm oo	Applications to clustering	Computational experience	Conclusions
Due la la ser al a finalitie a				

- Given a set V,
- find a *partition* P(V) of the set V
- so as to minimize a cost function f(P(V))

- $U \subseteq V \Longrightarrow f(P^*(U)) \leq f(P^*(V))$ (monotonicity)
- $\exists U \subseteq V, |U| \ll |V|$ such that
 - $f(P^*(U)) = f(P^*(V))$ (degeneracy)
 - Possible to build P*(V) from enlarging P*(U) (constructibility)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The problem ●	The algorithm	Applications to clustering	Computational experience	Conclusions
Problem definition				

- Given a set V,
- find a partition P(V) of the set V
- so as to minimize a cost function f(P(V))

- $U \subseteq V \Longrightarrow f(P^*(U)) \leq f(P^*(V))$ (monotonicity)
- $\exists U \subseteq V, |U| \ll |V|$ such that
 - $f(P^*(U)) = f(P^*(V))$ (degeneracy)
 - Possible to build P*(V) from enlarging P*(U) (constructibility)

The problem ●	The algorithm	Applications to clustering	Computational experience	Conclusions
Problem definition				

- Given a set V,
- find a partition P(V) of the set V
- so as to minimize a cost function f(P(V))

- $U \subseteq V \Longrightarrow f(P^*(U)) \leq f(P^*(V))$ (monotonicity)
- $\exists U \subseteq V, |U| \ll |V|$ such that
 - $f(P^*(U)) = f(P^*(V))$ (degeneracy)
 - Possible to build P*(V) from enlarging P*(U) (constructibility)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The problem	The algorithm	Applications to clustering	Computational experience	Conclusions
Problem definition				

- Given a set V,
- find a partition P(V) of the set V
- so as to minimize a cost function f(P(V))

With the three additional properties:

- $U \subseteq V \Longrightarrow f(P^*(U)) \leq f(P^*(V))$ (monotonicity)
- $\exists U \subseteq V, |U| \ll |V|$ such that
 - $f(P^*(U)) = f(P^*(V))$ (degeneracy)
 - Possible to build P*(V) from enlarging P*(U) (constructibility)

The problem ●	The algorithm	Applications to clustering	Computational experience	Conclusions
Problem definition				

- Given a set V,
- find a partition P(V) of the set V
- so as to minimize a cost function f(P(V))

With the three additional properties:

- $U \subseteq V \Longrightarrow f(P^*(U)) \leq f(P^*(V))$ (monotonicity)
- $\exists U \subseteq V, |U| \ll |V|$ such that
 - $f(P^*(U)) = f(P^*(V))$ (degeneracy)
 - Possible to build P*(V) from enlarging P*(U) (constructibility)

The problem ●	The algorithm	Applications to clustering	Computational experience	Conclusions
Problem definition				

- Given a set V,
- find a partition P(V) of the set V
- so as to minimize a cost function f(P(V))

With the three additional properties:

- $U \subseteq V \Longrightarrow f(P^*(U)) \leq f(P^*(V))$ (monotonicity)
- $\exists U \subseteq V, |U| \ll |V|$ such that
 - $f(P^*(U)) = f(P^*(V))$ (degeneracy)
 - Possible to build $P^*(V)$ from enlarging $P^*(U)$ (constructibility)

The problem	The algorithm	Applications to clustering	Computational experience	Conclusions
Problem definition				

- Given a set V,
- find a partition P(V) of the set V
- so as to minimize a cost function f(P(V))

With the three additional properties:

- $U \subseteq V \Longrightarrow f(P^*(U)) \leq f(P^*(V))$ (monotonicity)
- $\exists U \subseteq V, |U| \ll |V|$ such that
 - $f(P^*(U)) = f(P^*(V))$ (degeneracy)
 - Possible to build $P^*(V)$ from enlarging $P^*(U)$ (constructibility)

- Given a set V,
- find a partition P(V) of the set V
- so as to minimize a cost function f(P(V))

With the three additional properties:

- $U \subseteq V \Longrightarrow f(P^*(U)) \leq f(P^*(V))$ (monotonicity)
- $\exists U \subseteq V, |U| \ll |V|$ such that
 - $f(P^{*}(U)) = f(P^{*}(V))$ (degeneracy)
 - Possible to build P*(V) from enlarging P*(U) (constructibility)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The problem o	The algorithm ●○	Applications to clustering	Computational experience	Conclusions
The main theorem				
The mai	n theoren	n		

- Let us consider a subset $U \subseteq V$ of observations
- Let $P^*(U)$, $f^*(U)$ be the optimal partition and its cost
- If a node $v \in V \setminus U$ can be added to $P^*(U)$ to form P'and $f(P') = f^*(U)$ then $P' = P^*(U \cup \{v\})$ and $f(P') = f^*(U \cup \{v\})$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The proble	m The algorithm ●○	Applications to clustering	Computational experience	e Conclusions
The main the	neorem			
The	main theoren	n		
				6
•	Let us consider a set	V of nodes set $U \subseteq V$ of observations		Ø
•	Let $P^*(U)$, $f^*(U)$ be the lf a node $v \in V \setminus U$ can be a set $f(D)$.	The optimal partition and its an be added to $P^*(U)$ to for	cost [©]	
	and $f(P') = f^*(U)$ the $f(P') = f^*(U \cup \{v\})$	$m \mathcal{P} = \mathcal{P}^{*}(\mathcal{U} \cup \{V\}) \text{ and }$	٢	(3)

13

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

The problem o	The algorithm ●○	Applications to clustering	Computational experience	Conclusions
The main theorem				

The main theorem

- Let us consider a set V of nodes
- Let us consider a subset $U \subseteq V$ of observations
- Let $P^*(U)$, $f^*(U)$ be the optimal partition and its cost
- If a node $v \in V \setminus U$ can be added to $P^*(U)$ to form P'and $f(P') = f^*(U)$ then $P' = P^*(U \cup \{v\})$ and $f(P') = f^*(U \cup \{v\})$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The problem ○	The algorithm ●○	Applications to clustering	Computational experience	Conclusions
The main theorem				

The main theorem

- Let us consider a set V of nodes
- Let us consider a subset $U \subseteq V$ of observations
- Let $P^*(U)$, $f^*(U)$ be the optimal partition and its cost
- If a node $v \in V \setminus U$ can be added to $P^*(U)$ to form P'and $f(P') = f^*(U)$ then $P' = P^*(U \cup \{v\})$ and $f(P') = f^*(U \cup \{v\})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The problem O	The algorithm ○●	Applications to clustering	Computational experience	Conclusions
The algorithm				
The alg	orithm			

Algorithm 1 Chunking method

Require: Set *V*, function *f*, number of clusters *k* **Ensure:** Optimal partition P(V) that minimizes f(P(V)) $U \leftarrow \emptyset, f^U, f^V \leftarrow \infty, P^U, P^V \leftarrow \emptyset, W \leftarrow \emptyset$ **repeat** $U \leftarrow U \cup W$ $(f^U, P^U) \leftarrow \text{ExactSPP}(U, k)$ $(f^V, P^V, W) \leftarrow \text{HeuristicSPP}(P^U, V \setminus U)$ **until** $W = \emptyset$ **return** P^V

The algorithm

Applications to clustering

Computational experience

Conclusions

Clustering problems

- We are given a set *V* of n observations
- Observations must be partitioned
- A cluster must contain similar observations

The algorithm

Applications to clustering

Computational experience

Conclusions

Clustering problems

- We are given a set *V* of n observations
- Observations must be partitioned
- A cluster must contain similar observations

・ ロ ト ・ 雪 ト ・ 目 ト ・

э

The algorithm

Applications to clustering

Computational experience

(5)

2 4

(1) (3)

9 6

 $\overline{7}$

8

10

(12)

(14)

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

(11

(13)

3

Conclusions

The minimax diameter clustering problem

The minimax diameter clustering problem

- Strongly NP-hard (Garey & Johnson 1979)
- Objective: Minimize the maximum intra-cluser dissimilarity

The algorithm

Applications to clustering

Computational experience

Conclusions

The minimax diameter clustering problem

The minimax diameter clustering problem

- Strongly NP-hard (Garey & Johnson 1979)
- Objective: Minimize the maximum intra-cluser dissimilarity

(9) (6)

(5)

8

10

The algorithm

Applications to clustering

Computational experience

2

(3

Conclusions

The minimax diameter clustering problem

The minimax diameter clustering problem

- Strongly NP-hard (Garey & Johnson 1979)
- Objective: Minimize the maximum intra-cluser dissimilarity

12

13

(14)

・ロット (雪) (日) (日)

The algorithm

Applications to clustering

Computational experience

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusions

The minimax diameter clustering problem

State-of-the-art algorithms

- Complete linkage: most popular heuristic method
- Constraint Programming: most efficient exact method
 - Can solve problems containing up to 5k observations

Both methods:

- need to compute and store the dissimilarity matrix (cpu = mem = O(n²))
- therefore, they cannot be applied to large problems

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions		
The minimax diameter clustering problem						
Chunking algorithm						

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions		
The minimax diameter clustering problem						
Chunking algorithm						

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions		
The minimax diameter clustering problem						
Chunking algorithm						

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions		
The minimax diameter clustering problem						
Chunking algorithm						

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions		
The minimax diameter clustering problem						
Chunking algorithm						

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions		
The minimax diameter clustering problem						
Chunkir	Chunking algorithm					

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions		
The minimax diameter clustering problem						
Chunking	Chunking algorithm					

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions		
The minimax diameter clustering problem						
Chunking	Chunking algorithm					

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions	
The minimax diameter clustering problem					
Chunking algorithm					

The problem The algorithm Applications to clustering Computational experience

The minimax diameter clustering problem

Chunking algorithm

・ロト・西ト・ヨト・ヨト・日・ つへぐ

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions		
The minimax diameter clustering problem						
Chunking	Chunking algorithm					

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions
The minimax dian	neter clustering problem			
Chunki	na alaorith	Im		

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions
The minimax dian	neter clustering problem			
Chunki	ng algorith	Im		

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions		
The minimax diameter clustering problem						
Chunkin	g algorith	m				

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions	
The minimax diameter clustering problem					
Chunking	g algorithn	n			

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions
The minimax dian	neter clustering problem			
Chunki	ng algorith	im		

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions
The minimax dian	neter clustering problem			
Chunki	ng algorith	im		

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions		
The minimax diameter clustering problem						
Chunking	g algorithm	า				

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions	
The minimax diameter clustering problem					
Chunking	g algorithn	n			

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions		
The minimax diameter clustering problem						
Chunking	g algorithn	า				

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions		
The minimax diameter clustering problem						
Chunking	g algorithn	า				

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions		
The minimax diameter clustering problem						
Chunking	g algorithm	า				

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions		
The minimax diameter clustering problem						
Chunking	g algorithm	า				

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions	
The minimax diameter clustering problem					
Chunking	g algorithm	า			

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions	
The minimax diameter clustering problem					
Chunkin	ig algorith	m			

The minimax diameter clustering problem					
The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions	

Chunking algorithm

The minimax diameter clustering problem					
The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions	

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions	
The minimax diameter clustering problem					
	and a first state				

Chunking algorithm

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions	
The minimax diameter clustering problem					
Chunking	g algorithn	า			

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions
The minimax diameter clustering problem				
Observa	ations			

Complete problem contains 14 observations

- Largest Exact SPP (U, k) contains only 5 nodes
- The dissimilarity matrix must only be stored for these smaller problems
 - No storage problems
 - In practice, our method is faster than computing the dissimilarity matrix (still O(n²) in practice though)
- Ordering of the nodes for the heuristic is critical (most likely to result in an infeasible insertion are inspected first)
- The bottleneck of our algorithm is HeuristicSPP $(P^U, V \setminus U)$! $(O(n^3)$ in the worst case but $O(n^2)$ in practice)

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions
The minimax diameter clustering problem				
Observa	tions			

- Complete problem contains 14 observations
- Largest ExactSPP(U, k) contains only 5 nodes
- The dissimilarity matrix must only be stored for these smaller problems
 - No storage problems
 - In practice, our method is faster than computing the dissimilarity matrix (still O(n²) in practice though)
- Ordering of the nodes for the heuristic is critical (most likely to result in an infeasible insertion are inspected first)
- The bottleneck of our algorithm is HeuristicSPP $(P^U, V \setminus U)$! $(O(n^3)$ in the worst case but $O(n^2)$ in practice)

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions
The minimax diame	ter clustering problem			
Observa	tions			

- Complete problem contains 14 observations
- Largest ExactSPP(U, k) contains only 5 nodes
- The dissimilarity matrix must only be stored for these smaller problems
 - No storage problems
 - In practice, our method is faster than computing the dissimilarity matrix (still $O(n^2)$ in practice though)
- Ordering of the nodes for the heuristic is critical (most likely to result in an infeasible insertion are inspected first)
- The bottleneck of our algorithm is HeuristicSPP $(P^U, V \setminus U)$! $(O(n^3)$ in the worst case but $O(n^2)$ in practice)

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions
The minimax diame	eter clustering problem			
Observa	ations			

- Complete problem contains 14 observations
- Largest ExactSPP(U, k) contains only 5 nodes
- The dissimilarity matrix must only be stored for these smaller problems
 - No storage problems
 - In practice, our method is faster than computing the dissimilarity matrix (still $O(n^2)$ in practice though)
- Ordering of the nodes for the heuristic is critical (most likely to result in an infeasible insertion are inspected first)
- The bottleneck of our algorithm is HeuristicSPP $(P^U, V \setminus U)$! $(O(n^3)$ in the worst case but $O(n^2)$ in practice)

The problem o	The algorithm	Applications to clustering	Computational experience	Conclusions
The minimax diame	ter clustering problem			
Observa	tions			

- Complete problem contains 14 observations
- Largest ExactSPP(U, k) contains only 5 nodes
- The dissimilarity matrix must only be stored for these smaller problems
 - No storage problems
 - In practice, our method is faster than computing the dissimilarity matrix (still $O(n^2)$ in practice though)
- Ordering of the nodes for the heuristic is critical (most likely to result in an infeasible insertion are inspected first)
- The bottleneck of our algorithm is HeuristicSPP $(P^U, V \setminus U)$! $(O(n^3)$ in the worst case but $O(n^2)$ in practice)

Computational experience

(5)

(1) 3

9 (6)

 $\overline{7}$

8

10

(12)

(14)

・ロット (雪) ・ (日) ・ (日)

(11

(13)

э

Conclusions

Other clustering problems

Maximum split clustering problem

- Polynomially solvable
- cpu = mem = $O(n^2)$ (2)
- Objective: Maximize the minimum inter-cluser dissimilarity

Other clustering problems

Maximum split clustering problem

- Polynomially solvable
- cpu = mem = $O(n^2)$
- Objective: Maximize the minimum inter-cluser dissimilarity

9 6

(5)

8

10

Computational experience

Conclusions

Other clustering problems

Maximum split clustering problem

- Polynomially solvable
- cpu = mem = $O(n^2)$
- Objective: Maximize the minimum inter-cluser dissimilarity

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Other clustering problems

Other higly degenerate clustering criteria

- Maximize the ratio $\left(\frac{Split}{Diameter}\right)$
- Minimize a convex combination of Diameter and –Split
- Minimize the (weighted) sum of the diameters
- Maximize the (weighted) sum of the splits
- Combinations of the above

Computational experience

Conclusions

Computational experience

Problem	n	m	k	d
Iris	150	11,175	3	4
Wine	178	15,753	3	13
Glass	214	22,791	7	9
lonosphere	351	61,425	2	34
User knowledge	403	81,003	4	5
Breast cancer	569	161,596	2	30
Synthetic control	600	179,700	6	60
Vehicle	846	357,435	4	18
Yeast	1,484	1,100,386	10	8
Mfeat (morph)	2,000	1,999,000	10	6
Multiple features	2,000	1,999,000	10	649
Segmentation	2,000	1,999,000	7	19
Image segm	2,310	2,666,895	7	19
Waveform (v1)	5,000	12,497,500	3	21
Waveform (v2)	5,000	12,497,500	3	40
Ailerons	13,750	94,524,375	10	41
Magic	19,020	180,870,690	2	10
Krkopt	28,056	393,555,540	17	6
Shuttle	58,000	1,681,971,000	7	9
Connect-4	67,557	2,281,940,346	3	42
SensIt (acoustic)	96,080	4,615,635,160	3	50
Twitter	140,707	9,899,159,571	2	77
Census	142,521	10,156,046,460	3	41
HAR	165,633	13,717,062,528	5	18
IJCNN1	191,681	18,370,707,040	2	22
Cod-Rna	488,565	119,347,635,330	2	8
KDD cup 10%	494,090	122,062,217,005	23	41
Cover type	581,012	168,787,181,566	7	54

Table: Problems details

Computational experience

Conclusions

Computational experience

	Problem	n	m	k	d
(Iris	150	11,175	3	4
	Wine	178	15,753	3	13
	Glass	214	22,791	7	9
	lonosphere	351	61,425	2	34
	User knowledge	403	81,003	4	5
	Breast cancer	569	161,596	2	30
	Synthetic control	600	179,700	6	60
State-of-the-art	Vehicle	846	357,435	4	18
	Yeast	1,484	1,100,386	10	8
	Mfeat (morph)	2,000	1,999,000	10	6
	Multiple features	2,000	1,999,000	10	649
	Segmentation	2,000	1,999,000	7	19
	Image segm	2,310	2,666,895	7	19
	Waveform (v1)	5,000	12,497,500	3	21
l	Waveform (v2)	5,000	12,497,500	3	40
	Ailerons	13,750	94,524,375	10	41
	Magic	19,020	180,870,690	2	10
	Krkopt	28,056	393,555,540	17	6
	Shuttle	58,000	1,681,971,000	7	9
	Connect-4	67,557	2,281,940,346	3	42
	SensIt (acoustic)	96,080	4,615,635,160	3	50
	Twitter	140,707	9,899,159,571	2	77
	Census	142,521	10,156,046,460	3	41
	HAR	165,633	13,717,062,528	5	18
	IJCNN1	191,681	18,370,707,040	2	22
	Cod-Rna	488,565	119,347,635,330	2	8
	KDD cup 10%	494,090	122,062,217,005	23	41
	Cover type	581,012	168,787,181,566	7	54

Table: Problems details

Computational experience

Conclusions

Computational experience

	Problem	n	m	k	d
	Iris	150	11,175	3	4
	Wine	178	15,753	3	13
	Glass	214	22,791	7	9
	lonosphere	351	61,425	2	34
	User knowledge	403	81,003	4	5
	Breast cancer	569	161,596	2	30
	Synthetic control	600	179,700	6	60
State-of-the-art	Vehicle	846	357,435	4	18
	Yeast	1,484	1,100,386	10	8
	Mfeat (morph)	2,000	1,999,000	10	6
	Multiple features	2,000	1,999,000	10	649
	Segmentation	2,000	1,999,000	7	19
	Image segm	2,310	2,666,895	7	19
	Waveform (v1)	5,000	12,497,500	3	21
l	Waveform (v2)	5,000	12,497,500	3	40
(Ailerons	13,750	94,524,375	10	41
	Magic	19,020	180,870,690	2	10
	Krkopt	28,056	393,555,540	17	6
	Shuttle	58,000	1,681,971,000	7	9
	Connect-4	67,557	2,281,940,346	3	42
	SensIt (acoustic)	96,080	4,615,635,160	3	50
Too large to fit in ram	Twitter	140,707	9,899,159,571	2	77
	Census	142,521	10,156,046,460	3	41
	HAR	165,633	13,717,062,528	5	18
	IJCNN1	191,681	18,370,707,040	2	22
	Cod-Rna	488,565	119,347,635,330	2	8
	KDD cup 10%	494,090	122,062,217,005	23	41
	Cover type	581,012	168,787,181,566	7	54

Table: Problems details

Computational experience

Conclusions

Computational experience

Problem	Opt	RBBA	BB	CP	IC
Iris	2.58	1.4	1.8	< 0.1	< 0.1
Wine	458.13	2.0	2.3	< 0.1	< 0.1
Glass	4.97	8.1	42.0	0.2	0.2
lonosphere	8.6		0.6	0.3	0.2
User knowledge	1.17		3.7	0.2	1.2
Breast cancer	2,377.96		1.8	0.5	0.2
Synthetic control	109.36			1.6	0.4
Vehicle	264.83			0.9	0.2
Yeast	0.67			5.2	1.7
Mfeat (morph)	1,594.96			8.59	0.6
Segmentation	436.4			5.7	0.6
Waveform (v2)	15.58			50.1	2.0

Table: Running times (in seconds) on small datasets

Computational experience

Conclusions

Computational experience

Problem	Ont	Chunking method				dmc	
TIODIEIII	Ορι	it	n'	lch	t	unic	
Waveform (v1)	13.74	10	21	< 0.1	< 0.1	< 0.1	
Waveform (v2)	15.58	9	22	< 0.1	< 0.1	< 0.1	
Ailerons	230.71	34	49	< 0.1	0.2	0.17	
Magic	692.44	3	12	0.33	0.37	0.27	
Krkopt	2.00	60	77	< 0.1	0.39	0.47	
Shuttle	6,157.44	5	14	3.23	3.38	2.95	
Connect-4	3.87	11	20	2.31	2.73	6.45	
SensIt (acoustic)	4.47	6	15	12.72	13.14	12.16	
Twitter	80,734	2	11	28.19	28.77	27.91	
Census	100,056	3	13	33.27	33.95	33.00	
HAR	1,078.73	8	18	18.70	19.25	24.76	
IJCNN1	3.97	5	14	12.98	13.36	17.90	
Cod-Rna	934.68	3	12	122.86	123.62	97.26	
KDD cup 10%	144,165	26	53	25.50	28.43	23.71	
Cover type	3,557.3	129	143	122.5	162.94	393.35	

Table: Detailed results on the chunking method

The problem ○	The algorithm	Applications to clustering	Computational experience	Conclusions
Conclus	ions			

- Our method seems to be very sensitive to noise. Noisy problems (Birch1, 2, 3, pendigits) could not be solved although smaller in size
- We are currently testing our framework to solve other classification problems presenting high degrees of degeneracy
- The method seems easily adaptable to become a heuristic capable of handling larger problems (as in *online streaming of data*)

(日) (日) (日) (日) (日) (日) (日)