Simultaneous Column-and-Row Generation FOR Solving Large-Scale Linear Programs with Column-Dependent-Rows

İbrahim Muter

CIRRELT and HEC Montreal

with
Ş. İiker Birbil and Kerem Bülbül
Sabancı University, Istanbul, TURKEY

INTRODUCTION

Main Motivation
Contributions

Column-Dependent-Rows Problems
Generic Mathematical Model
Assumptions

Proposed Solution Method
y-pricing subproblem (y-PSP)
x-pricing subproblem (x-PSP)
Row-Generating Pricing Subproblem

Conclusions and Future Research Directions

Main Motivation: Column-and-Row Generation

Column(s) with

negative reduced cost(s)?

Main Motivation: Column-and-Row Generation

Main Motivation: Column-Dependent Rows (CDR) Problems

Main Motivation: Column-Dependent Rows (CDR) Problems

- Primal feasibility \checkmark ? \times ?

Main Motivation: Column-Dependent Rows (CDR) Problems

- Primal feasibility \checkmark ? \times ?
- Dual feasibility \checkmark ? x ?

Main Motivation: Column-Dependent Rows (CDR) Problems

- Primal feasibility \checkmark ? \times ?
- Dual feasibility \checkmark ? x ?
- Complementary slackness \checkmark ? \times ?

Main Motivation: An Example

A set covering formulation, where the binary variable y_{k} is set to 1 , if column k is selected. The parameters f_{k} and f_{l} are the individual contributions from columns k and l, whereas the parameter $f_{k l}$ captures the cross-effects of having columns k and l simultaneously in the solution. That is, in the objective function we have

$$
\cdots+f_{k} y_{k}+f_{l} y_{l}+f_{k l} y_{k} y_{l}+\cdots
$$

A common linearization:
minimize

$$
\cdots+f_{k} y_{k}+f_{l} y_{l}+f_{k l} x_{k l}+\cdots
$$

subject to

$$
\begin{aligned}
& y_{k}+y_{l}-x_{k l} \leq 1, \quad y_{k}-x_{k l} \geq 0, \quad y_{l}-x_{k l} \geq 0, \\
& 0 \leq y_{k}, y_{l}, x_{k l} \leq 1 .
\end{aligned}
$$

Main Motivation: An Example

A set covering formulation, where the binary variable y_{k} is set to 1 , if column k is selected. The parameters f_{k} and f_{l} are the individual contributions from columns k and l, whereas the parameter $f_{k l}$ captures the cross-effects of having columns k and l simultaneously in the solution. That is, in the objective function we have

$$
\cdots+f_{k} y_{k}+f_{l} y_{l}+f_{k l} y_{k} y_{l}+\cdots
$$

A common linearization:
minimize

$$
\cdots+f_{k} y_{k}+f_{l} y_{l}+f_{k l} x_{k l}+\cdots
$$

subject to

$$
\begin{aligned}
& y_{k}+y_{l}-x_{k l} \leq 1, \quad y_{k}-x_{k l} \geq 0, \quad y_{l}-x_{k l} \geq 0, \\
& 0 \leq y_{k}, y_{l}, x_{k l} \leq 1 .
\end{aligned}
$$

Contributions

Contributions

- The problems that we refer to as CDR-problems are formulated.

Contributions

- The problems that we refer to as CDR-problems are formulated.
- A set of assumptions charactarizing CDR-problems are defined.

Contributions

- The problems that we refer to as CDR-problems are formulated.
- A set of assumptions charactarizing CDR-problems are defined.
- A generic column-and-row generation algorithm for CDR-problems is presented. The optimality of this algorithm is proved.

Contributions

- The problems that we refer to as CDR-problems are formulated.
- A set of assumptions charactarizing CDR-problems are defined.
- A generic column-and-row generation algorithm for CDR-problems is presented. The optimality of this algorithm is proved.
- The proposed approach is applied to the quadratic set covering, the multi-stage cutting stock and the time-constrained routing problems.

CDR Problems: Generic Mathematical Model

(MP) minimize
subject to

$$
\begin{gather*}
\sum_{k \in K} c_{k} y_{k}+\quad \sum_{n \in N} d_{n} x_{n} \\
\sum_{k \in K} A_{j k} y_{k} \\
\sum_{n \in N} B_{m n} x_{n} \geq b_{m}, \quad m \in M \\
\sum_{k \in K} C_{i k} y_{k}+\quad \sum_{n \in N} D_{i n} x_{n} \geq r_{i}, \quad i \in I \tag{MP-x}\\
y_{k} \geq 0, k \in K, \quad x_{n} \geq 0, n \in N \tag{MP-yx}
\end{gather*}
$$

Short Restricted Master Problem (SRMP)

minimize

$$
\begin{gathered}
\sum_{k \in \bar{K}} c_{k} y_{k}+\quad \sum_{n \in \bar{N}} d_{n} x_{n}, \\
\sum_{k \in \bar{K}} A_{j k} y_{k} \\
\geq a_{j}, \quad j \in J, \\
\sum_{n \in \bar{N}} B_{m n} x_{n} \geq b_{m}, \quad m \in M, \\
\sum_{k \in \bar{K}} C_{i k} y_{k}+\quad \sum_{n \in \bar{N}} D_{i n} x_{n} \geq r_{i}, \quad i \in I(\bar{K}, \bar{N}), \\
y_{k} \geq 0, k \in \bar{K}, \quad x_{n} \geq 0, n \in \bar{N},
\end{gathered}
$$

subject to

Short Restricted Master Problem (SRMP)

minimize

$$
\begin{gather*}
\sum_{k \in \bar{K}} c_{k} y_{k}+\quad \sum_{n \in \bar{N}} d_{n} x_{n}, \\
\sum_{k \in \bar{K}} A_{j k} y_{k} \\
\geq a_{j}, \quad j \in J, \\
\sum_{n \in \bar{N}} B_{m n} x_{n} \geq b_{m}, \quad m \in M, \tag{SRMP-x}\\
\sum_{k \in \bar{K}} C_{i k} y_{k}+\quad \sum_{n \in \bar{N}} D_{i n} x_{n} \geq r_{i}, \quad i \in I(\bar{K}, \bar{N}), \\
y_{k} \geq 0, k \in \bar{K}, \quad x_{n} \geq 0, n \in \bar{N},
\end{gather*}
$$

subject to
(SRMP-y)
(SRMP-yx)

- $I(\bar{K}, \bar{N}) \subset I$: the set of linking constraints formed by $\left\{y_{k} \mid k \in \bar{K}\right\}$, and $\left\{x_{n} \mid n \in \bar{N}\right\}$
- The set of rows is dependent on the set of variables.
- ($\left.S_{K} \subset(K \backslash \bar{K}), S_{N} \subset(N \backslash \bar{N})\right)$: the set of y and x variables to be added to the SRMP during the column generation phase.
- ($\left.S_{K} \subset(K \backslash \bar{K}), S_{N} \subset(N \backslash \bar{N})\right)$: the set of y and x variables to be added to the SRMP during the column generation phase.
- $\Delta\left(S_{K}, S_{N}\right)=I\left(\bar{K} \cup S_{K}, \bar{N} \cup S_{N}\right) \backslash I(\bar{K}, \bar{N})$: the new set of linking constraints induced by S_{K} and S_{N}
- ($\left.S_{K} \subset(K \backslash \bar{K}), S_{N} \subset(N \backslash \bar{N})\right)$: the set of y and x variables to be added to the SRMP during the column generation phase.
- $\Delta\left(S_{K}, S_{N}\right)=I\left(\bar{K} \cup S_{K}, \bar{N} \cup S_{N}\right) \backslash I(\bar{K}, \bar{N})$: the new set of linking constraints induced by S_{K} and S_{N}
- The restricted master problem grows both vertically and horizontally during column generation.

Problem Characterization

ASSUMPTION 1

The generation of a new set of variables $\left\{y_{k} \mid k \in S_{K}\right\}$ prompts the generation of a new set of variables $\left\{x_{n} \mid n \in S_{N}\left(S_{K}\right)\right\}$. Furthermore, a variable $x_{n^{\prime}}, n^{\prime} \in S_{N}\left(S_{K}\right)$, does not appear in any linking constraints other than those indexed by $\Delta\left(S_{K}\right)$ and introduced to the SRMP along with $\left\{y_{k} \mid k \in S_{K}\right\}$ and $\left\{x_{n} \mid n \in S_{N}\left(S_{K}\right)\right\}$.

Problem Characterization

ASSUMPTION 1

The generation of a new set of variables $\left\{y_{k} \mid k \in S_{K}\right\}$ prompts the generation of a new set of variables $\left\{x_{n} \mid n \in S_{N}\left(S_{K}\right)\right\}$. Furthermore, a variable $x_{n^{\prime}}, n^{\prime} \in S_{N}\left(S_{K}\right)$, does not appear in any linking constraints other than those indexed by $\Delta\left(S_{K}\right)$ and introduced to the SRMP along with $\left\{y_{k} \mid k \in S_{K}\right\}$ and $\left\{x_{n} \mid n \in S_{N}\left(S_{K}\right)\right\}$.

$$
\begin{array}{ll}
\operatorname{minimize} & \cdots+f_{k} y_{k}+f_{l} y_{l}+f_{k l} x_{k l}+\cdots \\
\text { subject to } & \cdots \\
& y_{k}+y_{l}-x_{k l} \leq 1, \quad y_{k}-x_{k l} \geq 0, \quad y_{l}-x_{k l} \geq 0 \\
& 0 \leq y_{k}, y_{l}, x_{k l} \leq 1
\end{array}
$$

Problem Characterization

ASSUMPTION 1

The generation of a new set of variables $\left\{y_{k} \mid k \in S_{K}\right\}$ prompts the generation of a new set of variables $\left\{x_{n} \mid n \in S_{N}\left(S_{K}\right)\right\}$. Furthermore, a variable $x_{n^{\prime}}, n^{\prime} \in S_{N}\left(S_{K}\right)$, does not appear in any linking constraints other than those indexed by $\Delta\left(S_{K}\right)$ and introduced to the SRMP along with $\left\{y_{k} \mid k \in S_{K}\right\}$ and $\left\{x_{n} \mid n \in S_{N}\left(S_{K}\right)\right\}$.

$$
\begin{array}{ll}
\operatorname{minimize} & \cdots+f_{k} y_{k}+f_{l} y_{l}+f_{k l} x_{k l}+\cdots \\
\text { subject to } & \cdots \\
& y_{k}+y_{l}-x_{k l} \leq 1, \quad y_{k}-x_{k l} \geq 0, \quad y_{l}-x_{k l} \geq 0 \\
& 0 \leq y_{k}, y_{l}, x_{k l} \leq 1
\end{array}
$$

Problem Characterization

ASSUMPTION 1

The generation of a new set of variables $\left\{y_{k} \mid k \in S_{K}\right\}$ prompts the generation of a new set of variables $\left\{x_{n} \mid n \in S_{N}\left(S_{K}\right)\right\}$. Furthermore, a variable $x_{n^{\prime}}, n^{\prime} \in S_{N}\left(S_{K}\right)$, does not appear in any linking constraints other than those indexed by $\Delta\left(S_{K}\right)$ and introduced to the SRMP along with $\left\{y_{k} \mid k \in S_{K}\right\}$ and $\left\{x_{n} \mid n \in S_{N}\left(S_{K}\right)\right\}$.

$$
\begin{array}{ll}
\operatorname{minimize} & \cdots+f_{k} y_{k}+f_{l} y_{l}+f_{k l} x_{k l}+\cdots \\
\text { subject to } & \cdots \\
& y_{k}+y_{l}-x_{k l} \leq 1, \quad y_{k}-x_{k l} \geq 0, \quad y_{l}-x_{k l} \geq 0 \\
& 0 \leq y_{k}, y_{l}, x_{k l} \leq 1
\end{array}
$$

Problem Characterization (CONT'D)

A minimal variable set is a set of y-variables that triggers the generation of a set of x-variables and the associated linking constraints in the sense of Assumption 1.

Problem Characterization (CONT'D)

A minimal variable set is a set of y-variables that triggers the generation of a set of x-variables and the associated linking constraints in the sense of Assumption 1.

AsSUMPTION 2

A linking constraint is redundant until all variables in at least one of the minimal variable sets associated with this linking constraint are added to the SRMP.
minimize

$$
\cdots+f_{k} y_{k}+f_{l} y_{l}+f_{k l} x_{k l}+\cdots
$$

subject to

$$
\begin{aligned}
& y_{k}+y_{l}-x_{k l} \leq 1, \quad y_{k}-x_{k l} \geq 0, \quad y_{l}-x_{k l} \geq 0 \\
& 0 \leq y_{k}, y_{l}, x_{k l} \leq 1
\end{aligned}
$$

Problem Characterization (CONT'D)

A minimal variable set is a set of y-variables that triggers the generation of a set of x-variables and the associated linking constraints in the sense of Assumption 1.

AsSUMPTION 2

A linking constraint is redundant until all variables in at least one of the minimal variable sets associated with this linking constraint are added to the SRMP.
minimize

$$
\cdots+f_{k} y_{k}+f_{l} y_{l}+f_{k l} x_{k l}+\cdots
$$

subject to

$$
\begin{aligned}
& y_{k}+y_{l}-x_{k l} \leq 1, \quad y_{k}-x_{k l} \geq 0, \quad y_{l}-x_{k l} \geq 0 \\
& 0 \leq y_{k}, y_{l}, x_{k l} \leq 1
\end{aligned}
$$

Problem Characterization (CONT'D)

ASSUMPTION 3

Let $\left\{y_{l} \mid l \in S_{K}\right\}$ be a minimal variable set that generates a set of linking constraints $\Delta\left(S_{K}\right)$ and a set of associated x-variables $\left\{x_{n} \mid n \in S_{N}\left(S_{K}\right)\right\}$. When the set of constraints $\Delta\left(S_{K}\right)$ is first introduced into the SRMP, then for each $k \in S_{K}$ there exists a constraint $i \in \Delta\left(S_{K}\right)$ of the form

$$
C_{i k} y_{k}+\sum_{n \in S_{N}\left(S_{K}\right)} D_{i n} x_{n} \geq 0,
$$

where $C_{i k}>0$ and $D_{i n}<0$ for all $n \in S_{N}\left(S_{K}\right)$.

Problem Characterization (CONT'D)

ASSUMPTION 3

Let $\left\{y_{l} \mid l \in S_{K}\right\}$ be a minimal variable set that generates a set of linking constraints $\Delta\left(S_{K}\right)$ and a set of associated x-variables $\left\{x_{n} \mid n \in S_{N}\left(S_{K}\right)\right\}$. When the set of constraints $\Delta\left(S_{K}\right)$ is first introduced into the SRMP, then for each $k \in S_{K}$ there exists a constraint $i \in \Delta\left(S_{K}\right)$ of the form

$$
C_{i k} y_{k}+\sum_{n \in S_{N}\left(S_{K}\right)} D_{i n} x_{n} \geq 0
$$

where $C_{i k}>0$ and $D_{i n}<0$ for all $n \in S_{N}\left(S_{K}\right)$.
minimize

$$
\cdots+f_{k} y_{k}+f_{l y} y_{l}+f_{k l} x_{k l}+\cdots
$$

subject to

$$
\begin{aligned}
& y_{k}+y_{l}-x_{k l} \leq 1, \quad y_{k}-x_{k l} \geq 0, \quad y_{l}-x_{k l} \geq 0 \\
& 0 \leq y_{k}, y_{l}, x_{k l} \leq 1
\end{aligned}
$$

Problem Characterization (CONT'D)

ASSUMPTION 3

Let $\left\{y_{l} \mid l \in S_{K}\right\}$ be a minimal variable set that generates a set of linking constraints $\Delta\left(S_{K}\right)$ and a set of associated x-variables $\left\{x_{n} \mid n \in S_{N}\left(S_{K}\right)\right\}$. When the set of constraints $\Delta\left(S_{K}\right)$ is first introduced into the SRMP, then for each $k \in S_{K}$ there exists a constraint $i \in \Delta\left(S_{K}\right)$ of the form

$$
C_{i k} y_{k}+\sum_{n \in S_{N}\left(S_{K}\right)} D_{i n} x_{n} \geq 0
$$

where $C_{i k}>0$ and $D_{i n}<0$ for all $n \in S_{N}\left(S_{K}\right)$.
minimize

$$
\cdots+f_{k} y_{k}+f_{l y} y_{l}+f_{k l} x_{k l}+\cdots
$$

subject to

$$
\begin{aligned}
& y_{k}+y_{l}-x_{k l} \leq 1, \quad y_{k}-x_{k l} \geq 0, \quad y_{l}-x_{k l} \geq 0, \\
& 0 \leq y_{k}, y_{l}, x_{k l} \leq 1 .
\end{aligned}
$$

Problem Characterization (CONT'D)

ASSUMPTION 3

Let $\left\{y_{l} \mid l \in S_{K}\right\}$ be a minimal variable set that generates a set of linking constraints $\Delta\left(S_{K}\right)$ and a set of associated x-variables $\left\{x_{n} \mid n \in S_{N}\left(S_{K}\right)\right\}$. When the set of constraints $\Delta\left(S_{K}\right)$ is first introduced into the SRMP, then for each $k \in S_{K}$ there exists a constraint $i \in \Delta\left(S_{K}\right)$ of the form

$$
C_{i k} y_{k}+\sum_{n \in S_{N}\left(S_{K}\right)} D_{i n} x_{n} \geq 0
$$

where $C_{i k}>0$ and $D_{i n}<0$ for all $n \in S_{N}\left(S_{K}\right)$.
minimize

$$
\cdots+f_{k} y_{k}+f_{l} y_{l}+f_{k l} x_{k l}+\cdots
$$

subject to

$$
\begin{aligned}
& y_{k}+y_{l}-x_{k l} \leq 1, \quad y_{k}-x_{k l} \geq 0, \quad y_{l}-x_{k l} \geq 0 \\
& 0 \leq y_{k}, y_{l}, x_{k l} \leq 1
\end{aligned}
$$

Some Example Problems

- Multi-Stage Cutting Stock Problem (Zak, 2002)
- P-Median Problem (Avella et al., 2007)
- Time-Constrained Routing Problem (Avella et al., 2006)
- Robust Crew Pairing Problem (Muter et al., 2010)
- Quadratic Set Covering Problem
- Multi-Commodity Capacitated Network Design Problem (Frangioni and Gendron, 2009)
- Integrated Airline Recovery Problem (S. J. Maher, 2 days ago)

Multi-Stage Cutting Stock (MSCS)

Multi-Stage Cutting Stock (MSCS)

Stock rolls

First
stage
cutting

Intermediate
rolls

Multi-Stage Cutting Stock (MSCS)

Stock rolls

First
stage
cutting

Intermediate
rolls

Second
stage
cutting

Finished rolls

Multi-Stage Cutting Stock (MSCS)

Stock rolls

First
stage cutting

Intermediate
rolls
Second
stage
cutting

Finished rolls

By using the minimum number of stock rolls satisfy the demand for finished rolls after cutting the rolls in two stages. Do not consume more intermediate rolls than produced.

MSCS Problem

minimize

$$
\sum_{k \in K} y_{k},
$$

subject to

$$
\begin{aligned}
& \sum_{n \in N} B_{m n} x_{n} \geq b_{m}, \quad m \in M, \\
& \sum_{k \in K} C_{i k} y_{k}+\quad \sum_{n \in N} D_{i n} x_{n} \geq 0, \quad i \in I, \\
& y_{k} \geq 0, k \in K, \quad x_{n} \geq 0, n \in N,
\end{aligned}
$$

- I : the set of intermediate rolls
- M : the set of finished rolls
- K : the set of cutting patterns for the first stage
- N : the set of cutting patterns for the second stage
- $D_{\text {in }}=-1$ if a cutting pattern n for the second stage is cut from the intermediate roll i

MSCS Problem: SRMP

minimize

$$
\begin{gathered}
\sum_{k \in \bar{K}} y_{k}, \\
\\
\sum_{k \in \bar{K}} C_{i k} y_{m n} x_{n} \geq b_{m}, \quad m \in M, \\
\sum_{n \in \bar{N}} D_{i n} x_{n} \geq 0, \quad i \in I(\bar{K}, \bar{N}), \\
y_{k} \geq 0, k \in \bar{K}, \quad x_{n} \geq 0, n \in \bar{N},
\end{gathered}
$$

subject to

Generic CDR Model: The Dual Problem

$$
\begin{array}{lc}
\text { maximize } & \sum_{j \in J} a_{j} u_{j}+\quad \sum_{m \in M} b_{m} v_{m}+\quad \sum_{i \in I} r_{i} w_{i}, \\
\text { subject to } \quad \sum_{j \in J} A_{j k} u_{j} & \sum_{i \in I} C_{i k} w_{i} \leq c_{k}, \quad k \in K, \\
\sum_{m \in M} B_{m n} v_{m}+\quad \sum_{i \in I} D_{i n} w_{i} \leq d_{n}, \quad n \in N, \\
& u_{j} \geq 0, j \in J, \quad v_{m} \geq 0, m \in M, \quad w_{i} \geq 0, i \in I,
\end{array}
$$

- y - and x-pricing subproblems
- row-generating pricing subproblem

Flowchart: Column-and-Row Generation

Y-PRICING SUBPROBLEM (Y-PSP)

- The objective is to determine a variable $y_{k}, k \in(K \backslash \bar{K})$ with a negative reduced cost.

$$
\zeta_{y}=\min _{k \in(K \backslash \bar{K})} \quad\left\{c_{k}-\sum_{j \in J} A_{j k} u_{j}-\sum_{i \in I(\bar{K}, \bar{N})} C_{i k} w_{i}\right\}
$$

Y-PRICING SUBPROBLEM (Y-PSP)

- The objective is to determine a variable $y_{k}, k \in(K \backslash \bar{K})$ with a negative reduced cost.

$$
\zeta_{y}=\min _{k \in(K \backslash \bar{K})} \quad\left\{c_{k}-\sum_{j \in J} A_{j k} u_{j}-\sum_{i \in I(\bar{K}, \bar{N})} C_{i k} w_{i}\right\}
$$

- The dual variables $\left\{u_{j} \mid j \in J\right\}$ and $\left\{w_{i} \mid i \in I(\bar{K}, \bar{N})\right\}$ are obtained from the optimal solution of the current SRMP.

Y-PRICING SUBPROBLEM (Y-PSP)

- The objective is to determine a variable $y_{k}, k \in(K \backslash \bar{K})$ with a negative reduced cost.

$$
\zeta_{y}=\min _{k \in(K \backslash \bar{K})} \quad\left\{c_{k}-\sum_{j \in J} A_{j k} u_{j}-\sum_{i \in I(\bar{K}, \bar{N})} C_{i k} w_{i}\right\}
$$

- The dual variables $\left\{u_{j} \mid j \in J\right\}$ and $\left\{w_{i} \mid i \in I(\bar{K}, \bar{N})\right\}$ are obtained from the optimal solution of the current SRMP.
- If ζ_{y} is nonnegative, we move to the next subproblem.

Y-PRICING SUBPROBLEM (Y-PSP)

- The objective is to determine a variable $y_{k}, k \in(K \backslash \bar{K})$ with a negative reduced cost.

$$
\zeta_{y}=\min _{k \in(K \backslash \bar{K})} \quad\left\{c_{k}-\sum_{j \in J} A_{j k} u_{j}-\sum_{i \in I(\bar{K}, \bar{N})} C_{i k} w_{i}\right\},
$$

- The dual variables $\left\{u_{j} \mid j \in J\right\}$ and $\left\{w_{i} \mid i \in I(\bar{K}, \bar{N})\right\}$ are obtained from the optimal solution of the current SRMP.
- If ζ_{y} is nonnegative, we move to the next subproblem.
- Otherwise, there exists y_{k} with $\bar{c}_{k}<0$, and SRMP grows by a single variable by setting $\bar{K} \leftarrow \bar{K} \cup\{k\}$.

Y-PRICING SUBPROBLEM (Y-PSP)

- The objective is to determine a variable $y_{k}, k \in(K \backslash \bar{K})$ with a negative reduced cost.

$$
\zeta_{y}=\min _{k \in(K \backslash \bar{K})} \quad\left\{c_{k}-\sum_{j \in J} A_{j k} u_{j}-\sum_{i \in I(\bar{K}, \bar{N})} C_{i k} w_{i}\right\},
$$

- The dual variables $\left\{u_{j} \mid j \in J\right\}$ and $\left\{w_{i} \mid i \in I(\bar{K}, \bar{N})\right\}$ are obtained from the optimal solution of the current SRMP.
- If ζ_{y} is nonnegative, we move to the next subproblem.
- Otherwise, there exists y_{k} with $\bar{c}_{k}<0$, and SRMP grows by a single variable by setting $\bar{K} \leftarrow \bar{K} \cup\{k\}$.
- MSCS problem: y-PSP generates a cutting pattern for the first stage that uses only the existing intermediate rolls.

X-PRICING SUBPROBLEM (X-PSP)

- $\Delta(\emptyset)=\emptyset$

$$
\zeta_{x}=\min _{n \in N_{\bar{K}}}\left\{d_{n}-\sum_{m \in M} B_{m n} v_{m}-\sum_{i \in I(\bar{K}, \bar{N})} D_{i n} w_{i}\right\},
$$

X-PRICING SUBPROBLEM (X-PSP)

- $\Delta(\emptyset)=\emptyset$

$$
\zeta_{x}=\min _{n \in N_{\bar{K}}}\left\{d_{n}-\sum_{m \in M} B_{m n} v_{m}-\sum_{i \in I(\bar{K}, \bar{N})} D_{i n} w_{i}\right\},
$$

- The dual variables $\left\{v_{m} \mid m \in M\right\}$ and $\left\{w_{i} \mid i \in I(\bar{K}, \bar{N})\right\}$ are retrieved from the optimal solution of the current SRMP.

X-PRICING SUBPROBLEM (X-PSP)

- $\Delta(\emptyset)=\emptyset$

$$
\zeta_{x}=\min _{n \in N_{\bar{K}}}\left\{d_{n}-\sum_{m \in M} B_{m n} v_{m}-\sum_{i \in I(\bar{K}, \bar{N})} D_{i n} w_{i}\right\},
$$

- The dual variables $\left\{v_{m} \mid m \in M\right\}$ and $\left\{w_{i} \mid i \in I(\bar{K}, \bar{N})\right\}$ are retrieved from the optimal solution of the current SRMP.
- $N_{\bar{K}}$ is the index set of all x-variables that may be induced by the set of variables $\left\{y_{k} \mid k \in \bar{K}\right\}$ in the current SRMP.

X-PRICING SUBPROBLEM (X-PSP)

- $\Delta(\emptyset)=\emptyset$

$$
\zeta_{x}=\min _{n \in N_{\bar{K}}}\left\{d_{n}-\sum_{m \in M} B_{m n} v_{m}-\sum_{i \in I(\bar{K}, \bar{N})} D_{i n} w_{i}\right\},
$$

- The dual variables $\left\{v_{m} \mid m \in M\right\}$ and $\left\{w_{i} \mid i \in I(\bar{K}, \bar{N})\right\}$ are retrieved from the optimal solution of the current SRMP.
- $N_{\bar{K}}$ is the index set of all x-variables that may be induced by the set of variables $\left\{y_{k} \mid k \in \bar{K}\right\}$ in the current SRMP.
- If $\zeta_{x}<0, \bar{N} \leftarrow \bar{N} \cup\{n\}$,

X-PRICING SUBPROBLEM (X-PSP)

- $\Delta(\emptyset)=\emptyset$

$$
\zeta_{x}=\min _{n \in N_{\bar{K}}}\left\{d_{n}-\sum_{m \in M} B_{m n} v_{m}-\sum_{i \in I(\bar{K}, \bar{N})} D_{i n} w_{i}\right\},
$$

- The dual variables $\left\{v_{m} \mid m \in M\right\}$ and $\left\{w_{i} \mid i \in I(\bar{K}, \bar{N})\right\}$ are retrieved from the optimal solution of the current SRMP.
- $N_{\bar{K}}$ is the index set of all x-variables that may be induced by the set of variables $\left\{y_{k} \mid k \in \bar{K}\right\}$ in the current SRMP.
- If $\zeta_{x}<0, \bar{N} \leftarrow \bar{N} \cup\{n\}$,
- Otherwise, the column-and-row generation algorithm continues with the appropriate subproblem.

X-PRICING SUBPROBLEM (X-PSP)

- $\Delta(\emptyset)=\emptyset$

$$
\zeta_{x}=\min _{n \in N_{\bar{K}}}\left\{d_{n}-\sum_{m \in M} B_{m n} v_{m}-\sum_{i \in I(\bar{K}, \bar{N})} D_{i n} w_{i}\right\},
$$

- The dual variables $\left\{v_{m} \mid m \in M\right\}$ and $\left\{w_{i} \mid i \in I(\bar{K}, \bar{N})\right\}$ are retrieved from the optimal solution of the current SRMP.
- $N_{\bar{K}}$ is the index set of all x-variables that may be induced by the set of variables $\left\{y_{k} \mid k \in \bar{K}\right\}$ in the current SRMP.
- If $\zeta_{x}<0, \bar{N} \leftarrow \bar{N} \cup\{n\}$,
- Otherwise, the column-and-row generation algorithm continues with the appropriate subproblem.
- In the MSCS problem, the x-PSP identifies cutting patterns for the second stage that only consume intermediate rolls that are produced by the cutting patterns for the first stage in the current SRMP.

Row-Generating PSP

Row-GEnERATING PSP

- Note that before invoking the row-generating PSP, no negatively priced variables exist with respect to the current set of constraints in the SRMP.

Row-Generating PSP

- Note that before invoking the row-generating PSP, no negatively priced variables exist with respect to the current set of constraints in the SRMP.
- The objective of this PSP is to identify new columns that price out favorably only after adding new linking constraints currently absent from the SRMP.

Row-Generating PSP

- Note that before invoking the row-generating PSP, no negatively priced variables exist with respect to the current set of constraints in the SRMP.
- The objective of this PSP is to identify new columns that price out favorably only after adding new linking constraints currently absent from the SRMP.
- The primary challenge here is to properly account for the values of the dual variables of the missing constraints, and thus be able to determine which linking constraints should be added to the SRMP together with a set of variables.

Row-Generating Pricing Subproblem (CONT’d)

- The optimal solution of the row-generating PSP is a family \mathcal{F}_{k} of index sets S_{K}^{k}.

Row-Generating Pricing Subproblem (COnt'd)

- The optimal solution of the row-generating PSP is a family \mathcal{F}_{k} of index sets S_{K}^{k}. For example in QSC problem, we have

$$
\mathcal{F}_{k}=\{\{k, l\},\{k, m\}\}, \quad \Sigma_{k}=\{k, l, m\}
$$

Row-Generating Pricing Subproblem (Cont'd)

- The optimal solution of the row-generating PSP is a family \mathcal{F}_{k} of index sets S_{K}^{k}. For example in QSC problem, we have

$$
\mathcal{F}_{k}=\{\{k, l\},\{k, m\}\}, \quad \Sigma_{k}=\{k, l, m\}
$$

- If the reduced cost of the variables y_{k} corresponding to the optimal family \mathcal{F}_{k} is negative, then SRMP grows both horizontally and vertically:

$$
\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N})) \leftarrow \operatorname{SRMP}\left(\bar{K} \cup \Sigma_{k}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)
$$

Row-Generating Pricing Subproblem (Cont'd)

- The optimal solution of the row-generating PSP is a family \mathcal{F}_{k} of index sets S_{K}^{k}. For example in QSC problem, we have

$$
\mathcal{F}_{k}=\{\{k, l\},\{k, m\}\}, \quad \Sigma_{k}=\{k, l, m\}
$$

- If the reduced cost of the variables y_{k} corresponding to the optimal family \mathcal{F}_{k} is negative, then SRMP grows both horizontally and vertically:

$$
\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N})) \leftarrow \operatorname{SRMP}\left(\bar{K} \cup \Sigma_{k}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)
$$

Row-Generating Pricing Subproblem (Cont'd)

- The optimal solution of the row-generating PSP is a family \mathcal{F}_{k} of index sets S_{K}^{k}. For example in QSC problem, we have

$$
\mathcal{F}_{k}=\{\{k, l\},\{k, m\}\}, \quad \Sigma_{k}=\{k, l, m\}
$$

- If the reduced cost of the variables y_{k} corresponding to the optimal family \mathcal{F}_{k} is negative, then SRMP grows both horizontally and vertically:

$$
\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N})) \leftarrow \operatorname{SRMP}\left(\bar{K} \cup \Sigma_{k}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)
$$

Row-Generating Pricing Subproblem (Cont'd)

- The optimal solution of the row-generating PSP is a family \mathcal{F}_{k} of index sets S_{K}^{k}. For example in QSC problem, we have

$$
\mathcal{F}_{k}=\{\{k, l\},\{k, m\}\}, \quad \Sigma_{k}=\{k, l, m\}
$$

- If the reduced cost of the variables y_{k} corresponding to the optimal family \mathcal{F}_{k} is negative, then SRMP grows both horizontally and vertically:

$$
\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N})) \leftarrow \operatorname{SRMP}\left(\bar{K} \cup \Sigma_{k}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)
$$

For any given y_{k}, an associated \mathcal{F}_{k}, and $S_{K}^{k} \in \mathcal{F}_{k}$, we have

$$
\bar{c}_{k}=c_{k}-\sum_{j \in J} A_{j k} u_{j}-\sum_{i \in I(\bar{K}, \bar{N})} C_{i k} w_{i}-\sum_{i \in \Delta\left(\Sigma_{k}\right)} C_{i k} w_{i}
$$

For any given y_{k}, an associated \mathcal{F}_{k}, and $S_{K}^{k} \in \mathcal{F}_{k}$, we have

$$
\begin{aligned}
& \bar{c}_{k}=c_{k}-\sum_{j \in J} A_{j k} u_{j}-\sum_{i \in I(\bar{K}, \bar{N})} C_{i k} w_{i}-\sum_{i \in \Delta\left(\Sigma_{k}\right)} C_{i k} w_{i}, \\
& \bar{d}_{n}=d_{n}-\sum_{m \in M} B_{m n} v_{m}-\sum_{i \in I(\bar{K}, \bar{N})} D_{i n} w_{i}-\sum_{i \in \Delta\left(\Sigma_{k}\right)} D_{i n} w_{i}, n \in S_{N}\left(\Sigma_{k}\right)
\end{aligned}
$$

For any given y_{k}, an associated \mathcal{F}_{k}, and $S_{K}^{k} \in \mathcal{F}_{k}$, we have

$$
\begin{aligned}
\bar{c}_{k} & =c_{k}-\sum_{j \in J} A_{j k} u_{j}-\sum_{i \in I(\bar{K}, \bar{N})} C_{i k} w_{i}-\sum_{i \in \Delta\left(\Sigma_{k}\right)} C_{i k} w_{i} \\
\bar{d}_{n} & =d_{n}-\sum_{m \in M} B_{m n} v_{m}-\sum_{i \in I(\bar{K}, \bar{N})} D_{i n} w_{i}-\sum_{i \in \Delta\left(\Sigma_{k}\right)} D_{i n} w_{i}, n \in S_{N}\left(\Sigma_{k}\right) \\
& =d_{n}-\sum_{m \in M} B_{m n} v_{m}-\sum_{i \in \Delta\left(S_{K}^{k}\right)} D_{i n} w_{i}, n \in S_{N}\left(S_{K}^{k}\right)
\end{aligned}
$$

For any given y_{k}, an associated \mathcal{F}_{k}, and $S_{K}^{k} \in \mathcal{F}_{k}$, we have

$$
\begin{aligned}
\bar{c}_{k} & =c_{k}-\sum_{j \in J} A_{j k} u_{j}-\sum_{i \in I(\bar{K}, \bar{N})} C_{i k} w_{i}-\sum_{i \in \Delta\left(\Sigma_{k}\right)} C_{i k} w_{i} \\
\bar{d}_{n} & =d_{n}-\sum_{m \in M} B_{m n} v_{m}-\sum_{i \in I(\bar{K}, \bar{N})} D_{i n} w_{i}-\sum_{i \in \Delta\left(\Sigma_{k}\right)} D_{i n} w_{i}, n \in S_{N}\left(\Sigma_{k}\right) \\
& =d_{n}-\sum_{m \in M} B_{m n} v_{m}-\sum_{i \in \Delta\left(S_{K}^{k}\right)} D_{i n} w_{i}, n \in S_{N}\left(S_{K}^{k}\right)
\end{aligned}
$$

- The values of the dual variables $\left\{u_{j} \mid j \in J\right\},\left\{v_{m} \mid m \in M\right\}$, and $\left\{w_{i} \mid i \in I(\bar{K}, \bar{N})\right\}$ are retrieved from the optimal solution of the current SRMP,

For any given y_{k}, an associated \mathcal{F}_{k}, and $S_{K}^{k} \in \mathcal{F}_{k}$, we have

$$
\begin{aligned}
\bar{c}_{k} & =c_{k}-\sum_{j \in J} A_{j k} u_{j}-\sum_{i \in I(\bar{K}, \bar{N})} C_{i k} w_{i}-\sum_{i \in \Delta\left(\Sigma_{k}\right)} C_{i k} w_{i} \\
\bar{d}_{n} & =d_{n}-\sum_{m \in M} B_{m n} v_{m}-\sum_{i \in I(\bar{K}, \bar{N})} D_{i n} w_{i}-\sum_{i \in \Delta\left(\Sigma_{k}\right)} D_{i n} w_{i}, n \in S_{N}\left(\Sigma_{k}\right) \\
& =d_{n}-\sum_{m \in M} B_{m n} v_{m}-\sum_{i \in \Delta\left(S_{K}^{k}\right)} D_{i n} w_{i}, n \in S_{N}\left(S_{K}^{k}\right)
\end{aligned}
$$

- The values of the dual variables $\left\{u_{j} \mid j \in J\right\},\left\{v_{m} \mid m \in M\right\}$, and $\left\{w_{i} \mid i \in I(\bar{K}, \bar{N})\right\}$ are retrieved from the optimal solution of the current SRMP,
- $\left\{w_{i} \mid i \in \Delta\left(\Sigma_{k}\right)\right\}$ are unknown.

For any given y_{k}, an associated \mathcal{F}_{k}, and $S_{K}^{k} \in \mathcal{F}_{k}$, we have

$$
\begin{aligned}
\bar{c}_{k} & =c_{k}-\sum_{j \in J} A_{j k} u_{j}-\sum_{i \in I(\bar{K}, \bar{N})} C_{i k} w_{i}-\sum_{i \in \Delta\left(\Sigma_{k}\right)} C_{i k} w_{i} \\
\bar{d}_{n} & =d_{n}-\sum_{m \in M} B_{m n} v_{m}-\sum_{i \in I(\bar{K}, \bar{N})} D_{i n} w_{i}-\sum_{i \in \Delta\left(\Sigma_{k}\right)} D_{i n} w_{i}, n \in S_{N}\left(\Sigma_{k}\right) \\
& =d_{n}-\sum_{m \in M} B_{m n} v_{m}-\sum_{i \in \Delta\left(S_{K}^{k}\right)} D_{i n} w_{i}, n \in S_{N}\left(S_{K}^{k}\right)
\end{aligned}
$$

- The values of the dual variables $\left\{u_{j} \mid j \in J\right\},\left\{v_{m} \mid m \in M\right\}$, and $\left\{w_{i} \mid i \in I(\bar{K}, \bar{N})\right\}$ are retrieved from the optimal solution of the current SRMP,
- $\left\{w_{i} \mid i \in \Delta\left(\Sigma_{k}\right)\right\}$ are unknown.
- Thinking-ahead approach: The ensuing analysis computes the optimal values of $\left\{w_{i} \mid i \in \Delta\left(\Sigma_{k}\right)\right\}$ without solving the SRMP explicitly under the presence of the currently missing associated set of linking constraints $\Delta\left(\Sigma_{k}\right)$.

Thinking-Ahead: Guideline

For some \mathcal{F}_{k}, we take the following steps:

Thinking-Ahead: Guideline

For some \mathcal{F}_{k}, we take the following steps:
$-\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N})) \leftarrow \operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$

Thinking-Ahead: Guideline

For some \mathcal{F}_{k}, we take the following steps:
$-\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N})) \leftarrow \operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$

Thinking-Ahead: Guideline

For some \mathcal{F}_{k}, we take the following steps:
$-\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N})) \leftarrow \operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$

Thinking-Ahead: Guideline

For some \mathcal{F}_{k}, we take the following steps:
$-\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N})) \leftarrow \operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$

Thinking-Ahead: Guideline

For some \mathcal{F}_{k}, we take the following steps:
$-\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N})) \leftarrow \operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$

- Construct an optimal basis for $\operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$

Thinking-Ahead: Guideline

For some \mathcal{F}_{k}, we take the following steps:
$-\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N})) \leftarrow \operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$

- Construct an optimal basis for $\operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$

1. Primal feasibility (by Assumption 2)

Thinking-Ahead: Guideline

For some \mathcal{F}_{k}, we take the following steps:
$-\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N})) \leftarrow \operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$

- Construct an optimal basis for $\operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$

1. Primal feasibility (by Assumption 2)
2. Dual feasibility

Thinking-Ahead: Guideline

For some \mathcal{F}_{k}, we take the following steps:

- $\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N})) \leftarrow \operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$
- Construct an optimal basis for $\operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$

1. Primal feasibility (by Assumption 2)
2. Dual feasibility
3. Complementary slackness

Thinking-Ahead: Guideline

For some \mathcal{F}_{k}, we take the following steps:
$-\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N})) \leftarrow \operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$

- Construct an optimal basis for $\operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$

1. Primal feasibility (by Assumption 2)
2. Dual feasibility
3. Complementary slackness

- Calculate the correct reduced cost of y_{k} under the condition that the reduced costs of the variables in $\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N}))$ and $\Sigma_{k} \backslash\{k\}$ do not change.

Basis Augmentation

$$
\mathbf{B}=\left(\begin{array}{ccc}
\mathbf{A}_{1} & \mathbf{0} & \mathbf{E}_{1} \\
\mathbf{0} & \mathbf{B}_{1} & \mathbf{E}_{2} \\
\mathbf{C}_{1} & \mathbf{D}_{1} & \mathbf{E}_{3}
\end{array}\right)
$$

Basis Augmentation

$$
\mathbf{B}=\left(\begin{array}{ccc}
\mathbf{A}_{1} & \mathbf{0} & \mathbf{E}_{1} \\
\mathbf{0} & \mathbf{B}_{1} & \mathbf{E}_{2} \\
\mathbf{C}_{1} & \mathbf{D}_{1} & \mathbf{E}_{3}
\end{array}\right) \rightarrow \mathbf{B}_{k}=\left(\begin{array}{ccc|cc}
\mathbf{A}_{\mathbf{1}} & \mathbf{0} & \mathbf{E}_{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{B}_{1} & \mathbf{E}_{2} & \mathbf{B}_{2} & \mathbf{0} \\
\mathbf{C}_{1} & \mathbf{D}_{1} & \mathbf{E}_{3} & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{D}_{2} & \mathbf{0} \\
\mathbf{C}_{2} & \mathbf{0} & \mathbf{0} & \mathbf{D}_{3} & -\mathbf{I}
\end{array}\right)
$$

Basis Augmentation

$$
\mathbf{B}=\left(\begin{array}{ccc}
\mathbf{A}_{\mathbf{1}} & \mathbf{0} & \mathbf{E}_{1} \\
\mathbf{0} & \mathbf{B}_{1} & \mathbf{E}_{2} \\
\mathbf{C}_{1} & \mathbf{D}_{1} & \mathbf{E}_{3}
\end{array}\right) \rightarrow \mathbf{B}_{k}=\left(\begin{array}{ccc|cc}
\mathbf{A}_{\mathbf{1}} & \mathbf{0} & \mathbf{E}_{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{B}_{1} & \mathbf{E}_{2} & \mathbf{B}_{2} & \mathbf{0} \\
\mathbf{C}_{1} & \mathbf{D}_{1} & \mathbf{E}_{3} & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{D}_{2} & \mathbf{0} \\
\mathbf{C}_{2} & \mathbf{0} & \mathbf{0} & \mathbf{D}_{3} & -\mathbf{I}
\end{array}\right)
$$

- New basic x-variables $\left(\subseteq S_{N}\left(\Sigma_{k}\right)\right)$

Basis Augmentation

$$
\mathbf{B}=\left(\begin{array}{ccc}
\mathbf{A}_{1} & \mathbf{0} & \mathbf{E}_{1} \\
\mathbf{0} & \mathbf{B}_{1} & \mathbf{E}_{2} \\
\mathbf{C}_{1} & \mathbf{D}_{1} & \mathbf{E}_{3}
\end{array}\right) \rightarrow \mathbf{B}_{k}=\left(\begin{array}{ccc|cc}
\mathbf{A}_{1} & \mathbf{0} & \mathbf{E}_{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{B}_{1} & \mathbf{E}_{2} & \mathbf{B}_{2} & 0 \\
\mathbf{C}_{1} & \mathbf{D}_{1} & \mathbf{E}_{3} & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{D}_{2} & \mathbf{0} \\
\mathbf{C}_{2} & \mathbf{0} & \mathbf{0} & \mathbf{D}_{3} & -\mathbf{I}
\end{array}\right)
$$

- New basic x-variables $\left(\subseteq S_{N}\left(\Sigma_{k}\right)\right)$
- New basic surplus variables $\left(\subseteq \Delta\left(\Sigma_{k}\right)\right)$

Basis Augmentation

$$
\mathbf{B}=\left(\begin{array}{ccc}
\mathbf{A}_{1} & \mathbf{0} & \mathbf{E}_{1} \\
\mathbf{0} & \mathbf{B}_{1} & \mathbf{E}_{2} \\
\mathbf{C}_{1} & \mathbf{D}_{1} & \mathbf{E}_{3}
\end{array}\right) \rightarrow \mathbf{B}_{k}=\left(\begin{array}{ccc|cc}
\mathbf{A}_{1} & \mathbf{0} & \mathbf{E}_{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{B}_{1} & \mathbf{E}_{2} & \mathbf{B}_{2} & \mathbf{0} \\
\mathbf{C}_{1} & \mathbf{D}_{1} & \mathbf{E}_{3} & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{D}_{2} & \mathbf{0} \\
\mathbf{C}_{2} & \mathbf{0} & \mathbf{0} & \mathbf{D}_{3} & -\mathbf{I}
\end{array}\right)
$$

- New basic x-variables $\left(\subseteq S_{N}\left(\Sigma_{k}\right)\right)$
- New basic surplus variables $\left(\subseteq \Delta\left(\Sigma_{k}\right)\right)$
- The dual variables should not change

Basis Augmentation

$$
\mathbf{B}=\left(\begin{array}{ccc}
\mathbf{A}_{1} & \mathbf{0} & \mathbf{E}_{1} \\
\mathbf{0} & \mathbf{B}_{1} & \mathbf{E}_{2} \\
\mathbf{C}_{1} & \mathbf{D}_{1} & \mathbf{E}_{3}
\end{array}\right) \rightarrow \mathbf{B}_{k}=\left(\begin{array}{ccc|cc}
\mathbf{A}_{1} & \mathbf{0} & \mathbf{E}_{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{B}_{1} & \mathbf{E}_{2} & \mathbf{B}_{2} & \mathbf{0} \\
\mathbf{C}_{1} & \mathbf{D}_{1} & \mathbf{E}_{\mathbf{3}} & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{D}_{\mathbf{2}} & \mathbf{0} \\
\mathbf{C}_{2} & \mathbf{0} & \mathbf{0} & \mathbf{D}_{3} & -\mathbf{I}
\end{array}\right)
$$

- New basic x-variables $\left(\subseteq S_{N}\left(\Sigma_{k}\right)\right)$
- New basic surplus variables $\left(\subseteq \Delta\left(\Sigma_{k}\right)\right)$
- The dual variables should not change
- The dual variables may be positive $\left(\Delta_{+}\left(\Sigma_{k}\right), C_{i k} y_{k}+\sum_{n \in S_{N}\left(S_{K}\right)} D_{i n} x_{n} \geq 0\right)$

Basis Augmentation

$$
\mathbf{B}=\left(\begin{array}{ccc}
\mathbf{A}_{1} & \mathbf{0} & \mathbf{E}_{1} \\
\mathbf{0} & \mathbf{B}_{1} & \mathbf{E}_{\mathbf{2}} \\
\mathbf{C}_{1} & \mathbf{D}_{1} & \mathbf{E}_{3}
\end{array}\right) \rightarrow \mathbf{B}_{k}=\left(\begin{array}{ccc|cc}
\mathbf{A}_{1} & \mathbf{0} & \mathbf{E}_{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{B}_{1} & \mathbf{E}_{2} & \mathbf{B}_{2} & \mathbf{0} \\
\mathbf{C}_{1} & \mathbf{D}_{1} & \mathbf{E}_{\mathbf{3}} & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{D}_{\mathbf{2}} & \mathbf{0} \\
\mathbf{C}_{2} & \mathbf{0} & \mathbf{0} & \mathbf{D}_{3} & -\mathbf{I}
\end{array}\right)
$$

- New basic x-variables $\left(\subseteq S_{N}\left(\Sigma_{k}\right)\right)$
- New basic surplus variables $\left(\subseteq \Delta\left(\Sigma_{k}\right)\right)$
- The dual variables should not change
- The dual variables may be positive $\left(\Delta_{+}\left(\Sigma_{k}\right), C_{i k} y_{k}+\sum_{n \in S_{N}\left(S_{K}\right)} D_{i n} x_{n} \geq 0\right)$
- The dual variables should be zero $\left(\Delta_{0}\left(\Sigma_{k}\right)\right)$

Row-Generating PSP (Two-Level Problem)

$$
\begin{align*}
\zeta_{y x}= & \min _{k \in(K \backslash \bar{K})}\left\{c_{k}-\sum_{j \in J} A_{j k} u_{j}-\sum_{i \in I(\bar{K}, \bar{N})} C_{i k} w_{i}-\max _{\mathcal{F}_{k} \in \mathcal{P}_{k}}\left(\sum_{S_{K}^{k} \in \mathcal{F}_{k}} \alpha_{S_{K}^{k}}\right)\right\}, \text { where } \\
\alpha_{S_{K}^{k}}=\text { maximize } \quad & \sum_{i \in \Delta\left(S_{K}^{k}\right)} C_{i k} w_{i}, \tag{1a}\\
& \text { subject to } \quad \sum_{i \in \Delta\left(S_{K}^{k}\right)} D_{i n} w_{i} \leq d_{n}-\sum_{m \in M} B_{m n} v_{m}, \quad n \in S_{N}\left(S_{K}^{k}\right) \tag{1b}\\
& w_{i}=0, \quad i \in \Delta_{0}\left(S_{K}^{k}\right) \\
& w_{i} \geq 0, \quad i \in \Delta_{+}\left(S_{K}^{k}\right) \tag{1c}\\
& \left|\Delta\left(S_{K}^{k}\right)\right| \text { many linearly independent tight constraints } \tag{1d}\\
& \text { among (1b)-(1d). } \tag{1e}
\end{align*}
$$

Properties of The basis augmentation

Properties of The basis augmentation

1. The optimal values of the dual variables $\left\{u_{j} \mid j \in J\right\},\left\{v_{m} \mid m \in M\right\}$, and $\left\{w_{i} \mid i \in I(\bar{K}, \bar{N})\right\}$ are identical for $\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N}))$ and $\operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$.

Properties of the basis augmentation

1. The optimal values of the dual variables $\left\{u_{j} \mid j \in J\right\},\left\{v_{m} \mid m \in M\right\}$, and $\left\{w_{i} \mid i \in I(\bar{K}, \bar{N})\right\}$ are identical for $\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N}))$ and $\operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$.
2. The values assigned to the dual variables $\left\{w_{i} \mid i \in \Delta\left(\Sigma_{k}\right)\right\}$ in the row-generating PSP are optimal for $\operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$. For $i \in \Delta_{s}\left(\Sigma_{k}\right)$, we have $w_{i}=0$ at optimality.

Properties of the basis augmentation

1. The optimal values of the dual variables $\left\{u_{j} \mid j \in J\right\},\left\{v_{m} \mid m \in M\right\}$, and $\left\{w_{i} \mid i \in I(\bar{K}, \bar{N})\right\}$ are identical for $\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N}))$ and $\operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$.
2. The values assigned to the dual variables $\left\{w_{i} \mid i \in \Delta\left(\Sigma_{k}\right)\right\}$ in the row-generating PSP are optimal for $\operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$. For $i \in \Delta_{s}\left(\Sigma_{k}\right)$, we have $w_{i}=0$ at optimality.
3. The reduced costs of $\left\{y_{l} \mid l \in \bar{K}\right\}$ and $\left\{x_{n} \mid n \in \bar{N}\right\}$ are identical with respect to the optimal dual solutions of $\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N}))$ and $\operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$.

Properties of the basis augmentation

1. The optimal values of the dual variables $\left\{u_{j} \mid j \in J\right\},\left\{v_{m} \mid m \in M\right\}$, and $\left\{w_{i} \mid i \in I(\bar{K}, \bar{N})\right\}$ are identical for $\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N}))$ and $\operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$.
2. The values assigned to the dual variables $\left\{w_{i} \mid i \in \Delta\left(\Sigma_{k}\right)\right\}$ in the row-generating PSP are optimal for $\operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$. For $i \in \Delta_{s}\left(\Sigma_{k}\right)$, we have $w_{i}=0$ at optimality.
3. The reduced costs of $\left\{y_{l} \mid l \in \bar{K}\right\}$ and $\left\{x_{n} \mid n \in \bar{N}\right\}$ are identical with respect to the optimal dual solutions of $\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N}))$ and $\operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$.
4. The reduced cost \bar{c}_{k} computed in the row-generating PSP for any $y_{k}, k \notin \bar{K}$ and $\mathcal{F}_{k} \in \mathcal{P}_{k}$ is equal to the reduced cost of y_{k} with respect to the optimal solution of $\operatorname{SRMP}\left(\bar{K}, \bar{N} \cup S_{N}\left(\Sigma_{k}\right), I(\bar{K}, \bar{N}) \cup \Delta\left(\Sigma_{k}\right)\right)$.

Optimality Theorem

Given an optimal basis B for $\operatorname{SRMP}(\bar{K}, \bar{N}, I(\bar{K}, \bar{N}))$ and a set of associated optimal values for the dual variables $\left\{u_{j} \mid j \in J\right\},\left\{v_{m} \mid m \in M\right\}$, and $\left\{w_{i} \mid i \in I(\bar{K}, \bar{N})\right\}$, the proposed column-and-row generation algorithm terminates with an optimal solution for the master problem (MP) if $\zeta_{y} \geq 0$, $\zeta_{x} \geq 0$, and $\zeta_{y x} \geq 0$ in three consecutive calls to the $y-, x-$, and the row-generating PSPs, respectively.

Conclusions and Future Research

- We presented and analyzed a unified framework for large-scale linear programs with column-dependent-rows

Conclusions and Future Research

- We presented and analyzed a unified framework for large-scale linear programs with column-dependent-rows
- We identified a set of properties that characterize CDR-problems and argued that this is indeed a large class of problems

Conclusions and Future Research

- We presented and analyzed a unified framework for large-scale linear programs with column-dependent-rows
- We identified a set of properties that characterize CDR-problems and argued that this is indeed a large class of problems
- To the best of our knowledge, all CDR-problems studied so far in the literature belong to this class

Conclusions and Future Research

- We presented and analyzed a unified framework for large-scale linear programs with column-dependent-rows
- We identified a set of properties that characterize CDR-problems and argued that this is indeed a large class of problems
- To the best of our knowledge, all CDR-problems studied so far in the literature belong to this class
- We devised a generic methodology for solving CDR-problems to optimality

Conclusions and Future Research (Cont'd)

- Many routing and scheduling problems with interactions between individual routes or schedules may be cast as quadratic set covering problems with restricted pairs and side constraints

Conclusions and Future Research (Cont'd)

- Many routing and scheduling problems with interactions between individual routes or schedules may be cast as quadratic set covering problems with restricted pairs and side constraints
- We plan to develop computationally efficient implementations of our generic methodology:

Conclusions and Future Research (Cont'd)

- Many routing and scheduling problems with interactions between individual routes or schedules may be cast as quadratic set covering problems with restricted pairs and side constraints
- We plan to develop computationally efficient implementations of our generic methodology:
- Lagrangian relaxation and Benders decomposition

Conclusions and Future Research (COnt'd)

- Many routing and scheduling problems with interactions between individual routes or schedules may be cast as quadratic set covering problems with restricted pairs and side constraints
- We plan to develop computationally efficient implementations of our generic methodology:
- Lagrangian relaxation and Benders decomposition
- Embedding the column-and-row generation algorithm into branch-and-price or branch-and-cut-and-price framework to solve large-scale integer programming problems with column-dependent-rows.

Related Research

- Muter, İ., Ş. İ. Birbil, K. Bülbül. Simultaneous Column-and-Row Generation for Large-Scale Linear Programs with Column-Dependent-Rows, Mathematical Programming, 2012, To appear, DOI: 10.1007/s10107-012-0561-8.
- Muter, i., Ş. I. Birbil, K. Bülbül, G. Şahin. A Note on A LP-based Heuristic for a Time-Constrained Routing Problem, European Journal of Operational Research, 2010, 221, 2, 306-307.
- Muter, İ., Ş. I. Birbil, K. Bülbül, G. Şahin, D. Taş, D. Tüzün, H. Yenigün, Solving A Robust Airline Crew Pairing Problem With Column Generation, Computers and Operations Research, 2010, To appear, DOI: 10.1016/j.cor.2010.11.005.

