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Bin Packing Problems
Classical Bin Packing Problem (BPP):

∙ NP-HARD

∙ well studied in the OR community

∙ models many problems in logistics ...

BPP with item fragmentation (BPP-IF): items can be split at a price.
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BPP-IF in telecommunications

Tactical issues in (consolidated) routing:

∙ channels: (path, frequency, timeslot) tuples ⇒ bin

∙ data transfer requests of different carriers ⇒ items

∙ splitting requests consumes energy ⇒ split items as few as possible

Initial attempts with CPLEX: timeout on instances with 10 or 20 items.
Spoiler:
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Tactical issues in (consolidated) routing:

∙ channels: (path, frequency, timeslot) tuples ⇒ bin

∙ data transfer requests of different carriers ⇒ items

∙ splitting requests consumes energy ⇒ split items as few as possible

Initial attempts with CPLEX: timeout on instances with 10 or 20 items.
Spoiler: branch-and-price could tackle instances with up to 1000 items.
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BPP-IF in transportation

Split Forbidden Split Allowed
Routing costs VRP Split Delivery VRP

No routing costs BPP BPP with Item Fragm.
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Literature Review

Main BPP-IF variants

∙ Bin Minimization; Fragmentations minimization;

∙ Size Preserving; Size Increasing (weight overhead for each split)

Approximation algorithms and applications:

∙ N. Menakerman, R. Rom., Bin packing with item fragmentation.
LNCS, proc. of the 7th WADS (2001)

∙ H. Shachnai, T. Tamir, O. Yehezkely, Approximation schemes for
packing with item fragmentation. Theory of Comp. Sys. 43 (2008)

∙ L. Epstein, A. Levin, R. van Stee, Approximation schemes for
packing splittable items with cardinality constraints. Algorithmica 62
(2012).

∙ B. Lecun, T. Mautor, F. Quessette, M.A. Weisser Bin packing with
fragmentable items: presentation and approximations. Theoretical
Computer Science 602 (2015)
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Results overview:

Our approach:

∙ try to understand which features make the problem so difficult

∙ design math. prog. algorithms for solving BPPIFs

Main results

∙ A common framework for modeling and solving BPPIFs (bin or
fragmentation minimization, size preserving or increasing)

∙ A characterization of particular subsets of optimal solutions

∙ Exact algorithms whose computing time scales very well in practice
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Structure of a solution

BPP-IF Graph

Given a BPP-IF solution, build a BPP-IF graph:

∙ one vertex for each bin

∙ one edge for each pair of bins with fragments of the same item
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Structure of a solution

Primitive solutions

Def. primitive solution (MR ’01):

∙ each item is split in at most two fragments

∙ each bin contains at most two fragmented items

∙ → the BPP-IF graph is a set of paths

∙ def: items beloging to bins of the same path form a chain.
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Structure of a BPP-IF solution

Theorem (MR ’02)

There always exists a b.m. BPP-IF optimal solution which is primitive.

Theorem (CC ’13)

There always exists a f.m. BPP-IF optimal solution which is primitive.

Theorem (MR ’01 - CC ’13)

given the set of items belonging to each chain in a primitive solution, a
full BPP-IF solution can be found by running Next Fit procedures.

Theorem (CC ’13)

There always exists an (optimal) primitive dominant solution, in which
the split items of each chain of k bins are the k − 1 items of maximum
weight belonging to that chain;
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Overall algorithm (N)
Branch-and-bound, exploiting:

∙ bounding: compute valid lower bounds

∙ approximation: compute upper bounds

∙ branching: (a) fix split / non split items; (b) fix pairs of split items
for the same bin; (c) assign items to bins whose pairs of split items
are fixed

∙ pruning: cutoff partial solutions, retaining only primitive dominant
ones

∙ feasibility checks: nec. conditions and constraint programming

∙ acceleration techniques: dual cuts (specialization of Irnich and
Gschwind ’16)

Feasibility checks:

∙ residual capacity after chain fixing

∙ “large bin” capacity check

∙ multiple-subset-sum chain capacity check

∙ no split-items subset-sum capacity check
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Focus: computing valid lower bounds (N)

Observation: CC ’14 In primitive solutions, minimizing the number of
fragments, fragmentations or fragmented items is equivalent.

Compact model

min
∑︁

i∈I ,j∈B

zij − |I |

s.t.
∑︁
j∈B

xij = 1 ∀i ∈ I

∑︁
i∈I

dixij ≤ C ∀j ∈ B

xij ≤ zij ∀i ∈ I , ∀j ∈ B

0 ≤ xij ≤ 1 ∀i ∈ I , ∀j ∈ B

zij ∈ {0, 1} ∀i ∈ I , ∀j ∈ B

Extended formulation (MP)

min
∑︁

k∈K ,i∈I

z̄
k
i y

k − |I |

s.t.
∑︁
k∈K

x̄
k
i y

k = 1 ∀i ∈ I 𝜆i∑︁
k∈K

z̄
k
i y

k ≤ 2 ∀i ∈ I 𝜇i∑︁
k∈K

y
k ≤ |B| 𝜂

y
k ∈ B ∀k ∈ K
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Column generation (N)
The reduced cost of a variable yk is:

c̄k =
∑︁
i∈I

z̄ki −
∑︁
i∈I

𝜆i · x̄ki −
∑︁
i∈I

𝜇i · z̄ki − 𝜂

→ c̄k =
∑︁
i∈I

(1− 𝜇i )z̄
k
i −

∑︁
i∈I

𝜆i · x̄ki − 𝜂

and a pattern is feasible if∑︁
i∈I

di · x̄ki ≤ C

0 ≤ x̄ki ≤ zki ∀i ∈ I

z̄ki ∈ {0, 1} ∀i ∈ I

A Fractional Knapsack Problem with Penalties (FKPP)

Theorem (CC ’14)

An optimal FKPP solution always exists, containing at most one
fragmented item.
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Pricing Algorithm (N) - Idea

To solve the FKPPs:

∙ consider 0 fragmented items → a 0–1 KP

∙ consider 1 fragmented item, and choose it explicitly → use KP
recursion, and then fill optimally.
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Pricing Algorithm (N) - Details

min c̄k =
∑︁
i∈I

(1− 𝜇i )z̄
k
i −

∑︁
i∈I

𝜆i · x̄ki − 𝜂

s.t.
∑︁
i∈I

di · x̄ki ≤ C

0 ≤ x̄ki ≤ z̄ki ∀i ∈ I

z̄ki ∈ {0, 1} ∀i ∈ I

Pricing algorithm:

(a) no fragmented items: x̄ki = z̄ki

min c̄k =
∑︁
i∈I

(1− 𝜇i − 𝜆i )z̄
k
i − 𝜂

s.t.
∑︁
i∈I

di · z̄ki ≤ C

z̄ki ∈ {0, 1} ∀i ∈ I

(b) one fragmented item: for each i ∈ I
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Pricing Algorithm (N) - Details

min c̄k =
∑︁
i∈I

(1− 𝜇i )z̄
k
i −

∑︁
i∈I

𝜆i · x̄ki − 𝜂

s.t.
∑︁
i∈I

di · x̄ki ≤ C

0 ≤ x̄ki ≤ z̄ki ∀i ∈ I

z̄ki ∈ {0, 1} ∀i ∈ I

Pricing algorithm:

(a) no fragmented items: x̄ki = z̄ki → c̄k =
∑︀

i∈I (1− 𝜇i − 𝜆i )z̄
k
i − 𝜂

(b) one fragmented item: for each i ∈ I

∙ assume i is the (unique) fragmented item (x̄kj = z̄kj ∀j ∈ I : j ̸= i)
∙ solve a binary KP using traditional DP recursion, skipping i , and

obtain fc∀c = 0 . . .C
∙ take

min
c=1...di −1

{︂
fC−c − 𝜆i · c · 1

di

}︂
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Structure of a solution

Observation: CC ’15 Once items are organized in chains, a feasible
fm-BPP-IF solution (if any exists) can be found by solving a Bin Packing
feasibility problem ⇒ search for optimal packing in chains instead of
optimal packing in bins.
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BPP-IF models

Compact model

min
∑︁

i∈I ,j∈B

zij − |I |

s.t.
∑︁
j∈B

xij = 1 ∀i ∈ I

∑︁
i∈I

dixij ≤ C ∀j ∈ B

xij ≤ zij ∀i ∈ I , ∀j ∈ B

0 ≤ xij ≤ 1 ∀i ∈ I , ∀j ∈ B

zij ∈ {0, 1} ∀i ∈ I , ∀j ∈ B

Chain based model

min
∑︁
k∈K

lk − bk

s.t.
∑︁
k∈K

zik = 1 ∀i ∈ I

∑︁
i∈I

dizik ≤ C · lk ∀k ∈ K

∑︁
k∈K

lk ≤ |B|

bk ≤ lk ∀k ∈ K

bk ∈ {0, 1}, lk ∈ Z+ ∀k ∈ K

zij ∈ {0, 1} ∀i ∈ I , ∀k ∈ K



BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

BPP-IF models

Chain-based model

min
∑︁
k∈K

lk − bk

s.t.
∑︁
k∈K

zik = 1 ∀i ∈ I

∑︁
i∈I

dizik ≤ C · lk ∀k ∈ K

∑︁
k∈K

lk ≤ |B|

bk ≤ lk ∀k ∈ K

bk , lk ∈ Z+ ∀k ∈ K

zij ∈ {0, 1} ∀i ∈ I ,∀k ∈ K

Chain-based extended
formulation (MP)

min
∑︁

p∈Ω,i∈I

(̄lp − 1) · yp

s.t.
∑︁
p∈Ω

z̄
p
i · yp = 1 ∀i ∈ I 𝜆i

∑︁
p∈Ω

l̄
p · yp ≤ |B| 𝜂

y
p ∈ B ∀p ∈ Ω
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Column generation (C)
The reduced cost of a variable yp is:

c̄p = (̄lp − 1) −
∑︁
i∈I

𝜆i · z̄pi + l̄p · 𝜂

→ c̄p = −1 + (1 + 𝜂) · l̄p −
∑︁
i∈I

𝜆i · z̄pi

and a pattern is feasible if∑︁
i∈I

di · z̄pi ≤ C · l̄p

z̄pi ∈ {0, 1} ∀i ∈ I

l̄p ∈ Z+

Observation

When l̄p is fixed, the pricing problem is a 0–1 Knapsack Problem (KP)

→ a Variable Size 0–1 Knapsack Problem (VSKP)
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Pricing algorithm

Observation

The VSKP can be solved in pseudo-linear time.

Exact algorithm:

∙ let U (resp. L) be an upper (resp. lower) bound on the length of a
chain;

∙ sort I ;

∙ let f (n, c) be opt. KP subproblem solution;

∙ compute f (|I |,U · C ) using KP Dynamic Programming recursion;

∙ for ℓ = L . . .U set 𝜋ℓ = (1 + 𝜂) · l̄p − f (|I |,C · ℓ);
∙ select l̄p = argminℓ=L...U𝜋ℓ;

∙ select z̄pi accordingly.
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Exact Algortihm (C)

Tree search simplifies as well:

∙ elect leading items, one for each chain;

∙ fix/forbid assignments to specific chains;

∙ leading items make chains asymmetric.
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Experimental setting

Implementation:

∙ Algorithms coded in C++

∙ SCIP 3 as framework for branch-and-price

∙ IBM ILOG CPLEX 12.3 for LP subproblems

∙ Hardware: 3.0GHz CPU, 4GB RAM

Dataset 0: industrial instances.
Competitors:

∙ IBM ILOG CPLEX 12.3 ILP Solver

∙ Exact Algo (Nat)

∙ Exact Algo (Chain)
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Overall comparison

∙ Dataset 1 (180 instances, different size distrib., different available
cap.)

∙ Number of inst. solved to proven optimality within 1h CPU time
(fm):

|I | CPLEX (N) CPLEX (C) Exact Algo (N) Exact Algo (C)
10 56 60 60 60
50 37 58 57 60
100 20 33 36 60

∙ Number of inst. solved to proven optimality within 1h CPU time
(bm):

|I | CPLEX (N) CPLEX (C) Exact Algo (C)
10 11 15 60
50 10 10 60
100 0 4 60

∙ Exact Algo (C) computing time: always less than 1 minute.
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Stress test

Dataset 2 (360 instances, different size distrib., different available cap.)
Bin Minimization
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Conclusions

Main conclusions:

∙ branch-and-price much more effective than CPLEX

∙ fragmentation minimization harder than bin minimization

∙ 1%C size increasing yields up to 4% cost increase in our (bm)
instances (and scales linearly)

∙ for branch-and-price size increasing is not substantially harder to
handle

In BPPIFs, be ready to pay an additional computing effort at a pricing
stage, but avoid fractional decisions at a master stage.
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Follow-up

Lately we:

∙ extended to variable size and cost packing

∙ applied similar ideas to bike sharing systems

Currently

Research on shortest path problems for hybrid vehicles.
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