
BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Solving Bin Packing Problems with Fragmentation

M. Casazza, 1 A. Ceselli 2

Università degli Studi di Milano
Dipartimento di Informatica

1Currently at LIP6 – Univ. Pierre et Marie Curie – Paris 6
2Partially funded by Regione Lombardia – Fondazione Cariplo,

grant agreement no. 2015-0717, project REDNEAT.

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Bin Packing Problems
Classical Bin Packing Problem (BPP):

∙ NP-HARD

∙ well studied in the OR community

∙ models many problems in logistics ...

BPP with item fragmentation (BPP-IF): items can be split at a price.

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Bin Packing Problems
Classical Bin Packing Problem (BPP):

∙ NP-HARD

∙ well studied in the OR community

∙ models many problems in logistics ...

BPP with item fragmentation (BPP-IF): items can be split at a price.

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

BPP-IF in telecommunications

Tactical issues in (consolidated) routing:

∙ channels: (path, frequency, timeslot) tuples ⇒ bin

∙ data transfer requests of different carriers ⇒ items

∙ splitting requests consumes energy ⇒ split items as few as possible

Initial attempts with CPLEX: timeout on instances with 10 or 20 items.
Spoiler:

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

BPP-IF in telecommunications

Tactical issues in (consolidated) routing:

∙ channels: (path, frequency, timeslot) tuples ⇒ bin

∙ data transfer requests of different carriers ⇒ items

∙ splitting requests consumes energy ⇒ split items as few as possible

Initial attempts with CPLEX: timeout on instances with 10 or 20 items.
Spoiler: branch-and-price could tackle instances with up to 1000 items.

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

BPP-IF in transportation

Split Forbidden Split Allowed
Routing costs VRP Split Delivery VRP

No routing costs BPP BPP with Item Fragm.

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Literature Review

Main BPP-IF variants

∙ Bin Minimization; Fragmentations minimization;

∙ Size Preserving; Size Increasing (weight overhead for each split)

Approximation algorithms and applications:

∙ N. Menakerman, R. Rom., Bin packing with item fragmentation.
LNCS, proc. of the 7th WADS (2001)

∙ H. Shachnai, T. Tamir, O. Yehezkely, Approximation schemes for
packing with item fragmentation. Theory of Comp. Sys. 43 (2008)

∙ L. Epstein, A. Levin, R. van Stee, Approximation schemes for
packing splittable items with cardinality constraints. Algorithmica 62
(2012).

∙ B. Lecun, T. Mautor, F. Quessette, M.A. Weisser Bin packing with
fragmentable items: presentation and approximations. Theoretical
Computer Science 602 (2015)

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Literature Review

Main BPP-IF variants

∙ Bin Minimization; Fragmentations minimization;

∙ Size Preserving; Size Increasing (weight overhead for each split)

Approximation algorithms and applications:

∙ N. Menakerman, R. Rom., Bin packing with item fragmentation.
LNCS, proc. of the 7th WADS (2001)

∙ H. Shachnai, T. Tamir, O. Yehezkely, Approximation schemes for
packing with item fragmentation. Theory of Comp. Sys. 43 (2008)

∙ L. Epstein, A. Levin, R. van Stee, Approximation schemes for
packing splittable items with cardinality constraints. Algorithmica 62
(2012).

∙ B. Lecun, T. Mautor, F. Quessette, M.A. Weisser Bin packing with
fragmentable items: presentation and approximations. Theoretical
Computer Science 602 (2015)

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Results overview:

Our approach:

∙ try to understand which features make the problem so difficult

∙ design math. prog. algorithms for solving BPPIFs

Main results

∙ A common framework for modeling and solving BPPIFs (bin or
fragmentation minimization, size preserving or increasing)

∙ A characterization of particular subsets of optimal solutions

∙ Exact algorithms whose computing time scales very well in practice

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Structure of a solution

BPP-IF Graph

Given a BPP-IF solution, build a BPP-IF graph:

∙ one vertex for each bin

∙ one edge for each pair of bins with fragments of the same item

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Structure of a solution

Primitive solutions

Def. primitive solution (MR ’01):

∙ each item is split in at most two fragments

∙ each bin contains at most two fragmented items

∙ → the BPP-IF graph is a set of paths

∙ def: items beloging to bins of the same path form a chain.

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Structure of a solution

Primitive solutions

Def. primitive solution (MR ’01):

∙ each item is split in at most two fragments

∙ each bin contains at most two fragmented items

∙ → the BPP-IF graph is a set of paths

∙ def: items beloging to bins of the same path form a chain.

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Structure of a BPP-IF solution

Theorem (MR ’02)

There always exists a b.m. BPP-IF optimal solution which is primitive.

Theorem (CC ’13)

There always exists a f.m. BPP-IF optimal solution which is primitive.

Theorem (MR ’01 - CC ’13)

given the set of items belonging to each chain in a primitive solution, a
full BPP-IF solution can be found by running Next Fit procedures.

Theorem (CC ’13)

There always exists an (optimal) primitive dominant solution, in which
the split items of each chain of k bins are the k − 1 items of maximum
weight belonging to that chain;

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Structure of a BPP-IF solution

Theorem (MR ’02)

There always exists a b.m. BPP-IF optimal solution which is primitive.

Theorem (CC ’13)

There always exists a f.m. BPP-IF optimal solution which is primitive.

Theorem (MR ’01 - CC ’13)

given the set of items belonging to each chain in a primitive solution, a
full BPP-IF solution can be found by running Next Fit procedures.

Theorem (CC ’13)

There always exists an (optimal) primitive dominant solution, in which
the split items of each chain of k bins are the k − 1 items of maximum
weight belonging to that chain;

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Overall algorithm (N)
Branch-and-bound, exploiting:

∙ bounding: compute valid lower bounds

∙ approximation: compute upper bounds

∙ branching: (a) fix split / non split items; (b) fix pairs of split items
for the same bin; (c) assign items to bins whose pairs of split items
are fixed

∙ pruning: cutoff partial solutions, retaining only primitive dominant
ones

∙ feasibility checks: nec. conditions and constraint programming

∙ acceleration techniques: dual cuts (specialization of Irnich and
Gschwind ’16)

Feasibility checks:

∙ residual capacity after chain fixing

∙ “large bin” capacity check

∙ multiple-subset-sum chain capacity check

∙ no split-items subset-sum capacity check

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Overall algorithm (N)
Branch-and-bound, exploiting:

∙ bounding: compute valid lower bounds

∙ approximation: compute upper bounds

∙ branching: (a) fix split / non split items; (b) fix pairs of split items
for the same bin; (c) assign items to bins whose pairs of split items
are fixed

∙ pruning: cutoff partial solutions, retaining only primitive dominant
ones

∙ feasibility checks: nec. conditions and constraint programming

∙ acceleration techniques: dual cuts (specialization of Irnich and
Gschwind ’16)

Feasibility checks:

∙ residual capacity after chain fixing

∙ “large bin” capacity check

∙ multiple-subset-sum chain capacity check

∙ no split-items subset-sum capacity check

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Overall algorithm (N)
Branch-and-bound, exploiting:

∙ bounding: compute valid lower bounds

∙ approximation: compute upper bounds

∙ branching: (a) fix split / non split items; (b) fix pairs of split
items for the same bin; (c) assign items to bins whose pairs of
split items are fixed

∙ pruning: cutoff partial solutions, retaining only primitive dominant
ones

∙ feasibility checks: nec. conditions and constraint programming

∙ acceleration techniques: dual cuts (specialization of Irnich and
Gschwind ’16)

Feasibility checks:

∙ residual capacity after chain fixing

∙ “large bin” capacity check

∙ multiple-subset-sum chain capacity check

∙ no split-items subset-sum capacity check

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Overall algorithm (N)
Branch-and-bound, exploiting:

∙ bounding: compute valid lower bounds

∙ approximation: compute upper bounds

∙ branching: (a) fix split / non split items; (b) fix pairs of split items
for the same bin; (c) assign items to bins whose pairs of split items
are fixed

∙ pruning: cutoff partial solutions, retaining only primitive
dominant ones

∙ feasibility checks: nec. conditions and constraint programming

∙ acceleration techniques: dual cuts (specialization of Irnich and
Gschwind ’16)

Feasibility checks:

∙ residual capacity after chain fixing

∙ “large bin” capacity check

∙ multiple-subset-sum chain capacity check

∙ no split-items subset-sum capacity check

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Overall algorithm (N)
Branch-and-bound, exploiting:

∙ bounding: compute valid lower bounds

∙ approximation: compute upper bounds

∙ branching: (a) fix split / non split items; (b) fix pairs of split items
for the same bin; (c) assign items to bins whose pairs of split items
are fixed

∙ pruning: cutoff partial solutions, retaining only primitive dominant
ones

∙ feasibility checks: nec. conditions and constraint programming

∙ acceleration techniques: dual cuts (specialization of Irnich and
Gschwind ’16)

Feasibility checks:

∙ residual capacity after chain fixing

∙ “large bin” capacity check

∙ multiple-subset-sum chain capacity check

∙ no split-items subset-sum capacity check

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Overall algorithm (N)
Branch-and-bound, exploiting:

∙ bounding: compute valid lower bounds

∙ approximation: compute upper bounds

∙ branching: (a) fix split / non split items; (b) fix pairs of split items
for the same bin; (c) assign items to bins whose pairs of split items
are fixed

∙ pruning: cutoff partial solutions, retaining only primitive dominant
ones

∙ feasibility checks: nec. conditions and constraint programming

∙ acceleration techniques: dual cuts (specialization of Irnich and
Gschwind ’16)

Feasibility checks:

∙ residual capacity after chain fixing

∙ “large bin” capacity check

∙ multiple-subset-sum chain capacity check

∙ no split-items subset-sum capacity check

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Overall algorithm (N)
Branch-and-bound, exploiting:

∙ bounding: compute valid lower bounds

∙ approximation: compute upper bounds

∙ branching: (a) fix split / non split items; (b) fix pairs of split items
for the same bin; (c) assign items to bins whose pairs of split items
are fixed

∙ pruning: cutoff partial solutions, retaining only primitive dominant
ones

∙ feasibility checks: nec. conditions and constraint programming

∙ acceleration techniques: dual cuts (specialization of Irnich and
Gschwind ’16)

Feasibility checks:

∙ residual capacity after chain fixing

∙ “large bin” capacity check

∙ multiple-subset-sum chain capacity check

∙ no split-items subset-sum capacity check

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Focus: computing valid lower bounds (N)

Observation: CC ’14 In primitive solutions, minimizing the number of
fragments, fragmentations or fragmented items is equivalent.

Compact model

min
∑︁

i∈I ,j∈B

zij − |I |

s.t.
∑︁
j∈B

xij = 1 ∀i ∈ I

∑︁
i∈I

dixij ≤ C ∀j ∈ B

xij ≤ zij ∀i ∈ I , ∀j ∈ B

0 ≤ xij ≤ 1 ∀i ∈ I , ∀j ∈ B

zij ∈ {0, 1} ∀i ∈ I , ∀j ∈ B

Extended formulation (MP)

min
∑︁

k∈K ,i∈I

z̄
k
i y

k − |I |

s.t.
∑︁
k∈K

x̄
k
i y

k = 1 ∀i ∈ I 𝜆i∑︁
k∈K

z̄
k
i y

k ≤ 2 ∀i ∈ I 𝜇i∑︁
k∈K

y
k ≤ |B| 𝜂

y
k ∈ B ∀k ∈ K

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Focus: computing valid lower bounds (N)

Observation: CC ’14 In primitive solutions, minimizing the number of
fragments, fragmentations or fragmented items is equivalent.

Compact model

min
∑︁

i∈I ,j∈B

zij − |I |

s.t.
∑︁
j∈B

xij = 1 ∀i ∈ I

∑︁
i∈I

dixij ≤ C ∀j ∈ B

xij ≤ zij ∀i ∈ I , ∀j ∈ B

0 ≤ xij ≤ 1 ∀i ∈ I , ∀j ∈ B

zij ∈ {0, 1} ∀i ∈ I , ∀j ∈ B

Extended formulation (MP)

min
∑︁

k∈K ,i∈I

z̄
k
i y

k − |I |

s.t.
∑︁
k∈K

x̄
k
i y

k = 1 ∀i ∈ I 𝜆i∑︁
k∈K

z̄
k
i y

k ≤ 2 ∀i ∈ I 𝜇i∑︁
k∈K

y
k ≤ |B| 𝜂

0 ≤ y
k ≤ 1 ∀k ∈ K

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Column generation (N)
The reduced cost of a variable yk is:

c̄k =
∑︁
i∈I

z̄ki −
∑︁
i∈I

𝜆i · x̄ki −
∑︁
i∈I

𝜇i · z̄ki − 𝜂

→ c̄k =
∑︁
i∈I

(1− 𝜇i)z̄
k
i −

∑︁
i∈I

𝜆i · x̄ki − 𝜂

and a pattern is feasible if∑︁
i∈I

di · x̄ki ≤ C

0 ≤ x̄ki ≤ zki ∀i ∈ I

z̄ki ∈ {0, 1} ∀i ∈ I

A Fractional Knapsack Problem with Penalties (FKPP)

Theorem (CC ’14)

An optimal FKPP solution always exists, containing at most one
fragmented item.

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Pricing Algorithm (N) - Idea

To solve the FKPPs:

∙ consider 0 fragmented items → a 0–1 KP

∙ consider 1 fragmented item, and choose it explicitly → use KP
recursion, and then fill optimally.

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Pricing Algorithm (N) - Details

min c̄k =
∑︁
i∈I

(1− 𝜇i)z̄
k
i −

∑︁
i∈I

𝜆i · x̄ki − 𝜂

s.t.
∑︁
i∈I

di · x̄ki ≤ C

0 ≤ x̄ki ≤ z̄ki ∀i ∈ I

z̄ki ∈ {0, 1} ∀i ∈ I

Pricing algorithm:

(a) no fragmented items: x̄ki = z̄ki

min c̄k =
∑︁
i∈I

(1− 𝜇i − 𝜆i)z̄
k
i − 𝜂

s.t.
∑︁
i∈I

di · z̄ki ≤ C

z̄ki ∈ {0, 1} ∀i ∈ I

(b) one fragmented item: for each i ∈ I

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Pricing Algorithm (N) - Details

min c̄k =
∑︁
i∈I

(1− 𝜇i)z̄
k
i −

∑︁
i∈I

𝜆i · x̄ki − 𝜂

s.t.
∑︁
i∈I

di · x̄ki ≤ C

0 ≤ x̄ki ≤ z̄ki ∀i ∈ I

z̄ki ∈ {0, 1} ∀i ∈ I

Pricing algorithm:

(a) no fragmented items: x̄ki = z̄ki → c̄k =
∑︀

i∈I (1− 𝜇i − 𝜆i)z̄
k
i − 𝜂

(b) one fragmented item: for each i ∈ I

∙ assume i is the (unique) fragmented item (x̄kj = z̄kj ∀j ∈ I : j ̸= i)
∙ solve a binary KP using traditional DP recursion, skipping i , and

obtain fc∀c = 0 . . .C
∙ take

min
c=1...di −1

{︂
fC−c − 𝜆i · c · 1

di

}︂

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Structure of a solution

Observation: CC ’15 Once items are organized in chains, a feasible
fm-BPP-IF solution (if any exists) can be found by solving a Bin Packing
feasibility problem ⇒ search for optimal packing in chains instead of
optimal packing in bins.

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

BPP-IF models

Compact model

min
∑︁

i∈I ,j∈B

zij − |I |

s.t.
∑︁
j∈B

xij = 1 ∀i ∈ I

∑︁
i∈I

dixij ≤ C ∀j ∈ B

xij ≤ zij ∀i ∈ I , ∀j ∈ B

0 ≤ xij ≤ 1 ∀i ∈ I , ∀j ∈ B

zij ∈ {0, 1} ∀i ∈ I , ∀j ∈ B

Chain based model

min
∑︁
k∈K

lk − bk

s.t.
∑︁
k∈K

zik = 1 ∀i ∈ I

∑︁
i∈I

dizik ≤ C · lk ∀k ∈ K

∑︁
k∈K

lk ≤ |B|

bk ≤ lk ∀k ∈ K

bk ∈ {0, 1}, lk ∈ Z+ ∀k ∈ K

zij ∈ {0, 1} ∀i ∈ I , ∀k ∈ K

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

BPP-IF models

Chain-based model

min
∑︁
k∈K

lk − bk

s.t.
∑︁
k∈K

zik = 1 ∀i ∈ I

∑︁
i∈I

dizik ≤ C · lk ∀k ∈ K

∑︁
k∈K

lk ≤ |B|

bk ≤ lk ∀k ∈ K

bk , lk ∈ Z+ ∀k ∈ K

zij ∈ {0, 1} ∀i ∈ I ,∀k ∈ K

Chain-based extended
formulation (MP)

min
∑︁

p∈Ω,i∈I

(̄lp − 1) · yp

s.t.
∑︁
p∈Ω

z̄
p
i · yp = 1 ∀i ∈ I 𝜆i

∑︁
p∈Ω

l̄
p · yp ≤ |B| 𝜂

y
p ∈ B ∀p ∈ Ω

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

BPP-IF models

Chain-based model

min
∑︁
k∈K

lk − bk

s.t.
∑︁
k∈K

zik = 1 ∀i ∈ I

∑︁
i∈I

dizik ≤ C · lk ∀k ∈ K

∑︁
k∈K

lk ≤ |B|

bk ≤ lk ∀k ∈ K

bk , lk ∈ Z+ ∀k ∈ K

zij ∈ {0, 1} ∀i ∈ I ,∀k ∈ K

Chain-based extended
formulation (MP)

min
∑︁

p∈Ω,i∈I

(̄lp − 1) · yp

s.t.
∑︁
p∈Ω

z̄
p
i · yp = 1 ∀i ∈ I 𝜆i

∑︁
p∈Ω

l̄
p · yp ≤ |B| 𝜂

0 ≤ y
p ≤ 1 ∀p ∈ Ω

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Column generation (C)
The reduced cost of a variable yp is:

c̄p = (̄lp − 1) −
∑︁
i∈I

𝜆i · z̄pi + l̄p · 𝜂

→ c̄p = −1 + (1 + 𝜂) · l̄p −
∑︁
i∈I

𝜆i · z̄pi

and a pattern is feasible if∑︁
i∈I

di · z̄pi ≤ C · l̄p

z̄pi ∈ {0, 1} ∀i ∈ I

l̄p ∈ Z+

Observation

When l̄p is fixed, the pricing problem is a 0–1 Knapsack Problem (KP)

→ a Variable Size 0–1 Knapsack Problem (VSKP)

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Pricing algorithm

Observation

The VSKP can be solved in pseudo-linear time.

Exact algorithm:

∙ let U (resp. L) be an upper (resp. lower) bound on the length of a
chain;

∙ sort I ;

∙ let f (n, c) be opt. KP subproblem solution;

∙ compute f (|I |,U · C) using KP Dynamic Programming recursion;

∙ for ℓ = L . . .U set 𝜋ℓ = (1 + 𝜂) · l̄p − f (|I |,C · ℓ);
∙ select l̄p = argminℓ=L...U𝜋ℓ;

∙ select z̄pi accordingly.

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Exact Algortihm (C)

Tree search simplifies as well:

∙ elect leading items, one for each chain;

∙ fix/forbid assignments to specific chains;

∙ leading items make chains asymmetric.

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Experimental setting

Implementation:

∙ Algorithms coded in C++

∙ SCIP 3 as framework for branch-and-price

∙ IBM ILOG CPLEX 12.3 for LP subproblems

∙ Hardware: 3.0GHz CPU, 4GB RAM

Dataset 0: industrial instances.
Competitors:

∙ IBM ILOG CPLEX 12.3 ILP Solver

∙ Exact Algo (Nat)

∙ Exact Algo (Chain)

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Overall comparison

∙ Dataset 1 (180 instances, different size distrib., different available
cap.)

∙ Number of inst. solved to proven optimality within 1h CPU time
(fm):

|I | CPLEX (N) CPLEX (C) Exact Algo (N) Exact Algo (C)
10 56 60 60 60
50 37 58 57 60
100 20 33 36 60

∙ Number of inst. solved to proven optimality within 1h CPU time
(bm):

|I | CPLEX (N) CPLEX (C) Exact Algo (C)
10 11 15 60
50 10 10 60
100 0 4 60

∙ Exact Algo (C) computing time: always less than 1 minute.

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Stress test

Dataset 2 (360 instances, different size distrib., different available cap.)
Bin Minimization

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Conclusions

Main conclusions:

∙ branch-and-price much more effective than CPLEX

∙ fragmentation minimization harder than bin minimization

∙ 1%C size increasing yields up to 4% cost increase in our (bm)
instances (and scales linearly)

∙ for branch-and-price size increasing is not substantially harder to
handle

In BPPIFs, be ready to pay an additional computing effort at a pricing
stage, but avoid fractional decisions at a master stage.

BPPs with fragmentation Theoretical analysis Models and Algorithms Experimental analysis Conclusions and perspectives

Follow-up

Lately we:

∙ extended to variable size and cost packing

∙ applied similar ideas to bike sharing systems

Currently

Research on shortest path problems for hybrid vehicles.

	BPPs with fragmentation
	Introduction
	Literature review

	Theoretical analysis
	Theoretical analysis

	Models and Algorithms
	Natural Models and algos
	Chain Models and algos

	Experimental analysis
	experiments

	Conclusions and perspectives
	Follow-up

